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Abstract

Recently, antibacterial materials have sparked a renewed interest in the fields of biomedical engineering and life sciences. The 

main purpose of this study was to evaluate the physicochemical properties of TiO. nanoparticles with anatase phase and an 

average size of 24.1 ± 4.6 nm, graphene oxide (GO) obtained from the electrochemical method, and TiO./GO hybrid 

nanomaterial. Thermogravimetric analysis (TGA) revealed the presence of oxygen functionalities in the GO structure and 23.2 

% of TiO. in the hybrid nanomaterial, as well as a strong interaction between the materials that can be observed in the 

micrograph of scanning electron microscopy (SEM). Antibacterial tests were performed using the macrodilution method. The 

results showed that, while GO did not decrease bacterial growth, TiO. presented high bactericidal activity. In turn, the hybrid 

TiO./GO nanomaterial did not show such activity. This result can be explained by the decrease in contact between TiO. and 

bacterial cells due to the blocking of the active sites on the TiO. surface by graphene oxide sheets. These results contribute to the 

ongoing discussion about the bactericidal properties of graphene oxide.

Keywords: Bactericidal activity, hybrid nanomaterial, graphene oxide, titanium dioxide.
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Recientemente, los materiales antibacterianos han despertado un renovado interés en el campo de la ingeniería biomédica y las 

ciencias de la vida. El objetivo de este estudio consistió en evaluar las propiedades fisicoquímicas de nanopartículas de TiO.fase 

anatasa y un tamaño medio de 24.1 ± 4.6 nm, óxido de grafeno (GO) obtenido a partir del método electroquímico y un 

nanomaterial híbrido TiO./GO. El análisis termogravimétrico (TGA) reveló la presencia de funcionalidades de oxígeno en la 

estructura del GO, y se encontró un 23.2 % de TiO. en el nanomaterial híbrido y una fuerte interacción entre los materiales que 

puede observarse en las micrografías de microscopia electrónica de barrido (SEM). Las pruebas antibacterianas fueron realizadas 

usando el método de macrodilución. Los resultados evidenciaron que, mientras que el GO no disminuyó el crecimiento 

bacteriano, el TiO. presentó una alta actividad bactericida. A su vez, el nanomaterial híbrido TiO./GO no mostró dicha 

actividad. Este resultado puede explicarse por la disminución del contacto entre el TiO. y las células bacterianas debido al 

bloqueo de los sitios activos en la superficie del TiO. por las láminas de óxido de grafeno. Estos resultados contribuyen a la 

discusión en curso sobre las propiedades bactericidas del óxido de grafeno.

Palabras clave: Actividad bactericida, nanomaterial híbrido, óxido de grafeno, dióxido de titanio.
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Highlights

Electrochemical method is a simple and ecofriendly alternative for graphene oxide synthesis.

TiO2 nanoparticles with anatase phase and mean size of 24.1 ± 4.6 nm were obtained.

The obstruction of TiO2 active sites resulted in a reduction in the antibacterial activity of the 

TiO2/GO nanocomposite.

Highlights

El método electroquímico es una alternativa sencilla y ecológica para la síntesis de óxido de grafeno.

Se obtuvieron nanopartículas de TiO2 con fase anatasa y tamaño medio de 24,1 ± 4,6 nm.

La obstrucción de los sitios activos de TiO2 resultó en una reducción de la actividad antibacteriana 

del nanocompuesto TiO2/GO.

1. INTRODUCTION

Health-care-associated infections, which are acquired during hospital stays, could represent a serious risk 

to human health [1]. The pathogens responsible for this kind of infections (also known as nosocomial) 

include bacteria, viruses, and fungi. The most common bacterium is Escherichia coli (E.Coli), and it causes 

acute urinary tract infections, urinary tract sepsis, and neonatal meningitis [2]. The World Health 

Organization (WHO) estimates that, in North America and Europe, nosocomial infections cause 5 % and 

10 % of the hospitalizations, respectively. In Latin America and Asia, the proportion of hospitalizations 

due to the same cause is approximately 40 % [3].

Accordingly, the general interest in developing antibacterial materials has grown in recent years. Hybrid 

nanomaterials have potential in this regard because they facilitate the use of nanostructured materials with 

specific properties and excellent mechanical properties, as well as improved biocompatibility and 

antibacterial activity. This makes them good prospects in tissue engineering [4].

On the one hand, graphene oxide (GO) has attracted special attention because it is a carbon atom 

monolayer that forms a dense honeycomb structure containing carboxylic groups on the edges, as well as 

hydroxyl and epoxide groups on its two accessible sides. GO has excellent physicochemical properties, large 

specific surface, mechanical resistance, electrical conductivity, and stability in water [5], [6]. However, its 

antibacterial activity is quite controversial, and some authors have shown that it is related to the size and 

shape of GO [7], [8].

Nowadays, Hummers’ method is the most widely implemented strategy to synthesize GO used in 

bacterial applications [9], [10]. Nevertheless, it uses dangerous reagents that are harmful to the 

environment and humans [11]. Electrochemical exfoliation of graphite is an alternative method for 

obtaining graphene oxide; it is simple and requires less reagents for the synthesis process than Hummers’ 

method [12], [13].

On the other hand, titanium dioxide (TiO.) is considered a suitable material for medical applications 

due to its low toxicity, excellent thermal properties, and chemical stability. Additionally, TiO. exhibits 

antibacterial activity against E. Coli due to oxidative damage to the cell membrane [14], [15]. Thanks to 

these properties, TiO. has been used in several applications, such as microbatteries and as UV absorber in 

cosmetic products, anticorrosive coating, and antibacterial coatings [16], [17].

The main objective of this study was to evaluate the antibacterial activity of synthesized graphene oxide 

(GO), titanium dioxide (TiO.) and a TiO./GO hybrid. The combination of two types of nanoparticles 

with different morphologies and dimensions is a new way to produce functional hybrid materials with a 

synergistic improvement in material performance.

Recently, several hybrids composed of GO and conventional semiconductors demonstrated significantly 

enhanced photocatalytic performance during pollutant degradation. Specifically, TiO./GO is a hybrid that 
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could be considered as a promising material photocatalysis and hydrogen evolution [18]–[20], solar 

mineralization [21], and others fields of engineering such as tissue engineering as hybrid filler of functional 

nanocomposites [22].

Escherichia coli  was the model bacteria used here to evaluate the bactericidal effect of the three 

materials. This study was conducted to contribute to the ongoing discussion about the antibacterial 

properties of GO. In addition, to the best of the authors’ knowledge, the antibacterial properties of GO 

synthetized by the electrochemical method had not been reported before. The electrochemical method can 

be used as an alternative to produce GO because it is sustainable and more environmentally friendly.

2. METHODOLOGICAL ASPECTS

2.1 Materials

All the materials employed here were reagent-grade and used without any further purification. Titanium 

isopropoxide (Ti[OCH(CH.).]., 97 %, Sigma-Aldrich), ethanol (99.5 % J.T Baker), high-purity graphite 

rods (3x305 mm, 99.9 %, SPI supplies), sulfuric acid (H.SO., 96 %, Fisher Scientific) and sodium sulfate 

(Na.SO., 99 %, Chemi) were used for the synthesis of TiO. and graphene oxide. All the solutions were 

prepared using deionized water.

2.2 Methods

2.2.1 TiO. synthesis

TiO. nanoparticles were synthesized by the hydrothermal method [23]. A total of 10 mL of titanium 

isopropoxide (TTIP) were added to 13.3 mL of ethanol under constant stirring; then, 16.6 mL of 

deionized water were added slowly drop by drop to the TTIP-ethanol solution under constant stirring. 

The white precipitate thus obtained was stirred for 2 h, transferred to a Teflon autoclave, and heated at 80 

°C for 4 h in an oven furnace (Binder, KB 105). After that, the autoclave was allowed to cool down to 

room temperature, and the material was filtered and dried overnight at 80 °C. Finally, said material was 

calcinated at 400 °C for 4 h in a tube furnace (Nabertherm, P 330) to favor the formation of the crystalline 

phase anatase and remove waste products.

2.2.2 GO synthesis:

GO was synthesized by the electrochemical exfoliation method. An electrolyte solution of Na.SO. at 0.1 

M was prepared in deionized water and the pH was adjusted (~6.5 to 7) with H.SO.. Then, two graphite 

rods were immersed in the electrolyte solution using a working distance of 20 mm, and they were 

connected to a DC voltage source (10 V). Finally, the product was washed several times with water and 

ethanol and dried in an oven at 80 °C.

2.2.3 TiO./GO composite synthesis

The TiO./GO composite was prepared mixing the materials previously synthesized in a 1:3 wt. % ratio 

using a Q500 Sonicator (20 kHz, Qsonica LLC, USA). The ultra-sonication probe tip was immersed 

directly in the suspension, and the supplied energy was adjusted at 30 % of the maximum capacity in order 

to avoid heating problems. Ultrasound pulses were applied 1 s ON and 2 s OFF during 15 minutes. 

Finally, the sample was filtered and dried in an oven at 80 °C.

2.2.4 Antimicrobial test

The antimicrobial activity of TiO.,GO and the TiO./GO hybrid nanomaterial was evaluated using the 

macrodilution method, as described in our previous paper [24]. Escherichia coli  (ATCC 25922) was 
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selected as gram-negative bacteria model. For each experiment, bacterial stocks were grown in BHI (Brain 

Heart Infusion) for 24 hours in an incubator at 37 °C and 80 % relative humidity. Later, the inoculum was 

prepared in the range reported in McFarland’s standard No. 0.5 (1–2 x 10. CFU/ml; OD at 625 nm: 

0.08–0.13) [25]. For the test of bactericidal activity, dilutions of different concentrations (1000, 500, 250 

and 125 µg/mL) of TiO., GO and TiO./GO were prepared. After that, 10 μL of the inoculum were placed 

into 2 mL tubes containing 1.5 mL of each dilution prepared. As control sample, 10 μL of bacteria 

inoculum were placed in BHI. After that, the materials were incubated at 37 °C and 80 % relative 

humidity for 24 h under constant agitation. Bacterial concentrations were determined by measuring 

optical densities (ODs) at 625 nm with a spectrophotometer (8453A, Agilent). All the experiments were 

performed in triplicate. Bacterial viability was calculated using (1)

(1)

Where sample OD is the absorbance of each sample tested with the material dilutions, and control OD 

is the optical absorbance of the untreated sample.

The Minimum Inhibitory Concentration (MIC) required to inhibit the growth of 50 % of organisms 

(MIC50) was calculated using and the selection criterion was R. ≥ 0.99.

2.3 Physical-chemical characterization

The phase identification and lattice structure characterization of the synthesized TiO. were performed 

using an X-ray diffractometer (PANalytical Empyrean Series II), operated with Cu Kα radiation (λ = 

1,540 Å). The thermal stability was characterized by thermogravimetric analysis (TGA) using a discovery 

550 Thermogravimetric Analyzer with a heating program, initially, under a nitrogen atmosphere up to 800 

°C. Subsequently, the atmosphere was changed to air. The functional groups present in the samples were 

analyzed by infrared spectroscopy in a IRTracer-100 spectrophotometer with wavelengths between 500 

and 4000 cm
-1

. The numbers of defects and layers in the GO were estimated by a LabRAM HR Raman 

spectrometer (Horiba-Jobin Yvon). [26] The structural morphology of the particles was evaluated using a 

JEOL 7100F scanning electron microscope (FE-SEM) and transmission electron microscopy (TEM) in a 

TMP-FEI equipment.

3. RESULTS AND DISCUSSION

Figure 1a and 1b  show the X-ray diffraction pattern of TiO. nanoparticles and the Raman spectra of 

graphene oxide, respectively. The XRD pattern (Figure. 1a) shows anatase-phase TiO. with characteristic 

diffraction peaks of 20 values at about 25.3°, 37.8°, 48°, 53.9° and 55°, they are attributed to the (101), 

(004), (200), (105) and (211) planes, respectively. These results are in agreement with those reported by. 

[27] and match standard ICDD card No. 01-073-1764 for anatase.

Figure 1b shows the Raman spectra of graphene oxide, with three characteristic bands: D-band (~1339 

cm
-1

), G- band (~1583 cm
-1

) and 2D-band (~2686 cm
-1

). The G-band represents the sp. hybridization of 

carbon atoms [28], while the D-band is related to changes in the hybridization of carbon atoms (sp. to sp.) 

[29]. The change in the hybridization can be related to oxygen functionalities in graphene oxide [30]. The 

D/G ratio is commonly used to evaluate the number of defects in graphene oxide. The GO obtained here 

exhibited a D/G ratio of 0.61, which is consistent with what was found [31]. Additionally, this D/G ratio 

is lower than that of the GO obtained by Hummers’ method [32], [33]. The 2D/G ratio is used to 

estimate the number of layers in graphene oxide. In this case, the GO presented a 2D/G ratio of 1.41, 

which suggests the presence of bilayer graphene oxide [34].
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Figure 1.

a) XRD pattern of TiO2 nanoparticles; (b) Raman spectra of GO.

Source: Own elaboration.

Figure 2 shows the FTIR spectra of TiO., GO and the TiO./GO composite obtained in this study. All 

the samples present a band between 3000 cm
-1

 and 3377 cm
-1

, which corresponds to the stretching 

vibration of the O-H bond. The spectrum of TiO. shows a band around 1610 cm
-1

related to the bending 

vibration mode of the O-H bond, and characteristic bands of titanium dioxide are located at 400 cm
-1

 and 

800 cm
-1

. The spectrum of GO shows several bands, but the one at 2939 cm
-1

 is due to C-H stretching 

vibration, which occurs during the synthesis process [35]. The bands at 1380 cm
-1

, 1220 cm
-1

 and 1060 

cm
-1

 correspond to C-O, C-OH and C=O functional groups [36], [37]. The spectrum of TiO./GO 

exhibits new bands at 1690 cm
-1

 and 1155 cm
-1

, which are related to C=O and Ti-O-C cm
-1

, respectively 

[38]. The presence of Ti-O-C and C=O functional groups demonstrated the interaction between oxygen 

functionalities of graphene oxide and TiO. nanoparticles [39].
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Figure. 2.

FTIR of the materials synthesized in this study: TiO2/GO, GO and TiO2.

Source: Own elaboration.

The thermal stability of the GO and TiO./GO was examined by TGA. Figures 3a  and 3b  show the 

TGA and DTG results of each type of sample. The weight loss below 100 °C is due to the decomposition 

of interstitial water [40]. Also, the weight losses between 130 °C and 250 °C correspond to hydroxyl 

groups (OH) and the initial degradation of carbonyl groups (C=O) [41], [42]. All the samples presented a 

weight loss in the thermogravimetric curve between 290 °C and 800 °C; however, the change is not 

significant, and it cannot be observed in the DTG curve. This weight loss is due to the partial elimination 

of epoxy groups (C-O) [43]. The amount of TiO. was determined at 23.2 wt. % by the weight of the 

inorganic residues at the end of the TGA analysis. The increase in the thermal stability of TiO./GO could 

be due to the presence of Ti-O-C bonds [44].
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Figure. 3.

TGA and DTG spectra of GO and the TiO2/GO composite.

Source: Own elaboration.

TGA and FTIR analyses confirmed the presence of oxygen-containing functional groups. These oxygen 

functionalities can be related to the oxidation of graphite by hydroxyl anions. The OH- anion attacks the 

sp. carbon atoms at the edge of graphite rods, causing the expansion of layers [45]. The presence of 

oxygenated functional groups favors the stability of GO in an aqueous medium since these groups make 

GO hydrophilic [46], [47].

The morphology of the materials analyzed in this study was evaluated by SEM and TEM. Figures 4a, 4b, 

and 4c  are SEM micrographs of TiO., GO and the TiO./GO composite, respectively. Figure 4a reveals 

that TiO. nanoparticles have a spherical morphology. On the other hand, the micrograph of GO (Figure 

4b) shows a thin graphene oxide layer; as a result, the background is visible. The micrograph of TiO./GO 

(Figure 4c) presents TiO. nanoparticles deposited on a GO layer. In addition, the TEM micrograph of GO 

(Figure 4f) confirms the exfoliation of graphite rods, which is a that involves the evolution of several 

gaseous species (SO., O., CO and CO.) between layers. These species come from the reduction of the 

SO.
-2

 anion, water oxidation and carbon corrosion [48]. In addition, the TEM micrographs and the 

Raman analysis confirm the presence of few-layer graphene oxide.

The average diameter of the TiO. particles in the SEM images was measured by ImageJ software using 

more than 250 nanoparticles. Figure 4g shows the mean particle size: 24.1 ± 4.6 nm.
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Figure 4.

SEM micrographs of (a) TiO2, (b) GO and (c) the TiO2/GO composite. TEM micrographs of (d) TiO2, (e) GO 

and (f) the TiO2/GO composite (g) Histogram of TiO2 particle size distribution.

Source: Own elaboration.

The chemical composition of the TiO./GO composite was obtained by Energy Dispersive X-ray 

Spectroscopy (EDS). Figure 5 shows the EDS spectrum of the hybrid nanomaterial NM and Ti; O and C 

were found in the sample. Additionally, sodium (Na), which can also be observed in the spectrum, is 

related to remnants of electrolyte (Na.SO.) used during the synthesis of graphene oxide.
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Figure 5.

Representative energy dispersive spectrum (EDS) of the TiO2/GO composite.

Source: Own elaboration.

Figure 6  shows the element distribution map obtained from the TiO./GO composite. The map 

identified the same elements found in the EDS spectrum (C, Ti, O and Na). In addition, the maps clearly 

show that the nanoparticles of titanium dioxide are located on the surface of the GO layers.

Figure 6.

Representative element distribution map of the TiO2/GO composite.

Source: Own elaboration.

The antibacterial activity of the samples prepared here was determined by the macrodilution method. 

Figure 7 shows the bacterial viability of E. coli under different concentrations of GO, TiO. and TiO./GO. 

In the results, the graphene oxide sample presents an increase in the viability of E. Coli  when the 

concentration of the treatment is higher.
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Figure 7.

Viability of E. coli subjected to GO, TiO2 and the TiO2/GO composite.

Source: Own elaboration.

However, the TiO. nanoparticles show an inverse trend, i.e., the viability of E. Coli  decreases as the 

concentration of nanoparticles increases. At the lowest concentration (i.e., 125 µg/mL), the viability of the 

bacteria in the TiO./GO hybrid material was 23 % and 17 % lower than in the GO and TiO. samples, 

respectively. Nonetheless, at higher concentrations (250, 500 and 1000 µg / mL), the antibacterial activity 

increased in GO samples but decreased in samples containing TiO. nanoparticles. These results indicate 

that each treatment follows a different trend in terms of bactericidal activity as a function of 

concentration.

The antibacterial activity of graphene oxide (GO) reported in several papers is controversial. 

Nevertheless, such activity can be explained by three main mechanisms: membrane rupture, oxidative 

stress and isolation of bacteria envelope [49]–[51]. The high antibacterial efficacy of graphene oxide is due 

to the damage it causes to cell membranes through the generation of reactive oxygen species and sharp 

edges of graphene oxide [49], [52], [53]. In contrast, a large number of studies indicate that this material 

can promote bacterial growth due to its surface functional groups and because it can act as a scaffold for 

bacterial attachment, proliferation, and biofilm [49], [54]–[57], which could explain the results reported 

in this paper.

On the other hand, TiO. nanoparticles affect biological systems since their photocatalytic activity 

generates potential reactive oxygen species (ROS) on their surfaces. ROS cause peroxidation of 

phospholipids in the cell membrane, inducing its breakdown [58], [59]. The membrane rupture causes the 

interruption of cellular respiration. For this reason, TiO. nanoparticles have a strong antibacterial activity, 

which is in line with the results reported here, where they achieved the greatest reduction in bacterial 

viability.

Finally, the behavior of the composite material was similar to that reported by [50]  and [60]  because 

carbon blocks the active sites on the surface of TiO.. Therefore, the contact between the TiO. surface and 

the bacteria can be very limited.

In addition, MIC50 is the minimum amount of drug/compound to inhibit 50 % of microorganism 

growth and was calculated. GO MIC50 could not be determined because bacterial viability does not 

decrease with increasing concentration. The MIC50 of TiO./GO and TiO. was 4575 µg/mL and 1728 µg/ 

mL, respectively, which confirms that TiO. shows a higher bactericidal activity than GO and TiO./GO.

4. CONCLUSIONS
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This study assessed the effect of TiO., GO, and TiO./GO nanocompounds on bacterial activity against 

Escherichia coli. Using the hydrothermal method, TiO. nanoparticles were obtained with an anatase phase 

and an average size of 24.1 ± 4.6 nm. Graphene oxide was obtained through electrochemical exfoliation, a 

simple and environmentally friendly method that induced a lower amount of oxygen-containing 

functional groups on the GO surface. A 23.2 % TiO. content was evidenced in the developed hybrid 

nanomaterial. Furthermore, GO promoted bacterial growth due to its surface functional groups. TiO. 

exhibited stronger bactericidal activity than the TiO./GO compound. This behavior may be associated 

with the decreased contact between TiO. and bacterial cells due to the blocking of active sites on the TiO. 

surface by graphene sheets.
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