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Abstract:

e increasing penetration of Distributed Energy Resources has imposed several challenges in the analysis and operation of power
systems, mainly due to the uncertainties in primary resource. In the last decade, implementation of Battery Energy Storage Systems
in electric networks has caught the interest in research since the results have shown multiple positive effects when deployed
optimally. In this paper, a review in the optimization of battery storage systems in power systems is presented. Firstly, an overview
of the context in which battery storage systems are implemented, their operation framework, chemistries and a first glance of
optimization is shown. en, formulations and optimization frameworks are detailed for optimization problems found in recent
literature. Next, A review of the optimization techniques implemented or proposed, and a basic explanation of the more recurrent
ones is presented. Finally, the results of the review are discussed. It is concluded that optimization problems involving battery
storage systems are a trending topic for research, in which a vast quantity of more complex formulations have been proposed for
Steady State and Transient Analysis, due to the inclusion of stochasticity, multi-periodicity and multi-objective frameworks. It
was found that the use of Metaheuristics is dominant in the analysis of complex, multivariate and multi-objective problems while
relaxations, simplifications, linearization, and single objective adaptations have enabled the use of traditional, more efficient, and
exact techniques. Hybridization in metaheuristics has been important topic of research that has shown better results in terms of
efficiency and solution quality.
Keywords: Formulations of optimization problems, metaheuristics, convex optimization, battery storage systems, power
systems.

Resumen:

La creciente penetración de recursos distribuidos ha impuesto desafíos en el análisis y operación de sistemas de potencia,
principalmente debido a incertidumbres en los recursos primarios. En la última década, la implementación de sistemas de
almacenamiento por baterías en redes eléctricas ha captado el interés en la investigación, ya que los resultados han demostrado
efectos positivos cuando se despliegan óptimamente. En este trabajo se presenta una revisión de la optimización de sistemas
de almacenamiento por baterías en sistemas de potencia. Pare ello se procedió, primero, a mostrar el contexto en el cual
se implementan los sistemas de baterías, su marco de operación, las tecnologías y las bases de optimización. Luego, fueron
detallados la formulación y el marco de optimización de algunos de los problemas de optimización encontrados en literatura
reciente. Posteriormente se presentó una revisión de las técnicas de optimización implementadas o propuestas recientemente
y una explicación básica de las técnicas más recurrentes. Finalmente, se discutieron los resultados de la revisión. Se obtuvo
como resultados que los problemas de optimización con sistemas de almacenamiento por baterías son un tema de tendencia
para la investigación, en el que se han propuesto diversas formulaciones para el análisis en estado estacionario y transitorio, en
problemas multiperiodo que incluyen la estocasticidad y formulaciones multiobjetivo. Adicionalmente, se encontró que el uso
de técnicas metaheurísticas es dominante en el análisis de problemas complejos, multivariados y multiobjetivo, mientras que la
implementación de relajaciones, simplificaciones, linealizaciones y la adaptación mono-objetivo ha permitido el uso de técnicas
más eficientes y exactas. La hibridación de técnicas metaheurísticas ha sido un tema relevante para la investigación que ha mostrado
mejorías en los resultados en términos de eficiencia y calidad de las soluciones.
Palabras clave: Formulaciones de problemas de optimización, metaheurísticas, optimización convexa, sistemas de
almacenamiento por baterías, sistemas de potencia.
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Highlights

• Steady state analysis for BESS implementations in power systems are carried out by formulating
optimization problems, whereas Transient analysis uses optimization mainly for controller tunning

• In the formulation of optimization problems regarding BESS as ancillary services provider, not only
technical, but also economic and environmental objectives were frequently optimized

• Multiperiod, Multi-Stage and Multiobjective frameworks in optimization have been trending in
recently published literature regarding BESS implementations

• For complex optimization problems regarding BESS implementations that include multiple
objectives, metaheuristic techniques have been preferred in recent publications

• Well known Particle Swarm Optimization and Genetic Algorithms have been used as reference
for result comparison for newer Metaheuristic technique proposals, such as Grey Wolf Optimizer,
Whale Optimization Algorithm and Harris Hawk Optimization, showing improvements in
solution’s quality with those alternatives

• Due to the uncertain nature of Distributed Energy Resources, Stochastic optimization and Robust
Optimization have been gaining relevance when analyzing implementations with BESS
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1. INTRODUCTION

Distributed Energy Resources (DER) is a term given to the set of energetic resources that are operated in a
decentralized way and are typically, but not necessarily exclusively, driven by uncertain primary resources,
like Renewable Energy technologies (RES) such as Solar Photovoltaic (PV) and Wind Energy (WE), or
more predictable ones like Hydrogen Energy with Fuel Cells (FC) or Hydro-Electrical Energy (HEE) with
micro turbines [1]–[5].e Penetration of DER in power systems has been thrusted recently by a decrease
in technological costs, advancements in communication and information technologies, and the social drive
to increase efficiencies in energy production, transportation, and consumption with reduced environmental
impacts [1], [6] – [8]. is momentum has brought not only technical challenges in its implementation due
to the inherent uncertain nature and the mixture of their primary resources [6], [9] – [12], but also changes
in the operational frameworks of energy markets due to the decentralized fashion of its implementation and
new market agents taking part in energy transactions [13], [14]. During the last decade, these challenges have
been faced and extensive research has been published, allowing to find new operational structures, technical
advantages, and also new questions to be answered. For example, multiple studies have shown how technically
advantageous can be the implementation of DER in distribution networks in terms of power loss reduction,
voltage regulation, network loadability, network capacity, system flexibility, frequency regulation, Demand
Response, Curtailment, maximization of profit, or minimization of costs [10], [15] – [23]. However, analysis
of DER in power systems is usually performed assuming certainty conditions (by means forecasts, study-cases,
static behavior, or linearization), thus limiting the scope of obtained results, or by implementing variability
compensation systems in the effort to increase the inertial response during electricity supply [24] or the
stability [25], [26], for instance, using Battery Energy Storage Systems (BESS), flywheels or hydro-pumped
storage [13].

Battery Energy Storage Systems BESS, whose technology is part of DER even though they cannot be
considered as proper generation, have the particularity to behave dually: can operate as a load (withdraw
energy) or as a support for generation (analogous to a generator). During BESS operation, it storages
(charges) or releases (discharges) energy obtained from an external source through electrochemical processes.
is behavior, together with the flexibility in controllability and power ramping rate, make their operation
especially useful to provide supplementary services in the operation of power systems [27]. e efficiency
during operation varies depending on the chemistry and energy density of the unit, i.e., between 72.5 % and
85 % efficiency with energy density ranging between 20 Wh/kg and 30 Wh/kg for Lead-Acid, 85 % - 95 %
with 90 Wh/kg - 190 Wh/kg for Lithium-Ion, 72.5 % and 86 % with 150 Wh/kg - 240 Wh/kg Sodium-
Sulphur, and 60 % - 72.5 % with 15 Wh/kg - 30 Wh/kg for Redox Flow [28]. Although Lead-acid is now
a mature technology and provides availability and good efficiency at lower costs, research has been made
in different technologies (chemistries) to overcome some of the downsides (i.e., low cycle life, low energy
density, and the highly reduced life cycle under high depths of discharge and temperature [29]). Lithium-
ion technology (LIB) shows up as an alternative that not only overcomes some of the mentioned downsides,
but also enhances the upsides, by increasing the energy density and the cycle life at least fourfold while
improving the efficiency. However, LI life cycle is strongly dependent on temperature and, together with its
higher capital costs, might limit its implementation in utility scale applications [30]. Even though LI-BESS
is not yet competitive when implemented for ancillary services in power systems, the increasing participation
of Electric Vehicles EV (LI main market is now EV) in the electric demand share, the implementation of
Vehicle-to-Grid frameworks and the sustained reduction in costs shown since 2013 [28] would make LIB
viable for on-grid implementation in few years [31].

As mentioned before, BESS are mainly implemented to provide additional services to power systems either
in transmission or distribution [27]. ose services can be classified into technical (where the main concern
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is to improve the power quality), and economical (increase of profits, reduction of costs) [32], within several
timeframes. In Table 1, some services and the timeframe are reviewed.

TABLE 1
Ancillary services provided by BESS adapted from [28]

Source: Created by the author.

Modelling BESS for its implementation in power systems has been realized using diverse methods
depending on the objective of analysis and its timeframe. For instance, in [27] a ree Time Constant model
based in state estimation is proposed in the context of primary frequency and local voltage regulation. In
[67], a nonlinear model is proposed for LI batteries using a Hammerstein-Wiener model. Machine Learning
techniques (ML) such as Artificial Neural Networks (ANN) are also used to model BESS when data is
available [68]. If the chemistry is not considered, BESS can be modelled using efficiency in steady state
operation. In [69], an internal resistance model is proposed for efficiency, while in [70] similar structures
for particular chemistries are studied including the State of Health (SoH), State of Charge (SoC) and power
in longer term contexts.

BESS integration in active distribution networks, or microgrids, is usually analyzed in static BESS
frameworks, this means that their mobility is not considered. However, Mobile BESS, MBESS, defines a
new structure for operation for BESS, in which different solutions sets for its location, the status (charging,
discharging, idle, or transport), and the costs for mobilizing such systems are considered to optimize network
operation. Formulating the problem under this operational structure has shown several advantages in
comparison with static BESS (Fewer losses, less active and reactive power drawn from substations, and
improvements in voltage profiles) [71].

To examine the steady state effects of DER on active distributed networks, or microgrids, an optimal
power flow study is typically performed, formulating the set of nonlinear equations resulting from circuit
analysis, defining the operational constraints, such as voltage limits, transformer capacities or line current
limits, and objective functions, which all depend on the decision variables.
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Regardless of DER technology and the corresponding efficiencies based either on construction or
operation, either uncertainties, objective function definition, or the modelling of the operation of the DG
units might bring non-convexities to optimal power flow formulation, and with it, increased complexity in
the steady-state analysis of the system. en, additional effort is then needed to analyze the system if the
objective function(s) and/or any (or every) additional operational constraint has concave properties in a
minimization sense of the problem. erefore, the way the problem is formulated for analysis defines the
way it will be solved, and consequently how efficiently it will get to a solution, i.e., in the optimal dispatch of
generators if costs or load shaving schemes are defined for even shorter periods, complex topologies and great
dimensions in the power system. If this occurs, then metaheuristic techniques (MH) are useful and powerful
tools to find approximate (to global) solutions regardless of the formulation [28]. However, some non-linear
functions are convex, and some non-convex equations can be relaxed to ensure convexity and, consequently
its exactness, if additional constraints are added [72]. MH techniques are general algorithmic frameworks
that can be applied to a wide variety of problems, some of them very complex, making few modifications
in the implementation [73]. ese techniques are oen inspired in phenomena observed in the nature and
transformed into algorithms that usually start from random initial states and apply the specific search strategy
to find solutions that converge the objective(s) function(s) close to a global minimum in complex problems,
in a reasonable amount of time [74]. Consequently, due to the heuristic nature of the search strategy, global
solutions and exactness are not guaranteed.

In this paper, a review on in optimization methods for operation and implementation of BESS in power
systems is presented, and aer this introduction, some of the most recent optimization problems regarding
BESS operation for ancillary services and their formulations are surveyed in section BESS Optimization
Problems. Subsequently, methods used to find the solution are reviewed and categorized with convexity as
main criteria and if relaxations were implemented. Finally, results, discussion, and conclusions are presented
in their respective sections.

2. OPTIMIZATION PROBLEMS

As mentioned in in the previous section, there is an ample variety of applications of BESS implemented to
provide services in power systems, in which the optimization of decision variables will provide the technical,
economic, or mixed benefits expected from such frameworks. In this section, the formulation objective
functions are reviewed in the context of the ancillary services provided with BESS.

2.1 Voltage Control

Objective functions are defined subject to the type of analysis to be carried out, being classified as transient or
steady-state analysis. In Transient Voltage analysis, BESS operation is optimized to reduce voltage deviations
in contingencies [75], [76]. An objective function can be defined starting with a formulation for voltage
deviations, as it is shown in (1).

(1)

Where Vt kj is the voltage magnitude in the node j at time step t and contingency k, and V0 j  is the pre-
fault initial voltage magnitude. en an average severity index SIk  is formulated to classify the magnitude of
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the deviations Rt kj  by averaging them for each contingency k as in (2). If in any contingency case k, node j
or period t no reliability standard (i.e., NERC/WECC, Grid codes [77]) is violated, then Rt kj = 0.

(2)

e objective is then formulated in (3) by complementing the severity index with a maximum voltage
recovery sensitivity parameter (Voltage Sensitivity Index VSI), which depends on BESS injected var q  es,i  (Nes

refers to the number of BESS units).

(3)

Equation (3) is desired to be optimized in the sense of maximization because it is expected for the node
voltage in fault conditions to drop to zero (short-circuit). e problem is constrained to the defined number
of BESS units (Nes ) using the binary variable zi  shown in (4) indicating if the unit is located in node i or not.

(4)

In steady state analysis, the aim is to achieve voltage regulation either by imposing grid code limits, by
defining a voltage profile to be follow or by supporting transmission operation with local voltage support in
distribution networks [78]. If the aim is to follow a voltage profile, a squared 2-norm for voltage deviations
is defined in (5) as minimization objective [79] by controlling generated reactive power and lossless power
flow equations (constraints):

(5)

Where the parameter  μ  defines the voltage profile to be followed. In [80], the BESS apparent power
injection is controlled to minimize voltage deviations in pure distribution network (DN) nodes and to track
voltage references given by transmission network operator (TN) in nodes interfacing both networks (TN-
DN). e objective function (6) was formulated as a function of the active and reactive power in BESS
assuming a linearized model in which the power losses are negligible.
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(6)

is objective is composed of two cost functions. C1  correspond to the voltage tracking strategy in
interfacing TN-DN nodes, formulated as a squared 2-norm in (7), while C2  represents a cost function for
BESS dispatch in (8).

(7)

(8)

Where, γ and ω are defined as positive weights to balance voltage regulation (in C1 ) and power provision
cost (in C2 ) respectively. Vectors p b  and  q b  are the net power balance between generation and demand.
is operation is constrained to SOC, BESS apparent power and node voltage limits, and SOC operation
constraints.

In [81], BESS units are allocated in an unbalanced distributed network to minimize power losses and
voltage deviations. To formulate the objectives, the authors define two cases, when no wind turbines and
BESS are present in the network, and the base case without DER units. Voltage Deviations are calculated
for every node i, timestep t for each phase K as in (9), and then a phase average deviation voltage is calculated
in (10). e objective is formulated as shown in (11).

(9)

(10)

(11)

is problem is constrained by power flow balance equations, per phase Voltage and Current limits, and
SOC limits.
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2.2 Harmonic Mitigation

is service is nowadays closely tied to the implementation of DER in power systems, due to the many DC/
AC conversions occurring in power electronic stages. In [82], a control strategy is presented to compensate
power quality issues in a system with Hybrid RES (PV-WE and BESS) by means of a Unified Power Quality
Conditioner (UPQC) specified to address PQ issues. e controller architecture is Fractional Order PID
(FOPID), and its parameters are optimized to minimize errors in a double feedback control loop (voltage
and current errors). e proposed strategy is assessed for power quality when RES is active and inactive, and
for Total Harmonic Distortion when RES is inactive. Additionally, cases with non-linear load variation,
unbalanced nonlinear load, Voltage and Current sag, voltage and current swell and voltage disturbances were
included in the assessment. Optimization takes place to estimate parameters (gains) in FOPID and improve
controller’s response in error elimination, response speed and overshoot mitigation.

2.3 Black Start

BESS can be used to restore service in power generation plants when required. However, BESS overcharge
or undercharge are to be avoided in order to preserve its State of Health (SoH) and maximize its life cycle. In
[83], a stratified optimization strategy is proposed to use BESS-PV systems for operation restore. If a black
start instruction is received, the controller begins its operation by retrieving historical data regarding the PV
system, weather forecasts, and actual data of PV, Load and BESS status. For the defined black start period, a
Least Square Support Vector Machine is implemented to predict based on historical data of PV and weather
forecasts the expected PV power and probabilities for power generation based on limits and the actual state.
Following probabilities and predictions, the controller decides if the service should begin or not. If the system
is capable of providing the service, then a Model Predictive Controller (MPC) decides the action control
(BESS and PV power) optimizing two cost functions based on the availability of PV resources, as shown in
(12), and safe operation of BESS as in (13).

(12)

(13)

In (12), Nr  is the number of PV units to be active, PPVU  is the predicted power of PV per unit, PL  the
load power (PPV + PBESS ) and ∆P is a compensation factor formulated in (14).

(14)

In (13), EBESS  is the BESS capacity (energy) and EBESSL  is the ideal BESS capacity. is problem is
constrained to meet power balance equations, BESS and PV power limits, BESS SOC limits, and the PV
units number limit.
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2.4 Frequency Control

As frequency deviations occur mainly due to the mismatch between generation and demand in transient
periods, control strategies are then oen implemented to overcome them. In [84], a control for Primary
Frequency Regulation (PFR) is proposed based on Dead-Band setting, in which the power in BESS units is
modulated based on a control strategy depending on frequency deviations, BESS state of Charge SOC and
condition. First, three types of dead band are defined: No dead band, ordinary dead band, and enhanced dead
band. e first one directly maps the frequency input to the output frequency. e second one, sets the output
frequency to the frequency deviation plus the threshold frequency when the frequency deviation is less than
a negative threshold, and removes the threshold value to the deviation in the output when the deviation
is greater the positive threshold. If the absolute value of the frequency deviation is less or equal than the
threshold, then the output frequency is zero. In the third type, the output frequency is set to the value of the
deviation if the absolute value of the deviation is greater than the threshold, or zero otherwise. A fourth type
of dead band is proposed based on the SOC of the BESS unit. is action defines a piecewise function for the
dead band using different dead band thresholds, to obtain output frequency. en, the authors define when
BESS should act: if the frequency deviation is zero, then the BESS is not acting, when the deviation exceeds
zero, then the unit is charging (greater demands represent decreases in frequency), and when the frequency
deviation is negative, then the BESS is discharging (lower demands represents increases in frequency). To
constraint how the BESS operates during charge or discharge an alpha parameter is created for both operation
modes to modulate the rate of charge/discharge when the unit is required for frequency regulation. e rate
of charge of BESS (when frequency deviations are greater than zero) will decrease the closer the SOC gets
to a maximum value. e absolute value of the parameter alfa-c (the c stands for charge) is maximum (|-1|)
if the actual SOC of the unit is less than 75 %, otherwise the rate of charge decreases exponentially until
it is charged to the maximum value of SOC and alpha-c gets a zero value. When frequency deviations are
negative, then the unit will discharge at a maximum rate if the SOC is higher than 25 %, and the alpha-d (the
d stands for discharge) is maximum (one). Otherwise, the rate of discharge decreases exponentially until it
reaches zero level and stops its frequency regulation. e output frequency is then following the piecewise
map and the amplitude is modulated by the alpha value.

Finally, the authors propose two optimization frameworks: optimize parameters for the piecewise
function (find optimal values for threshold, load conditions and dead band values) and optimize parameters
for SOC alpha values. For those optimization problems, two objective functions were defined: the root mean
squared (rms) values for SOC in (15) and frequency deviation in (16).

(15)

(16)

Where ft – fres  represents the frequency deviation at time t, SOCt  the state of charge in time t and SOCavg

the average SOC in period T.
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In [85], a BESS optimal operation problem is defined for a single node providing PFR, in which the
benefits are to be maximized in intra-day operation. e profit is defined in three dimensions: demand supply,
PFR service provision and BESS cycling (aging). e demand to be supplied by BESS is defined in (17) as
the difference between the power load (PL ) and the power generation (PG ) and modulated by electricity
prices (Ep ) at any given time.

(17)

e benefit from PFR service provision is defined in (18) by the power capacity to provide the service (Pf

) and the PFR clearing price (EPFR ):

(18)

e benefit from BESS aging is represented in (19) by the optimal operation of BESS maximizing its life
(mitigation of charge and discharge cycles, SOC) considering the efficiencies as in (20).

(19)

(20)

e objective function is built in (21) by aggregating the benefits.

(21)

e optimization is later reformulated including a stochastic sequential decision process for intra-day
operation strategy. e objective function is then defined in (22) to maximize the expected benefits aer
deciding based on initial states.

(22)
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2.5 Demand Response

In [86], the objective is to minimize the cost of operating a PV-BESS system by accounting the costs of
importing energy from the grid, the cost of PV generation, the cost of BESS cycle depreciation and the costs
of selling (exporting) energy to the grid as shown in (23).

(23)

Where C(t) represents the corresponding cost matrix for each operational item considered in the objective
function, as it is shown in (24), and S(t) the binary state matrix for each component (working or shutdown
states).

(24)

Where Py  is the active power and xy  is the corresponding cost for the system y, namely Grid-in: electricity
tariff, PV: average cost of PV generation, BESS: total cost of the BESS system and Grid-out: Feed in Tariff
for PV exports. ΓR  is the rated life of BESS, D and DR  are the actual and the rated Depth of Discharge (DoD)
respectively. CR  is the rated amp-hour capacity at rated discharge current and CA  is the actual discharge
ampere-hour capacity of BESS. Finally, dact  is the actual ampere hour discharge.

e cost function for BESS includes a model for Battery cycling aging based on cycle state of charge
(SOC=1-DOD) and charge/discharge dynamics relative to rated values. is problem is constrained to power
balance and BESS power and SOC limits. e status of Grid-in and Grid-out can’t be operative (a logical
one) at the same time. In [87], a similar structure for costs is presented and a model for Demand Response
scheme is formulated, where it is desired to minimize operational costs, as in (25), for a WE-PV-BESS
in a distribution network. Costs are defined for the power flow balance between utility and distribution
companies, RES curtailment and sell energies, BESS energy during charge and discharge, and Demand
response Scheme (DR).

(25)

Power balance is defined to be as it is shown in (26).

(26)
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Besides power balance, the problem is also constrained by the maximum power (for discharge and charge),
the SOC and the efficiencies in BESS.

2.6 Power Loss

In [88], the location and operation of BESS in a distributed network with PV and WE penetration is studied.
e authors formulated three objectives to be minimized, as it is shown in (27), voltage fluctuations, power
losses (described by (28)) and the total capacity of BESS to be allocated (defined in (29) and (30)).

(27)

(28)

(29)

(30)

e EBESS (k) stands for the rated capacity of the kth  BESS unit. BESS model includes self-discharge rate
σ, efficiencies λ, and SOC.

e problem is constrained to a five percent nodal voltage limit, power flow balance equations, active
and reactive power limits in lines, Charge balance in BESS and SOC limits. e location of BESS units is
represented with integer variables. It is defined that the initial SOC must be the same as the final, and it is
set to 40 %.
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2.7 Off-grid Operation

In [89], the operation of a Hybrid Renewable Energy microgrid (HREM) is optimized to minimize three
objective functions in a muti-objective framework, e levelized Cost of Energy (LCOE), e Loss of Power
Supply Probability (LPSP), and Greenhouse Gas Emissions (GHGE) shown in (31) - (35) respectively. is
microgrid counts with PV, HEE, and conventional Diesel generation. Demand is divided in agricultural and
residential.

(31)

(32)

(33)

(34)

(35)

Where TLCC stands for the Total Life Cycle Cost, and it is calculated for each generator type based on
the capital cost, Operation and Maintenance (O&M) costs, interest rates and lifetime of each system.

e terms PBESS-D (t)  and PBESS-C (t) correspond to the power during discharge and charge in BESS.
e GHGE objective depends on the fuel consumption of the diesel machine and the emission factor for

each Greenhouse Gas.
e decision variables are the dimension (size) of each generator. e problem is constrained to the power

limits of each generator (energy for BESS), the generation-load active power balance and SOC limits.

2.8 RES Variability Mitigation

In [90], a bi-layer optimization framework is proposed to optimally integrate PV generation in distribution
system utilizing BESS systems. In the first layer, the power losses in the network shown in (36), reverse power
flow described in (37) and node voltage deviation in (38) are defined as objective functions for minimization.
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(37)

(38)

is problem is constrained by power flow balance equations and Current, RES power, BESS capacity
and SOC limits. SOC are constrained also by efficiencies. In the second layer, Annual Energy Loss, Load
Deviation Index (LDI) and BESS utilization are defined as objective functions as depicted in (39).

(39)

Where (P # D ) and PD(h) are the mean demand and the actual demand at hth  hour. Pi,bess-C(h) and Pi,bess-

C(h) represent the BESS charging and discharging power in the node i and hour h respectively.
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2.9 Cost/profit Optimization

In [91], BESS operation is optimally scheduled by maximizing revenues from energy generation and
minimizing energy purchasing costs and battery degradation as it is shown in (40).

(40)

Where R(t) is the revenue, Cbuy  the cost of purchasing energy, and CBESS_Day  is the cost for BESS
degradation in a day, as it is shown in (41) and (42) respectively.

(41)

(42)

Where δ(t) and γ(t) represent the energy selling and buying prices at time t, respectively. Psell (t) and Pbuy

(t) are power exports and imports to/from external network. e Cost for daily BESS degradation is defined
implementing DOD, maximum cycle number and parameters fitted from annual capital discount rate. is
problem is constrained by active power balance and SOC limits including efficiencies. e status of BESS is
defined by integer variables representing charge or discharge statuses.

3. OPTIMIZATION TECHNIQUES

As can be observed in the optimization problem section, recent studies implement analysis techniques
depending on the formulation of the problem and the timeframe. In this section, a review from the most
encountered optimization techniques and frameworks in recent manuscripts is presented. For this, a search
in Web of Science is performed with the key *bess AND optimization, filtered for results published from
2019 on. e date of the search is 04/27/2022. From the search results is possible to see that research in
optimization of BESS has been increasing and it can be expected to at least be equal as 2021, as can be
observed in Figure 1 (results of 2022 correspond to the research published until the date of search and some
programmed publications which are not yet published at the date of search).
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FIGURE 1.
Publications in BESS optimization from Web of Science search

Source: Created by the author.

e list of results is reduced to 200, and a list of optimization techniques and frameworks is obtained from
abstracts. is information is filtered and presented ordered by the appearance count in the right side of
Table 2., while in the le side, optimization methods (or frameworks If optimization is performed indirectly)
are tagged with the base technique if modifications or hybridizations are proposed.

TABLE 2
Labeled technique count le Specific techniques count right

Source: Created by the author.

3.1 Metaheuristics

From Table 2 could be observed that PSO- and GA- based optimization methods have been predominantly
used to find solutions to optimization problems related to BESS implementations and to compare new
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proposed techniques. In this subsection, the working principle of the most recurrent techniques is briefly
explained.

3.1.1 Particle Swarm Optimization

Particle Swarm Optimization (PSO) was first proposed by Kennedy and Eberhart in 1995, inspired by the
natural choreography of birds flocking or fish schooling [92]. In this case particles (elements belonging to the
swarm population) modify their initial random path (direction) using two criteria: the best location found
by the particle and the best location found by the swarm. To do this so, this method defines the particle
velocity to represent the direction in which the particle will be moving within the search space. e velocity
of a particle k of the swarm of population N at the step m+1 (iteration) is given by (43).

(43)

Where vk m+1   is the velocity of the particle (initialized random) at the next step, vk m  is the velocity at
the current step, ω is the inertial coefficient of the particle (weights particle tendency to continue his own
direction), c1  is the cognitive acceleration constant (weights particle’s tendency to follow the direction of
the best place it has ever found), c2  is the social acceleration constant (weights particle’s tendency to follow
the direction of the best place the swarm has ever found), r1  and r2  are random real numbers between zero
and one. xk m, pk  and g are the actual position of the particle k, the best position found by the particle k and
the best position found by the swarm respectively, g and pk  positions are related to the value of the decision
variables when the objective function reached best global and best particle values respectively. e position
of each particle is updated aer updating each particle’s velocity as in (44).

(44)

Where χ is called constriction factor. is technique has been implemented in the optimization of
different problems regarding BESS implementations, e.g. optimal sizing and/or allocation of BESS for power
loss [93]–[96], voltage deviations [97], DER variability and peak demand reduction [98], optimal capacities
for reliability and low cost objectives in autonomous AC grid design [99], Smart backup battery design
for DER efficiency[100], BESS efficiency and life improvement [101], optimal micro grid (MG) operation
under demand response schemes optimizing BESS capacity and costs [102].

3.1.2 Genetic Algorithm

Genetic Algorithms (GA) have been developed by Holland since 1965 based on the concept natural selection
from Darwin’s Origin of Species. GA are population-based techniques, in which fittest individuals are prone
to be selected and from this selection of individual (reproduction), crossover occurs, expecting to obtain new
generations of individuals with better genetic properties (traits). Aer crossover, the process of mutation
takes place modifying randomly some genetic contents in individuals of each new generation according
to a predefined mutation probability [103]. Firstly, the fitness function is calculated for each individual,
usually by computing the objective function value plus penalties for constraints violations. en individuals
are selected using weighted roulette wheel, in which the fitness value for each individual is weighted, and
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individuals are selected for reproduction (parent individuals) probabilistically according to their weight in
the roulette. Decision variables are initialized randomly and then coded into a single binary string.

During crossover, the binary string is divided in two sections and the position (k) for this division is
selected randomly within the size of the binary string. en two child strings are obtained by keeping the
first part of the string of one parent and replacing the second part with the corresponding string part of the
second parent, and vice versa. e crossover mechanism is shown in (45).

(45)

As it could be observed in Table 2, newer techniques based on GA have been developed and implemented
in the optimization in power systems with BESS, e.g., DER performance improvements with smart backup
branch [104] or by optimizing the degradation rate of BESS [105], microgrid cost reductions including
RES and load uncertainty and battery degradation[106], optimal allocation and sizing of BESS for primary
frequency control in isolated power systems [107] and electric vehicle station costs and emissions reductions
[108], the integration of DER and BESS in distribution networks for multiple objectives, namely power loss,
voltage deviation, peak demand [95] voltage stability and installation, operational and emission costs [104],
BESS operation for power loss reductions [94], safe and economical operation of distribution networks with
BESS, DER and electric vehicle integration [109], among others.

3.1.3 Grey Wolf Optimizer

Grey Wolf Optimizer (GWO) is a metaheuristic technique proposed by [110], inspired by the social and
hunting behavior of Grey Wolves. In this algorithm, the solutions found in each iteration are hierarchized
according to their fitness function value. Similarly, as in wolf packs, the fittest solution is denominated alpha
(α), and subsequently solutions are assigned as beta (β) and delta (δ) in that order. e rest of the solutions
are denominated omega (ω) solutions. is denomination prioritizes the search for better solutions. In the
same way wolves encircle the prey in nature, GWO algorithm emulates this behavior when searching for
better new solutions. e position of alpha, beta and delta wolves remains unchanged and omega solutions
are modified to get closer to each of the three leader wolves. Firstly, for every k omega solution the distance
with respect to the leaders is calculated as in (46).

(46)

en three positions are defined based on Dk #, Dk β, Dk δ  as in (47).
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(47)

Where a1, a2  and a3  are random vectors, and vectors c1, c2  and c3  are set randomly in the range between
zero and two as in (48) and (49) respectively.

(48)

(49)

Where r1  and r2  are vectors between zero and one and a is vector linearly decreasing from two to zero
during iterations. en the position of the omega solutions is updated as in (50) by averaging the positions
mentioned in (47).

(50)

Exploitation and exploration of the search space is controlled by ax  vectors. If for a solution the absolute
value of ax  is greater than one, then exploration is preferred, otherwise the exploitation is performed.
erefore, it is expected that for the first half of iterations the program should be mainly exploring, while
during last part of the program the exploitation should be dominant. is is analogous to the search for the
prey (exploration) and the attack to the prey (exploitation) behaviors.

is algorithm has been used to find optimal BESS capacities for reliability and low cost objectives
in autonomous AC grid design [99], the optimal sizing and/or allocation of BESS for power loss [111]
and voltage deviations [97], Smart backup battery design for DER efficiency, BESS efficiency and life
improvement [101], the optimal allocation of Electric vehicles charging station with DER and BESS
integrations to reduce energy losses, voltage deviations and investments and maintenance costs[112], Unified
Power Quality Conditioner control for Hybrid DER with BESS to increase system performance during
voltage and current sag, real reactive power quality and total harmonic distortions [82], [113], the optimal
operational strategy for BESS integration in microgrid to reduce the cost of power, the failure of energy
contribute, the probability of deposit power [114] and the implementation of BESS in droop regulated
islanded microgrid considering probabilistic modelling of DER for annual operation and maintenance cost,
emissions and power loss reductions [115], and others.
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3.1.4 Whale Optimization Algorithm

Whale Optimization Algorithm (WOA) is a technique proposed by Mirjalili and Lewis in 2016 inspired
in the foraging behavior of Humpback whales [116]. e authors propose a similar strategy for encircling,
attacking, or searching for prey as in GWO, but executed differently. In WOA the prey is represented directly
by the global fittest solution (x*).

In GWO exploration (search for pray) or exploitation (attacking the prey) is performed directly using
the equation for position update based on ak . Each k agent (whale) will encircle, attack (exploit) or search
(explore) for the pray based on a random p factor (between zero and one) and the respective ak  vector value.
If the random value p is less than 0.5, then the agents will encircle or search for the pray depending on the
absolute value of ak  (if |ak |<1 the agent will encircle. It searches for the prey otherwise). If the value of p
is greater or equal than 0.5 then the agent will attack the prey. For encircling, search and attack, a different
strategy for updating position is executed. If the agent is to encircle the prey, then its updated position will
depend on the distance between the position of the agent and ak  value, as in (51). Its formulation is shown
in (52).

(51)

(52)

If the agent is to search for the prey, then the position of the agent is updated calculating the distance to
another agent selected randomly, as in (53). e new position is described in (54).

(53)

(54)

e vectors ak  and ck  are calculated similarly as in GWO, where a is vector linearly decreasing from two
to zero during iterations, as shown in (55) and (56) respectively, and the r vector is unified.

(55)

(56)

e parameter b in (53) defines the shape of the spiral and l is a random number between minus one and
positive one. is technique has been implemented in the optimization of different problems regarding BESS
implementations, e.g., optimal sizing and/or allocation for power loss minimization [93], [104], [117], Smart
backup battery design for DER efficiency [100], Microgrid operation to reduce operational costs, namely
Diesel fuel, power exchange and BESS costs, while maximizing the benefit [118].
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3.1.5 Harris Hawk Optimization

Harris Hawk Optimization (HHO) based algorithms have also been proposed in the latest studies. is
technique is inspired in the foraging behavior of the Harris Hawk and was proposed in [1]. Similar as in
WOA, the foraging is divided in exploration and exploitation phases based on a criterion known as the energy
of the prey, shown in (57), that decreases linearly from two to zero with the iterations and have random
initial states defined in (58). In HHO the best solution found is assigned as the prey (x*). If the absolute
value of the energy of the prey is big, then the hawk will execute exploration, or exploitation otherwise.

(57)

(58)

Where E0  initial energy based on the random parameter r6 , ranging from minus one to one in each
iteration t. Exploration and exploitation are performed differently depending on random parameters (from
zero to one). During exploration, the random parameter q defines the exploration strategy to be carried
out. If q is greater or equal to 0.5, then a strategy of perching based on random locations is performed. e
exploration is based on the position of other hawks otherwise following the averaged position of all agents.
e update of the position of the agents during exploration is executed following (59). e average position
of the hawks is described by (60).

(59)

(60)

Where r1, r2, r3  and q are random numbers from zero to one. xm,t   is the average position of the population
and UB,LB are the maximum and minimum locations of the population, respectively. During exploitation,
the energy of the prey and a random parameter . control the way the hawk attacks the prey. If r ≥ 0.5 and
0.5 ≤|E|<1, then the hawk performs a so besiege, updating its position in direction to the difference of
positions between the agent and the prey ∆x modulated by ∆x and the strength of the prey to jump and
scape the attack J. If r < 0.5 and |E|≥0.5 the hawk can update its position either by so attacking the prey
(update its position based on the location of the prey, the strength J and the position of the hawk) or by
attacking the prey following the Levy Flight function imitating leapfrog movements on the prey (so besiege
with progressive rapid dives). Firstly, the decision is made by evaluating the objective function of the updated
solution when so-attacking (F(xk,t+1  )) and comparing it with the objective function value of the original
solution (F(xk,t )). If F(xk,t+1  ) < F(xk,t ) then the updated solution is assigned for the next iteration. If the
previous condition is not met, then the objective function value for the updated solution based on the Levy
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Flight function is now compared against the objective value of the original solution and if the condition
F(xk,t+1 ) < F(xk,t ) is met, then the updated solution is assigned for the next iteration. If neither condition
is met, then the original solution is preserved. ese behaviors are described in (61). e jump strength and
the position difference are calculated as in (62) and (63) respectively.

(61)

(62)

(63)

Where LF(D) is a levy flight function, imitating leapfrog movements [2]. S represents a random vector of
size D. D stands for the problem dimension (search space).

If r ≥ 0.5 and |E|<0.5, then the hawk performs hard besiege by updating its position getting close to the
prey depending on the energy of the prey and the absolute value of ∆x. If r < 0.5 and |E|<0.5 then the agent
decides of the update strategy similarly as in so besiege strategy, but utilizing instead of the agent position,
the averaged position of the population. is behavior is described in (64).
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(64)

is technique has been implemented in problems regarding BESS implementations, e.g., optimal sizing
and/or allocation of BESS for power loss reductions, investment costs reductions, primary frequency control
[107], voltage deviations, optimal capacities for reliability and low cost objectives in autonomous AC grid
design [99], Sizing and design of autonomous microgrids with DER, conventional Diesel generators and
BESS for reduction in energy costs and loss of power supply probability [121], optimal allocation of Electric
vehicles charging station with DER and BESS integrations to reduce energy losses, voltage deviations and
investments and maintenance costs [112], and others.

Having in mind the overview in ancillary services shown in Table 1, the review on optimization problems,
the techniques shown in Table 2 and the total results of the search, Optimization problems are related to
implemented techniques following the number of occurrences in the search and are shown in the color maps
displayed in Figure 2.
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FIGURE 2.
Overview of optimization techniques, frameworks, and objectives from search results

Source: Created by the author.

3.1.6 Multiobjective Optimization

As observed in Table 2, the multi-objective formulation of the optimization problems regarding BESS
in power systems has been of interest in the last three years. Multiple objectives are typically handled
by reducing the objective space dimension assigning a weight to each objective and aggregating them
in a single objective. is allows the optimization problem to be reduced in complexity and depending
on the formulation a solution can be found using exact methods (convex optimization) very efficiently.
However, the optimization with metaheuristic allows higher than one dimensions in the objective space,
since fitness functions can be adapted for each objective function and multiple search strategies based on
pareto dominance are applicable to find better optimal fronts of solutions during execution. Due to the
complexity of the search strategy and the dimensionality of the objective space, metaheuristic techniques are
not as computationally efficient as their convex counterpart and cannot guarantee exactness in the solution.
According to the search results, muti-objective adaptation of newer metaheuristic techniques such as GWO,
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WOA or HHO have been proposed, like in MOGOA, MOGWO. In both methods, a similar strategy as
in MOPSO is implemented where non-dominated solutions are compared with the solutions stored in an
archive and then saved in the archive if the new solution dominates the one in the archive (the old solution is
omitted) or if neither the new solution nor the solutions in the archive dominate each other. If a new solution
is dominated by any other in the archive, then it should not be stored in the archive. If the archive is full,
a grid mechanism is implemented where most crowded solutions are replaced for solutions in less crowded
locations in the objective space to improve diversity in the final approximated Pareto Optimal Front. Best
solutions (e best search agent (target) for MOGOA and Alpha, Beta and Delta wolfs for MOGWO) are
selected with the roulette wheel method with higher weights for less crowded solutions in the archive [3],
[4]. In [5], a Hybrid WOA and GA multi-objective technique is presented, in which the genetic information
representing a solution is adapted for whales in order to exploit the binary encoding in GA for combinatorial
problems and the fast convergence from WOA. e selection of solutions is performed using the Technique
for Order Preference by Similarity to Ideal Solution TOPSIS by minimizing Euclidean distance between
alternative solution and the best solution while maximizing the distance between the Euclidean distance
between the alternative solutions and the worst solution [5].

4. DISCUSSION

From the formulation of optimization problems related to BESS as ancillary services provider could be
observed a strong branching in the scope of the analysis to be carried out. When steady state analysis
is preferred, then optimization techniques are applied directly over the problem formulation, while, in
transient analysis, control strategies are selected, and the optimization is carried out for parameter estimation
either online or offline. In this case, Model Predictive Control has been found to be the preferred strategy,
since it provides the flexibility of implementing non-linear models and base the action control on predicted
behavior of the plant optimizing desired objective functions. is, however, can be a weakness as well since
the quality of the predictions depend on the quality of the model.

On the other hand, traditional PID controllers are still being used as control strategy since the model for
control is still linear. Although new approaches for its implementation and parameter estimation have been
proposed such as FOPID and ANN based control and parameter optimization using MH or ML techniques
(Fuzzy logic or ANN) for non-linear models. For steady state analysis, when BESS units are considered
behind the meter, the optimization problem is typically constrained by active power balance equations,
while in Distribution Networks an AC power flow is used to account power losses. However, the concave
nature of AC power flow has also suggested in recent studies to think in linearization (e.g., First order in
Taylor Series Expansion, polygon linearization) to simplify the formulation and use convex optimization
methods for speeding up the obtention of solution while guaranteeing its exactness. Relaxations on the OPF
formulation has been frequently explored in recent studies, specifically by transforming the non-convex
quadratic equality constraints present in AC power flow equations (and/or in objectives) into convex second
order cone inequality constraints and solving the convex program with SOCP.

During this review, the problem of the optimal allocation (location and sizing) of BESS units was
recurrent, and its formulation using AC power flow results in a MINLP problem (MILP if relaxations/
linearization eliminate the non-linearity/non convexity in equations). Typically, MILP or MINLP are solved
using Branch and Bound Method. (B&B). Such problems include convex transformation of constraints with
integer variables and can formulated as an optimization problem using an algebraic approach with GAMS.
Due to the flexibility of MH in finding solutions to any kind of problems (convex and non-convex), Multi-
objective MINLP programs have been handled with those techniques, achieving good performance while
trading exactness off. Techniques in the categories PSO and GA have been found to be the most popular in
the last years. As can be observed in Table 2, modifications, or new proposals on PSO or GA techniques can
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be found in single occurrences, while their use in any other form (original, modified or hybridized) for result
comparison are greatly used. Other techniques used in the last studies for BESS implementations are Grey
Wolf Optimization (GWO) and Whale Optimization Algorithm (WOA).

Ever since it is desired to achieve better solutions while increasing computational efficiency, hybridization
takes relevance, as it is shown in recent studies, since this allows to take the advantageous strategies from
several techniques and combine them into a single better technique aiming to achieve greater speed of
convergence and diversity in solutions in MULTI frameworks. Optimization problems, as could be observed
in the corresponding section, are commonly formulated in mono-objective framework, even when the aim
of the problem is to optimize several objectives. is is done so because it simplifies the execution of the
program and facilitates any possible linearization or relaxation. However, this reduction in the dimension of
the objective space results in the individualization of the solution and the subjectivation of the importance
of each objective function.

In multi-objective frameworks, the result of the optimization is a set of solutions that cannot be improved
in one objective without degrading the others (non-dominated solutions). is adds complexity to the
optimization but delivers flexibility when it is desired to have multiple operation setpoints or if there is
no objective information regarding objective weights. As could be observed, the multi-objective framework
(MULTI) is recurrent in recent studies, and newly developed metaheuristic techniques are mainly assessed
within this framework. It is worth noticing that the pareto dominance criteria is still the most common
technique implemented in MO metaheuristic algorithms to select the best solutions. However, the criteria
comparing such solutions has also been subject of research, such as TOPSIS, ε-dominance or RPNS.

On the other hand, due to the uncertain nature of the primary resources in RES, Stochastic optimization
(STOC) and Robust optimization (RO) have taken relevance in the studies reviewed and are now
presented as computational cost-effective alternatives to Monte-Carlo simulations. Within STOC and RO
optimization frameworks, LP implementations are possible by introducing relaxations and if probability
distributions are represented by convex functions.

Finally, it is worth noticing how multiple optimization stages are now being implemented in BESS
research. As observed in Table 2, a Bi-Layer Optimization (BLO) framework has been frequently proposed
in recent studies, in which one optimization layer typically optimizes short term operation problems while
the other optimizes, partially based on results of the other layer, long term (planning) problems.

5. CONCLUSIONS

In this paper, an overview of the role of BESS in the penetration of RES in power systems and the different
advantages of their implementation found in recent literature are presented in the introduction. en
characteristics of BESS chemistries is presented in terms of efficiency and energy density. From this overview,
LIB technology is detailed due to trending research and its increasing participation in the operation of power
systems, especially in terms of demand patterns for EV and Vehicle to Grid frameworks. Later, a summary
of BESS operation and optimization frameworks is presented. Subsequently, a review on the formulation
of optimization problems related to BESS as ancillary services provider is presented and objective functions
formulated in recent studies are detailed. Next, an overview of optimization frameworks and techniques
is presented considering occurrences in literature published in the last three years (since 2019). Finally, it
can be concluded that research including BESS optimization has been increasing exponentially in the last
decade. e formulation of optimization problems is not only related to ancillary services, but also to support
standalone operation or operation support in microgrids and depending on the timeframe of analysis, the
optimization may take place within optimal power flow or control frameworks. Given the formulation
of the problem and the scope of research, multiple optimization frameworks are being implemented in
recent research considering stochasticity, computational efficiency, and dimensionality of objective space.
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MH techniques dominates complex, multivariate, multi-objective analysis while relaxations, simplifications,
linearization, and single objective construction enable the use of traditional, more efficient, and exact
techniques. Well known metaheuristic techniques, such as PSO or GA, have been used oen as a reference
for comparison in the implementation of new methods aiming to find better solutions more efficiently.
Hybridization of MH has been studied showing comparable or improved results and presenting possible
alternatives to other well-known MH techniques.
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