
1

Notas de autor

rmelendez@uniguajira.edu.co

PDF generado automáticamente a partir de XML-JATS por Redalyc
Infraestructura abierta no comercial propiedad de la academia

Artículos de investigación

Kruskal-Wallis Test for Functional Data Based on Random Projections Generated 

from a Simulation of a Brownian Motion

Prueba de Kruskal-Wallis para datos funcionales basada en proyecciones aleatorias generadas a partir de una 

simulación de un movimiento browniano

Rafael Meléndez Surmay

Universidad de la Guajira, Colombia

rmelendez@uniguajira.edu.co

https://orcid.org/0000-0002-6449-0358

Ramón Giraldo Henao

Universidad Nacional de Colombia, Colombia

rgiraldoh@unal.edu.co

https://orcid.org/0000-0003-3010-169X

Francisco Rodríguez Cortes

Universidad Nacional de Colombia, Colombia

frrodriguezc@unal.edu.co

https://orcid.org/0000-0002-2152-8619

 

Recepción: 10 Enero 2024

Aprobación: 22 Abril 2024

Publicación: 29 Abril 2024

Acceso abierto diamante

Abstract

The k-sample problem for functional data has been widely studied from theoretical and applied perspectives. In literature, 

Gaussianity of the generating process is generally assumed, which may be impractical in some situations. This work proposes an 

extension of the Kruskal-Wallis test to the case of functional data as an alternative to the problem of non-Gaussianity. The 

methodology used consisted of transforming each group's functional data into scalars using random projections and subsequently 

performing classical Kruskal-Wallis tests. The main results were the extension of the Kruskal-Wallis test to the case of functional 

data and the verification of its unbiased and consistency properties. Reducing dimensionality from random projections allows us to 

extend the classical Kruskal-Wallis test to the functional context and solve problems of non-Gaussianity and atypical observations.

Keywords: Functional data, random projections, Kruskal-Wallis test, non-parametric statistics, brownian motion.

Resumen

El problema de k muestras de datos funcionales se ha estudiado ampliamente desde perspectivas teóricas y aplicadas. En la literatura 

se asume generalmente el supuesto de Gaussianidad del proceso generador, el cual puede ser impráctico en algunas situaciones 

particulares. Este trabajo tuvo como objetivo proponer una extensión de la prueba de Kruskal-Wallis al caso de datos funcionales, 

como alternativa al problema de no Gaussianidad. La metodología empleada consistió en transformar los datos funcionales de cada 

grupo en escalares empleando proyecciones aleatorias y en realizar posteriormente pruebas de Kruskal-Wallis clásicas. Los principales 
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resultados fueron la extensión de la prueba de Kruskal-Wallis al caso de datos funcionales y la comprobación de las propiedades de 

insesgadez y consistencia de esta misma. Se puede concluir que la reducción de la dimensionalidad a partir de las proyecciones 

aleatorias permite extender la prueba de Kruskal-Wallis clásica al contexto funcional y por ende solucionar problemas de no 

Gaussianidad y observaciones atípicas.

Palabras clave: Datos funcionales, proyecciones aleatorias, prueba de Kruskal-Wallis, estadística no paramétrica, movimiento 

Browniano.
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Highllights inglés:

The Kruskal-Wallis test resolves the issue of non-normality in functional data.

The Kruskal-Wallis test addresses the treatment of outliers in functional data.

The use of random projections reduces the dimensionality of the problem of k samples in functional data.

Highlights español:

La prueba de Kruskal-Wallis resuelve el problema de no normalidad en datos funcionales.

La prueba de Kruskal-Wallis soluciona el tratamiento de datos atípicos en datos funcionales.

El uso de proyecciones aleatorias reduce la dimensionalidad del problema de k muestras en datos funcionales

1. INTRODUCTION

Advances in computational and analytical techniques allow for continuous monitoring of many processes. 

New statistical methods are needed to analyze large data sets arising from these processes. Functional data 

analysis (FDA) has emerged in recent decades as an alternative to statistical modeling of large data volumes. 

FDA is a framework for analyzing data consisting of random functions (usually curves) rather than 

observations of a few variables or random vectors [1]. New challenges have arisen in extracting meaningful 

information hidden in functional data [2]. As in classical statistics, in FDA data preprocessing, modeling, 

hypothesis testing, parameter estimation, and predictive analysis using parametric or nonparametric models 

are fields of interest. Many theoretical and applied contributions have been proposed in these areas [2], [3]. In 

the last decade, the FDA has already found applications in several areas of research, including ecology [4], 

epidemiology [5], remote sensing [4], outlier detection in environmental applications [6], and traffic volume 

forecasting [7].

To construct a functional observation Xij(.) from the discretely observed data one can employ a standard 

smoothing technique such as cubic B-splines [8]. The FDA package [9] implements the smoothing techniques 

in R [10].

This work focuses mainly on proposing a methodology for comparing groups when the same functional 

variable has been observed in several individuals in each of these. Specifically, a traditional nonparametric tool 

to solve the .-sample problem for a functional response is adapted to the FDA scenario. Let X
i1

 (t), X
i2

(t), 

X
in

(t) … i = 1,2, …, k random set of functions defined over an interval T = [a,b] which come from Gaussian 

processes GP (μ
k
 (t), γk (s,t)) [8]. The hypothesis of interest is given in (1)

(1)

Against the alternative that at least two functional means are different. The statistical literature has a widely 

considered hypothesis established in (1)The proposed approaches are proposed for point-wise t-tests, 

functional ANOVA, functional principal components analysis, and permutation tests.

Some authors have extensively studied the functional ANOVA problem. For example, [9] introduced an 

asymptotic version of the ANOVA F-test, and [2] considered asymptotic or bootstrapped versions of a L
2

norm based test, F-type statistic-based test, and globalizing pointwise F-test. Furthermore, [1] introduced a 

method based on a representation of a basis function, and [10] described a bootstrap procedure based on 

pointwise F-tests. However, Bayesian functional ANOVA has received less attention. But, [11] introduced a 

Gaussian process ANOVA modeling approach under a Bayesian framework.
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Other approaches were considered by [12], [9], and [13]. Furthermore, [14] proposed a new method using 

a graphical interface based on the global rank test, and this procedure for functional ANOVA was applied 

using permutations. Other authors have proposed other approaches, such as that used the Westfall-Young 

randomization to correct for multiple tests. However, this method cannot obtain an overall p-value. 

Meanwhile, [15] divided the domain of interest into regions. However, a disadvantage is that the partition 

must be respected. Furthermore, [16] developed a multi-way functional ANOVA to determine rejection 

regions. Our interest is to provide an alternative to the case where the Gaussian assumption is unrealistic, and 

[17] presented a unified methodology for performing computation-free permutation tests for the testing of 

the k  sample in commutative and noncommutative Lq.  spaces, which includes multivariate and functional 

data.

This work is organized as follows. Sections 2.1 and 2.2 review the Kruskal-Wallis test and random 

projections. Section 3 presents an extension of the Kruskal-Wallis test for functional data and shows its 

respective pseudocode. In Section 4.1, we present the simulation study and in Section 4.2, we present the 

application with real data. Finally, we present the discussion and some conclusions.

2. BACKGROUND

2.1 Kruskal-Wallis test

This section briefly reviews the main statistical technique used in the analysis. Kruskal-Wallis [18] is a non-

parametric statistical test that compares the median values of two or more independent samples. The null 

hypothesis for the Kruskal-Wallis test is that all the samples come from the same population, and the 

alternative hypothesis is that at least one group's sample comes from a population with a different median than 

the others. The test is based on the ranks of the observations within each group. It is an alternative to 

ANOVA when the normality assumption is unrealistic. The hypothesis of interest is shown in (2)

(2)

Which establishes that there are no significant differences in the effects of the treatments. The null 

hypothesis states that the following distributions 𝐹1= 𝐹2 = ⋯ = 𝐹𝑘 are equal. To calculate the Kruskal-Wallis 

statistic, all . observations from the k-samples are combined and ordered from smallest to largest. Let r
ij

 be the 

rank of r
ij
 in this joint classification, and Rj defined as (3)

(3)

Thus, for example, R
1

 is the sum of the ranks received by the observations of group 1 and R
1

 is the average 

rank for these same observations. Kruskal-Wallis H statistics are given by [18] as shown in (4)

(4)

At a significance level of α, H0 is rejected if H ≥ hα otherwise, do not reject. The values of hα are given in 

Table A.12 of [18]. When H0 is true, the statistic H has, as min(n., ⋯. nk) tends to infinity, an asymptotic 

chi-square X
2
 distribution with k - 1 degrees of freedom. Under this assumption, the reject rule is.

Reject 𝐻≥𝜒2

𝑘−1
,𝛼 ; otherwise, do not reject.
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When the null hypothesis is rejected and it is concluded that at least one sample comes from a population 

with a different median, some post-hoc tests (e.g., Dunn's test) can be used to identify which samples differ 

significantly.

2.2 Random Projections

The hypothesis of interest (see hypothesis in (1)) can be tested using the projections of the functions. These 

involve mapping high-dimensional data points into a lower-dimensional space using a randomly generated 

projection matrix [19]. The basic idea is to use a randomly generated projection matrix to map each high-

dimensional data point onto a lower-dimensional space. By doing this, we can reduce the number of 

dimensions of the data while still retaining important information about the data structure.

Random projections are often used in situations where the dimensionality of the data makes it difficult to 

work with or analyze. In other words, random projections can be a handy tool for reducing the complexity of 

the data without losing important information. Given a set of data or a distribution in spaces of dimension 

greater than one, random projections consist of projecting the data or calculating the marginal of the 

distribution in a lower-dimensional subspace that has been chosen randomly [20]. Random projections 

preserve certain properties that are very important in the FDA. One of them is that it preserves distances with 

a high degree of probability if a projected subspace is the uniform distribution. This result is extended to the 

standard Gaussian distribution [10]. In this sense, [21] showed that if two distributions are defined in a 

separable Hilbert space and have finite moments of some order, then projecting the distributions onto a 

random one-dimensional subspace is sufficient to distinguish them with high probability, as long as the 

moments of one of the distributions match those of the random projection. In other words, if we have two 

distributions with similar moments up to some order, projecting them onto a random one-dimensional 

subspace will produce similar one-dimensional marginal distributions. However, if the moments of one of the 

distributions differ from those of the random projection, then the one-dimensional marginal distributions will 

be different, and the two distributions can be distinguished with high probability.

Once the functional data have been projected onto a lower-dimensional space, a hypothesis test can be 

performed to determine whether the functional means are equal. The choice of hypothesis test depends on the 

specific application, but a common approach is to use a t-test or an ANOVA test. One advantage of using 

random projections to test the equality of functional means is that it can be computationally efficient, mainly 

when dealing with high-dimensional functional data. It can also be robust to noise and outliers in the data, as 

random projections can help filter out some of the noise.

3. KRUSKAL-WALLIS TEST FOR FUNCTIONAL DATA

This research presents an extension of the Kruskal-Wallis test for functional data based on random 

projections.

We propose extending the Kruskal-Wallis test to the case of functional data (the observation for each 

individual in the sample corresponds to a functional datum). As in the univariate case, in the context of 

functional data analysis, statistical tests require the fulfillment of some assumptions. When the samples are 

small and the curves do not underlie a Gaussian stochastic process, the functional ANOVA could be 

inappropriate, and a non-parametric method may be used as a valid alternative. Specifically, a Kruskal-Wallis 

test for functional data based on random projections (KWFD) is proposed as an alternative methodology to 

the one-way functional ANOVA when the Gaussianity assumption is unrealistic. The KWFD is a non-

parametric alternative for comparing the medians of functional data of three or more groups. We extended the 

KW test by randomly projecting the functional data onto a low-dimensional subspace.
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Let X
ij

 (t), i = 1,2, ⋯, n
j
, j = 1, ⋯, k a functional random sample of curves, where . t ∈ [a, b] is the domain 

(generally time), i  correspond to an individual, and j the index for the level factor. The functional random 

variables are considered independent trajectories of the stochastic processes SP(μj  (t),γ(s,t)),j = 1,⋯  ,k with a 

common covariance function γ(s, t). Let x
ij 

(t), i = 1,2, ⋯, n; j = 1,⋯, k . be the recorded set of curves under the 

k. treatments. In the following, we describe the procedure for calculating the H  statistic to test the null 

hypothesis in (1)

· Generate one Brownian motion 𝜐(𝑡) in the interval of interest 𝑇∈ℝ.

· Calculate the random projections 𝑥𝑖𝑗=∫𝑥𝑖𝑗(𝑡)𝜐(𝑡)𝑑𝑡,𝑏𝑎 𝑖=1,⋯,𝑛; 𝑗=1,2,⋯,𝑘.

· Calculate the rank of each projected curve within its group.

· Using the random projections, proceed as in the usual way to calculate 𝑟𝑖𝑗,𝑅𝑖𝑗, and the statistic 𝐻 in (3)

· Reject the null hypothesis in (2) at the level 𝛼 if 𝐻𝑐≥𝜒2

𝑘−1;1−𝛼. An alternative is calculating the p-value 

using a permutation test.

The Kruskal-Wallis test for functional data based on random projections is calculated similarly to the 

univariate Kruskal-Wallis test. It is based on the sum of the ranks of the projected curves within each group. 

The test assumes no specific distribution for the functional data and can be robust to atypical curves.

4. RESULTS AND DISCUSSION

Section 4.1 presents a simulation study based on a single Brownian motion simulation. Section 4.2 shows 

the p-values obtained by generating 1000 random projections.

4.1 Simulation study indicators

We assess the power of the test to detect differences between medians of .-samples of functional data. To 

establish the performance, we show the results of a simulation study. We follow the procedure given in [15] to 

perform the analysis. For simplicity, just three groups of curves are considered.

(5)

Where 𝜇(𝑡)=sin(2𝜋𝑡),𝑡 ∈  (0,10), is the mean function and the errors 𝜀𝑖𝑗(𝑡)=1,2,3, follow a uniform 

distribution on [−1,1]. As an initial illustration, a graph of a Brownian motion and 120 simulated curves 

according to the equations given in (5) are shown in Figure 1.nbsp;The curves in red and green are very similar 

(these come from analogous models (rows 1 and 2 of the equations in 5, and the curves in blue involve an 

additional parameter 𝛿(𝑡)=𝛿=1.2 that makes these different from the previous ones. Notice in Figure 1 that 

the highest periodic peaks of the blue curves are close to 3, while in the other two cases (red and green curves), 

these are close to 2, i.e., the null hypothesis should be rejected. The errors are assumed to be uniform in the 

interval (1,1). Performing a hypothesis test on the means of functional data assuming that the processes are 

Gaussian with data such as those presented in Figure 1 would be inappropriate.
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Figure 1.

Brownian motion v(t) = v(t - 1) + ϵ(t),ϵ(t) ∼ Normal (0,0.5),t ∈ (0,10) (above left) and curves simulated under the 

models Xi1 (t) = μ(t) + εi (t) (above right), Xi2 (t) = μ(t) + εi (t) (below left), and Xi3 (t) = μ(t) + δ(t) + εi (t) (below 

right), with μ(t) = sin(2πt),δ(t) = 1.2 and ε(t) ∼ uniform(-1,1).

Source: Created by the authors.

To evaluate the power of the test, we considered 𝛿(𝑡) = 𝛿, for all 𝑡 ∈  [0,10], with 𝛿  = 0.0,⋯,0.7. Four 

sample size scenarios are considered (𝑛 = 10,30,80,120) for each sample group. In each case, 1000 realizations 

are generated. Based on each sample size, we performed a Kruskal-Wallis test as defined in Section 3. In each 

case, the power of the test is obtained as the percentage of 𝑝−𝑣𝑎𝑙𝑢𝑒𝑠  less than 0.05. We used the libraries 

fda.usc and stats of R to perform the analysis [22]. Figure 2 shows the empirical power curves for each of the 

sampling sizes 𝑛 and 𝛿(𝑡) = 𝛿 values. Note that the power of the test increases when 𝛿 and 𝑛 increase; that is, 

the simulation study provides evidence that the Kruskal-Wallis test for functional data is unbiased and 

consistent
1
.

1
 The R code used is available at https://github.com/frajaroco/KWfdRP/blob/main/KWtest.R

2
 See Canada's Climate Regions at the link https://sites.google.com/a/ocsb.ca/cgc-1d/a-unit-4-climate/1-

canadas-climate-regions).



Rafael Meléndez Surmay, Ramón Giraldo Henao, Francisco Rodríguez Cortes,   Kruskal-Wallis Test for Fun…

8
PDF generado automáticamente a partir de XML-JATS por Redalyc

Infraestructura abierta no comercial propiedad de la academia

Figure 2.

Empirical power curves of the Kruskal-Wallis test according to the variation function δ(t) = δ and the sample size n. n = 

10 (blue line), n = 30 (green line) n = 80 (red line), and n = 100 (black line) for each sample group. The bottom dashed 

line corresponds to the significance level 𝛼 = 5 %. Created by the authors.

Source:Created by the authors.

4.2 Real data analysis: Temperature curves in Canada

We apply the Kruskal-Wallis test for functional data from Section 3 to a widely used meteorological data set 

in the context of the FDA [23]. This corresponds to the average daily (30-year) temperature (in degrees 

Celsius) at each of the 35 weather stations located in four climatic zones of Canada (in brackets the number of 

stations in each zone): Arctic (4) Pacific (7), Continental (9), and Atlantic (15) (see Figure 3). The Pacific 

zone is located on the west coast of Canada, including British Columbia and parts of Yukon and the 

Northwest territories. This area is defined by mild, rainy winters and cool, dry summers. The continental 

region covers the central parts of Canada, including Manitoba, Saskatchewan, and parts of Alberta and 

Ontario. Its climate is marked by cold winters and short and hot summers. The Atlantic zone covers the 

eastern parts of Canada, including Nova Scotia, New Brunswick, and Prince Edward Island. It has mild, wet 

winters and cool, moist summers. The Arctic region covers the northernmost parts of Canada, including 

Nunavut, the northwest territories, and parts of Yukon, Quebec, and Labrador. This zone has long, harsh 

winters and short, cool summers (see Canada's Climate Regions at the link https://sites.google.com/a/

ocsb.ca/cgc-1d/a-unit-4-climate/1-canadas-climate-regions). The daily temperature data for the four climatic 

zones were smoothed using a Fourier basis function. The curves obtained after smoothing are shown in Figure 

3.The interest is to determine whether there are significant differences between the mean (median) curves of 

these areas. For this purpose, we apply the Kruskal-Wallis test presented in Section 3. We generate random 

projections using (6) with 𝑖  the index corresponding to the weather station in each one of the four climatic 

zones (𝑗=1 (Arctic), 2 (Pacific), 3 (Continental), 4 (Atlantic) ) and 𝜈(𝑡) a Brownian motion. The number of 

stations in each zone is 4 (Arctic), 7 (Pacific), 9 (Continental), and 15 (Atlantic).

(6)

https://sites.google.com/a/ocsb.ca/cgc-1d/a-unit-4-climate/1-canadas-climate-regions
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After obtaining the random projections, we conduct a classical Kruskal-Wallis test with these values. For 

this case, a p  - value = 0.00361 was obtained, and consequently, in concordance with Canada's Climatic 

description above, the null hypothesis is rejected. Note that there are some atypical curves in each panel of 

Figure 3.Using a classical ANOVA test based on random projections can be limited in this case. A robust 

methodology, as proposed here, could be more appropriate. Wilcoxon’s post-hoc tests [24] (Table 1) at a 10 % 

significance level of 10 % show that the medians of the Atlantic and Pacific zones are significantly different 

from the median of the Arctic region. At the same level, there are differences between the medians of the 

Atlantic and Continental regions. A graphical comparison (Figure 3) indicates marked differences between 

the curves of these regions.

Figure 3.

Temperature curves (x
ij
 (t)) for the Atlantic, Continental, Pacific, and Arctic climate zones obtained after daily data 

(averages of 30 years) are smoothed using Fourier basis functions. Created by the authors.

Source: Created by the authors.

Table 1

Wilcoxon posthoc tests.

Atlantic Continental Pacific

Continental 0.09 -- --

Pacific 0.95 0.25 --

Artic 0.01 0.20 0.07

Source: Created by the authors.

The results described above are based on random projections from a particular BM. The attached R code
3
, 

shows the values found with 1000 Brownian motions, and the general conclusion is the same.

3
 https://github.com/frajaroco/KWfdRP/blob/main/KWCanadianWeather.R

4.3 Discussion

ANOVA for functional data has been widely discussed, and several approaches have been considered [1], 

[2]. Many of these are based on the Gaussianity assumption [8, 10]. Here, we adapt a classical non-parametric 

test to this scenario. The strength of the Kruskal-Wallis test for functional data proposed here lies in its 
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versatility. It does not depend on the assumption of Gaussianity, thus extending its applicability to various 

real-world scenarios where data may deviate from a Gaussian distribution. This test is flexible and can be used 

with various types of functional data, including curves and time series. It does not impose strict assumptions 

on the data distribution, making it suitable for analyzing diverse datasets. This approach is particularly 

advantageous when dealing with data that may not conform to normality or have unknown distributions. Like 

other statistical tests, the Kruskal-Wallis test assumes the independence of observations within and between 

groups. Violations of this assumption could potentially affect the accuracy of the test results. If the Kruskal-

Wallis test indicates significant differences between groups, post-hoc tests can be conducted to identify 

differences between groups. Many other non-parametric methods are available for post-hoc testing, each with 

strengths and limitations.

5. CONCLUSIONS

We propose a non-parametric method for the k-functional problem, which is useful when the sample size is 

small, the assumption of normality is not reasonable, or when there are atypical curves. We propose the use of 

one-dimensional random projections to solve the problem. After obtaining scalars from functions using 

random projections, a classical Kruskal-Wallis test can be used to test the hypothesis. The results obtained 

from the simulated and real data show a good performance of the methodology. The results (Figure 2) 

illustrate that the Kruskal Wallis test extension performs well under the null hypothesis. Power increases for 

larger sample sizes and distance parameter. This plot allows us to validate that the proposed test is unbiased 

and consistent. Some authors consider using points-wise test statistics for functional data problems with two 

samples and similarly for the .-sample problem, although they are not global tests. Our approach is a helpful 

alternative when the sample is small, and the Gaussian assumption is inappropriate.
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