

Boletín de Geología ISSN: 0120-0283 ISSN: 2145-8553 bolgeo@uis.edu.co Universidad Industrial de Santander Colombia

Consideraciones generales para la elaboración de un atlas de almacenamiento geológico de CO₂ del Perú

Paredes-Ángeles, Jorge Humberto

Consideraciones generales para la elaboración de un atlas de almacenamiento geológico de CO₂ del Perú

Boletín de Geología, vol. 42, núm. 3, 2020 Universidad Industrial de Santander, Colombia

Disponible en: https://www.redalyc.org/articulo.oa?id=349668133012

DOI: https://doi.org/10.18273/revbol.v42n3-2020011

Esta obra está bajo una Licencia Creative Commons Atribución 4.0 Internacional.

Artículos

Consideraciones generales para la elaboración de un atlas de almacenamiento geológico de CO₂ del Perú

General considerations for the development of the Peruvian atlas of CO₂ geological storage

Jorge Humberto Paredes-Ángeles jhparedes@gmail.com *Universidad Nacional de Ingeniería, Perú* https://orcid.org/0000-0002-7950-4556

Boletín de Geología, vol. 42, núm. 3, 2020

Universidad Industrial de Santander, Colombia

Recepción: 15 Abril 2019 Aprobación: 31 Agosto 2020

DOI: https://doi.org/10.18273/revbol.v42n3-2020011

Redalyc: https://www.redalyc.org/articulo.oa?id=349668133012

Resumen: La captura y el secuestro o almacenamiento geológico de CO_2 es la mejor alternativa para reducir el exceso de emisiones de CO_2 antropogénico al medio ambiente, tanto por consideraciones técnicas como económicas. Los volúmenes de almacenamiento de CO_2 y los tiempos de residencia prolongados en los depósitos geológicos lo hacen particularmente interesante. Aunque no se ha probado a gran escala, los diferentes proyectos piloto realizados y los que están en ejecución en varias partes de Europa y Norteamérica muestran resultados muy alentadores.

En este trabajo se desarrollan los principios más importantes que hay que tomar en cuenta al elaborar un atlas de almacenamiento geológico de CO₂. Se hace una revisión de los fundamentos teórico-prácticos para el secuestro geológico de CO₂, también se desarrollan los tipos y mecanismos de retención del dióxido de carbono en las diferentes formaciones geológicas, luego se revisan los principales criterios de selección de los emplazamientos y los indicadores de idoneidad de los sitios para el secuestro de dióxido de carbono. Se presenta un sistema de clasificación de los sitios en función del conocimiento geológico de la formación seleccionada que es una adaptación de la experiencia geológica en la exploración de petróleo y gas. Se proponen tentativamente las áreas geográficas a investigar e información geológica a recabar y procesar en función a los potenciales almacenes existentes y también se expone la metodología para la estimación de los recursos de almacenamiento o secuestro geológico de dióxido de carbono en función de las formaciones que podrían ser encontradas.

Palabras clave: Secuestro de CO_2 , Almacenes geológicos de CO_2 , Formaciones geológicas almacén, Atlas de almacenamiento de CO_2 en Perú.

Abstract: CO_2 capture and sequestration or geological storage is the best alternative for reducing excess anthropogenic CO_2 emissions into the environment, both for technical and economic considerations. The volumes of CO_2 and the prolonged residence times in the geological deposits make it especially interesting. Although it has not been tested on a large scale, the different pilot projects carried out and those underway in various parts of the world have shown very encouraging results.

This work develops the most important principles to be taken into account when preparing a geological atlas for storage of CO₂. The theoretical-practical foundations for the geological sequestration of CO₂ are reviewed, the types and mechanisms of carbon dioxide sequestration in the different geological formations are also developed, then is reviewed the main criteria for the selection of sites and the indicators of suitability for the sequestration of carbon dioxide. It presents a system of classification of sites according to the geological knowledge of the selected formation, which is an adaptation of geological experience in oil and gas exploration. It tentatively proposes geographical

areas to investigate and collect geological information based on existing potential storage sites and it also exposes a methodology for estimating the storage capacity for geological sequestration of carbon dioxide depending on the formations that could be found. **Keywords:** CO2 sequestration, CO2 geological stores, Geological formations for storage, Atlas of CO2 storage in Peru.

Introducción

El Perú (ver Figura 1), no es un importante consumidor de energía, pero de la evolución de su matriz eléctrica en los últimos años; es posible apreciar que la quema de combustibles fósiles (carbón, petróleo y gas, por lo tanto, la generación de CO_2) se ha casi duplicado de 2006 al 2016 (ver Figura 2), y ahora es la principal fuente generadora de electricidad en el Perú; lo que convierte a este país también en parte del problema de la generación de gases de efecto invernadero.

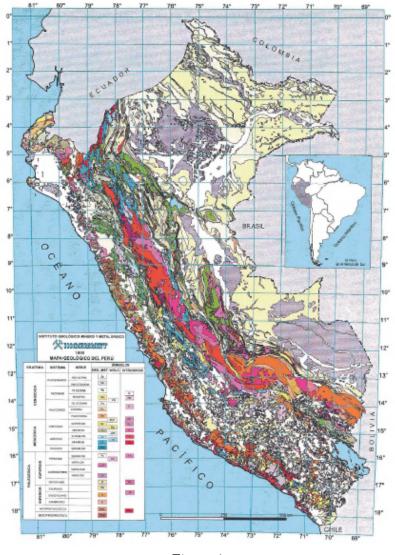


Figura 1 Mapa de ubicación del área de estudio/mapa geológico del Perú (modificado de INGEMMET, 1999).

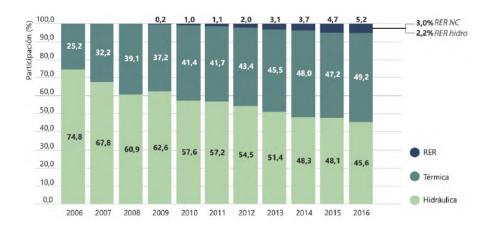


Figura 2 Evolución de la Matriz energética del Perú 2016-2016 (Dirección General de Electricidad, 2016).

El acuerdo de París de diciembre 2015 se traza como objetivo mantener el incremento de la temperatura global muy por debajo de los 2°C, respecto a los niveles pre industriales (Naciones Unidas UNFCC, 2015). Además, proseguir los esfuerzos para limitar ese aumento a 1,5°C y evitar así efectos catastróficos para los países más vulnerables (Naciones Unidas UNFCC, 2015). Y respecto a las emisiones de gases contaminantes dice: "lograr el equilibrio entre los gases emitidos y los que pueden ser absorbidos en la segunda mitad del siglo, en otras palabras, ser carbono neutral" (Naciones Unidas UNFCC, 2015); en esta dirección algunos países de la comunidad europea, américa del norte y Australia han trabajado ya sus atlas de almacenamiento geológico de CO₂ (ver Tabla 1) y desarrollan una serie de otras actividades relacionadas. En el Perú aún no ha sido tomada ninguna medida ni gubernamental ni privada para dimensionar el potencial de almacenamiento geológico de CO₂.

Los atlas a diferencia de los Sistemas de Información Geográficos (SIG), son colecciones de mapas temáticos específicos, estáticos y por lo tanto quedan fijados en un documento, que puede ser alguna variante de reporte final. Los SIG son dinámicos y requieren constante actualización o al menos su mantenimiento en sitios web especializados que requieren conocimientos y asignación de presupuesto determinados.

Tabla 1 Cuadro comparativo de Atlas Nacionales de Captura y Almacenamiento Geológico de CO₂.

País	Título del trabajo	Principales características
Australia (Queens- land)	An assessment of Queensland's CO ₂ geological storage prospectivity — the Queensland CO ₂ Geological Storage Atlas (Bradshaw et al., 2011)	Ejecutor: CO ₂ Geological Storage Solutions (CGSS) Idioma: inglés Ediciones: 01, Año: 2011 Tópicos desarrollados: - Cuencas de alto potencial (mapas) - Cuencas de bajo potencial e inadecuadas (Mapas)
Brasil	Atlas Brasileiro de Captura e Armazenamento Geológico de CO ₂ (Medina-Ketzer <i>et al.</i> , 2016)	Ejecutor: Centro de Excelência em Pesquisa e Inovação em Petróleo, Recursos Minerais e Armazenamento de Carbono (CEPAC) [Petrobras y Pontificia Universidad Católica de Rio Grande do Sul (PUCRS)] Idioma: Postugués e inglés Ediciones: 01, Año: 2016 Tópicos desarrollados: - Aspectos generales (marco general) - Situación de Brasil (Evaluación fuentes, captura, transporte y almacenamiento) - Potencial en el Brasil (Mapas)

Continuación Tabla 1.

País	País Título del trabajo Principales características					
Estados Unidos (y parte de Canadá)	Carbon Storage Atlas (5th Edition) (DOE & NETL, 2015)	Ejecutor: Department of Energy's (DOE) National Energy Technology Laboratory (NETL) Idioma: inglés Ediciones: 05, Última Año: 2015 Tópicos desarrollados: - Aspectos generales (marco general, teoría del almacenamiento, fuentes) - Atlas (mapas) - Proyectos de gran escala (Ejemplos descriptivos) - Proyectos de pequeña escala (Ejemplos descriptivos) - Resumen de las metodologías aplicadas				
México	Atlas de Almacenamiento Geológico de CO ₂ México (Beltrán <i>et al.</i> , 2012)	Ejecutor: Secretaría de Energía (SENER) Comisión Federal de Electrecidad (CFE) Idioma: Castellano Ediciones: 01, Año: 2012 Tópicos desarrollados: - Aspectos generales (marco general) - Emisiones de CO ₂ en México - Almacenamiento geológico (Marco teórico) - Capacidades de almacenamiento geológico de CO ₂ en México (Incluye Mapas)				
Noruega	CO ₂ atlas for the Norwegian Conti- nental Shelf (Norwegian Petroleum Directorate, 2014)	Ejecutor: Norwegian Petroleum Directorate Idioma: inglés Ediciones: Parciales, Año: 2011-2013 / Total, Año: 2014 Tópicos desarrollados: - Aspectos generales (marco general, teoría del almacenamiento, fuentes) - Metodología - Descripción Geológica - Opciones de Almacenamiento - Atlas del mar del Norte - Atlas del mar de Noruega - Atlas del mar de Barents - Resumen de la capacidad de almacenamiento				

Marco teórico

Secuestro geológico del carbono

La captura y almacenamiento o secuestro del dióxido de carbono es el proceso de captación y retención del CO₂ evitando que se acumule en la atmósfera. Desde la academia se está investigando una serie de variantes para la captura y almacenamiento o secuestro de CO₂, entre ellas el secuestro geológico del dióxido carbono. El secuestro o almacenamiento geológico se define como la colocación de CO₂ en una formación

geológica subterránea de tal manera que permanezca almacenado permanentemente (DOE - Laboratory, U.D., 2010; CO2CRC, 2012).

En el mundo se están estudiando varios tipos de formaciones geológicas para el secuestro o almacenamiento del dióxido de carbono; cada uno de ellos tiene sus particularidades especiales: (1) depósitos de petróleo y gas; (2) salmueras o formaciones salinas profundas; (3) mantos de carbón no explotable (4) esquistos ricos en orgánicos; y (5) formaciones de basalto; y más recientemente (6) formaciones de esquisto fracturado agotadas por hidrocarburos; (7) otras opciones incluyen evaporitas, pizarras bituminosas y cavidades subterráneas (Figura 3).

El proceso de secuestro geológico de dióxido de carbono incluye el monitoreo, la verificación, el registro y la evaluación de riesgos en el sitio de almacenamiento. Estas actividades de los diferentes entes encargados de la reducción de gases de efecto invernadero en el mundo se centran en el desarrollo y la implementación de tecnologías que pueden proporcionar un registro preciso del ${\rm CO}_2$ almacenado y un alto nivel de confianza en que el ${\rm CO}_2$ se mantendrá permanentemente almacenado.

Relacionado con el gradiente geotérmico y con la profundidad, el CO₂ inyectado alcanza el estado supercrítico comportándose como un fluido denso (a presiones mayores que 7,38 MPa y temperaturas mayores que 31,1°C) (Figura 4). En esta condición, el CO₂ adquiere una densidad similar a la del líquido, entre 600 y 800 kg/m³, hecho por el que ocupa un menor volumen de poro, lo que permite un almacenamiento más eficiente (Figura 5). Si queremos asegurar el almacenamiento en estado supercrítico, la profundidad mínima establecida para un reservorio es de cerca de 800 m, en la que se dan estas condiciones.

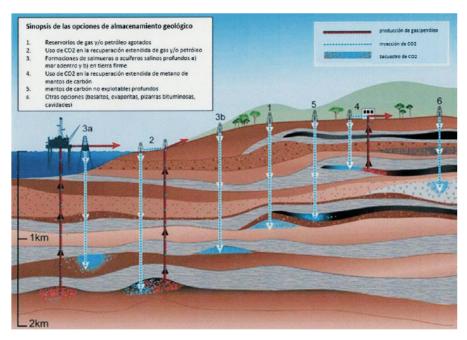
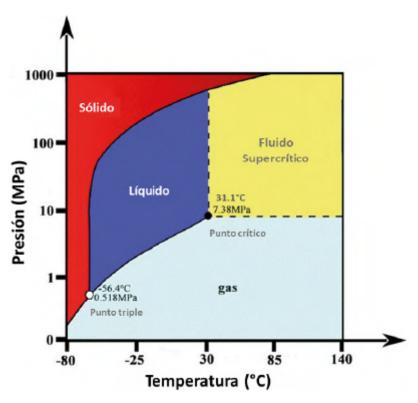



Figura 3 Sinopsis de las opciones de secuestro geológico de ${\rm CO}_2$ (modificado de PNUMA, 2005).

 $\label{eq:Figura 4} {\bf Piagrama\ de\ fases\ de\ CO_2\ (modificado\ de\ ChemicaLogic\ Corporation,\ 1999)}.$

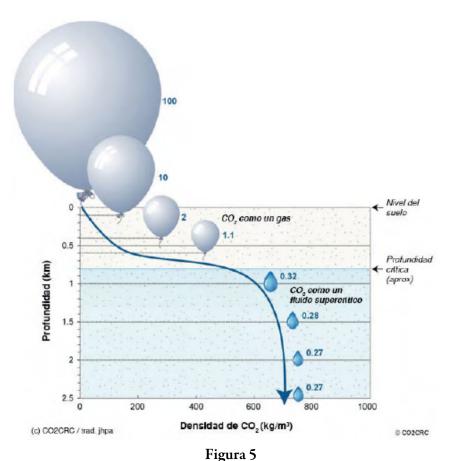


Diagrama de cambio de volumen por profundidad y temperatura (modificado de CO2CRC, 2012).

Cada una de las opciones de almacenamiento geológico tiene sus peculiaridades y rasgos distintivos que es necesario identificar y desarrollar.

Los mecanismos de retención y/o captura son tanto físicos (trampa estructural o estratigráfica), hidrodinámicos (residual y adsorción), como químicos (atrapamiento por dilución o formación mineral) (Leung *et al.*, 2014), resumidos en la Tabla 2.

Mecanismo de retención y/o de captura	Fase de captura de CO ₂	Descripción del mecanismo
Hidrodinámica; captura de movilidad	Fase supercrítica	El CO ₃ no disuelto queda atrapado por la presión que ejerce el agua de la formación y el sello.
Captura estructural o estratigráfica	Fase supercrítica	El CO ₂ inyectado, se inmoviliza en trampas estructurales o estratigráficas, como el petróleo o gas natural.
Residual; captura capilar	Fase supercrítica	El CO ₂ se eleva a través de la roca saturada de agua y desplaza el agua del espacio poroso por acción de las fuerzas capilares; todo el volumen de la roca retiene una saturación residual de CO ₂ .
Solubilidad; captura por disolución	Fase líquida disuelta	El CO ₂ se disuelve en el agua de salmuera de formación; es un muy importante mecanismo de captura.
Mineral, mineralización; o captura química	Fase sólida de reacción	El CO ₂ disuelto reacciona con Ca, Fe o Mg para formar carbonatos precipitados; no está sujeto a fugas.
Adsorción, captura por adsorción	Fase gaseosa/ supercrítica	$ElCO_2$ queda adherido a las paredes internas de los poros del carbón

Criterios de selección de los emplazamientos

Considerando que los almacenes geológicos por su naturaleza son variados, en general rocas sedimentarias clásticas, mantos de carbón, rocas magmáticas básicas vesiculares, los criterios de selección también son variados.

Estos criterios incluyen los siguientes, pero no se limitan a: (1) condiciones de presión y temperatura; (2) aislamiento de aguas subterráneas potables poco profundas, otros estratos, suelos y atmósfera; y (3) presión de entrada de la capa sello (Bachu, 2008).

Los principales indicadores geológicos para establecer la idoneidad del sitio de almacenamiento para rocas sedimentarias clásticas son la porosidad y la permeabilidad, que disminuyen con el aumento de la profundidad.

Basado en este indicador en la Tabla 3 se evidencia que, la región óptima para el secuestro/almacenamiento geológico de CO₂ está entre los 800 y 2500 m de profundidad.

Tabla 3 Indicadores geológicos clave para establecer la idoneidad del sitio de almacenamiento (modificado de Chadwick *et al.*, 2008).

Propiedades del reservorio	Indicadores positivos	Indicadores de cautela			
Profundidad	>800 m, <2500 m	<800 m, >2500 m			
Espesor del reservorio	>50 m	<20 m			
Porosidad	>20%	<10%			
Salinidad	>100 gL ⁻¹	<30 gL ⁻¹			
Capacidad	Capacidad efectiva estimada mucho mayor que el monto total de CO ₂ a ser inyectado	Capacidad efectiva estimada similar al monto total de CO ₂ a ser inyectado			
Propiedades del sello					
Continuidad lateral	Estratigráficamente uniforme, con pequeñas o sin fallas	Variaciones laterales, fallas medianas o grandes			
Espesor / potencia	>100 m	<20 m			

Caracterización de sitios para almacenamiento geológico

Este es un proceso semejante a los métodos que se emplean en la industria petrolera para madurar un proyecto, a través de una secuencia progresiva de clases de recursos y subclases de estado de desarrollo hasta que madure y comience a producir hidrocarburos. Un sistema de clasificación geológica de secuestro o almacenamiento de CO2 se considera debería seguir los mismos procesos desarrollados por el negocio petrolero en una progresión ascendente basada en análisis realizados para reducir el riesgo de desarrollo del proyecto (Tabla 4). El marco propuesto por el Departamento de Energía de los Estados Unidos (U.S. Department of Energy's DOE) contiene tres fases distintas de evaluación (fase de exploración, fase de caracterización del sitio y fase de implementación) que corresponden a cada clase de recurso y se subdividen en subclases de proyecto.

La información para el secuestro geológico de dióxido de carbono en nuestra propuesta de atlas se desarrolla para proporcionar una visión general de alto nivel de almacenamiento geológico de CO₂ en el territorio peruano. Las extensiones superficiales de las formaciones geológicas y las estimaciones de recursos de almacenamiento de CO₂ que se presenten deben ser considerados solamente como una evaluación inicial del potencial de almacenamiento geológico. El atlas en construcción proporcionará información básica sobre un sitio potencial antes de una evaluación de la fase de exploración, por lo tanto, debe tomarse como una primera aproximación. La maduración del sitio (Figura 6), corresponderá a futuros trabajos que se ejecuten progresivamente durante la exploración.

Tabla 4

Comparación de la clasificación de la industria petrolera (Society of Petroleum Engineers, 2018) con la propuesta de clasificación de secuestro geológico de CO₂ (Frailey y Finley, 2009).

Industria petrolera	Aln	nacenamiento geológico de CO2	
Reservas	c c	Capacidad	
En producción	ció	Inyección activa	
Aprobado para desarrollo	Implementación	Aprobado para el desarrollo	
Justificados para desarrollo	Impl	Justificados para el desarrollo	
Recursos Contingentes	Sitio	Recursos de Almacenamiento Contingentes	
Pendiente de desarrollo	del	Desarrollo pendiente	1
Desarrollo sin aclarar o en espera	zación	Desarrollo sin aclarar o en espera	
Desarrollo No Viable	Caracterización del Sitio	Desarrollo No Viable	
Recursos	1	Recursos de	
prospectivos	Exploración	almacenamiento prospectivos	
Prospecto	lora	Sitio(s) calificado(s)	
Lead	Ex.	Áreas seleccionadas	
Play	Γ	Sub-Regiones tamizadas	
	_		
	Exploración	Recursos de almace	namiento prospectivos
	orac	Subclase de proyecto	Proceso de evaluación
	ldx:	Sitio(s) calificado(s)	Caracterización inicial
	"	Áreas seleccionadas	Selección del sitio
	ı	Sub-Regiones tamizadas	Evaluación del sitio

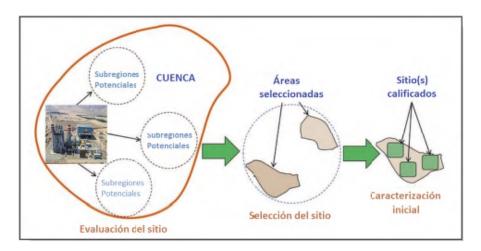


Figura 6
Representación gráfica de la maduración del sitio del proyecto a través de las diferentes fases de exploración.

Principales cuencas sedimentarias en el Perú

Se han establecido 18 cuencas sedimentarias con posibilidades de exploración por hidrocarburos y de potencial almacenamiento de CO₂, ocho de ellas están en o parcialmente costa-afuera (lo que se conoce como *offshore*) las demás se emplazan en la parte continental (Figura 7).

La importancia para los fines de estimación de los potenciales almacenes geológicos es muy grande, ya que en estas cuencas se sitúan los más importantes depósitos de hidrocarburos (petróleo, gas), así como también las formaciones que alojan aguas salinas.

Figura 7 Cuencas sedimentarias del Perú (modificado de MINEM, 2017).

En las cuencas del norte Tumbes-Progreso y Talara, desde inicios del siglo pasado se ha tenido producción comercial de petróleo, en especial en la Cuenca Talara que ha sido intensamente explotada y que ha acumulado una producción de alrededor de 1,500 millones de barriles de petróleo.

Las demás cuencas sedimentarias emplazadas en el zócalo continental no han sido exploradas cabalmente, algunas con levantamientos sísmicos y perforación de algunos pozos. En las Cuencas, ubicadas en la vertiente oriental de los Andes y en la Región Amazónica, se hicieron hallazgos importantes de petróleo y gas. Las Cuencas de Talara en el Norte, en la Cuenca Marañón en la selva peruana, a diciembre 2016, tienen una producción acumulada de 2,577 millones de barriles de petróleo.

En la Selva Sur, en la década de los años 1980, se descubrieron los yacimientos de Camisea, con reservas probadas de alrededor de 8,1 trillones de pies cúbicos y 567 millones de barriles de líquidos. Desde que entró en operaciones sumado a lo que salió de Talara ha producido 7,374 billones de pies cúbicos de gas (MINEM, 2017).

Formaciones salinas, mantos de carbón no explotable y basaltos

En estas cuencas sedimentarias también hay formaciones con salmueras, que no se han dimensionado a la fecha y que deben ser materia de estudio con fines del almacenamiento geológico de dióxido de carbono.

En el territorio peruano hay también depósitos importantes de rocas carbonáceas que son trabajadas a diferentes escalas, pero como ocurre en otros lugares del mundo hay mantos de carbón que no son de interés debido a sus características técnico-económicas y devienen en no explotables. Adicionalmente hay importante presencia de rocas volcánicas basálticas que deben también evaluarse respecto a su potencial de almacenamiento de CO₂ (Figura 1).

Parte importante de las consideraciones es la investigación de los otros potenciales almacenes geológicos de dióxido de carbono, tales como los mantos de carbón no explotables, y las formaciones basálticas, que también constituyen ambientes favorables.

Existen en la Carta Geológica Nacional 211 regiones que están conformadas por basaltos, cuyas edades varían desde Cretácico Inferior (Ki-ch) hasta el Paleógeno y se distribuyen en 15 hojas de la carta y que deben ser caracterizadas con fines del almacenamiento geológico de CO₂. El listado está en el Anexo 1.

Metodología

Estimación de la capacidad de almacenamiento de los reservorios geológicos

Los métodos disponibles para estimar volúmenes subsuperficiales se aplican amplia y rutinariamente en las estimaciones relacionadas con la eliminación de hidrocarburos, aguas subterráneas, almacenamiento subterráneo de gas natural y control de inyecciones subterráneas (Goodman et al., 2011). Normalmente se utilizan dos enfoques diferentes para estimar los volúmenes de inyección en el subsuelo; se definen como métodos estáticos y dinámicos (Calhoun, 1982). Los métodos estáticos utilizados para estimar el potencial de almacenamiento de CO2 se basan en modelos volumétricos y en modelos basados en la compresibilidad (Bachu et al., 2007; Burruss et al., 2009; Van der Meer y Yavuz, 2009). Los métodos volumétricos se aplican generalmente cuando se asume que la formación está abierta y que los fluidos de formación son desplazados de la formación o manejados vía producción. Si se demuestra que el sistema está cerrado, los volumétricos del sistema de almacenamiento seguirían calculándose, pero la estimación del recurso se basaría en la cantidad de ese espacio que podría comprimirse debido a la inyección de CO₂. Normalmente, no se pueden realizar simulaciones dinámicas significativas antes de que se recojan datos específicos del campo de interés, tales como tasas de inyección medidas en campo y/o pruebas de pozos. La metodología US-DOE utiliza el enfoque volumétrico para estimar el potencial de recursos de almacenamiento de CO2 en

yacimientos de petróleo y gas, formaciones salinas y vetas de carbón no minables, es la que será usada para este fin.

La metodología US-DOE se basa en métodos volumétricos para estimar volúmenes subsuperficiales, distribuciones de fluidos in situ y procesos de desplazamiento de fluidos (Calhoun, 1982).

Esta metodología es usada para evaluaciones de alto nivel de posibles yacimientos de almacenamiento de CO₂ en Estados Unidos y Canadá; pero se ha convertido más o menos en estándar de facto en la comunidad académica internacional. Como ya se mencionó está basada en estimar el volumen de poros físicamente accesible. No incluye ninguna consideración de restricciones reguladoras o económicas, y es utilizado para políticas gubernamentales y decisiones comerciales de amplio alcance relacionadas con la energía.

Las estimaciones de recursos de almacenamiento de CO₂, son fundamentalmente estimaciones del volumen de poro disponible de una formación dada que es accesible para CO₂ inyectado a través de pozos perforados y completados, partiendo de la hipótesis de que los fluidos in situ serán desplazados por el CO₂ inyectado a una distancia de la misma formación o formaciones vecinas o gestionados por medio de la producción, el tratamiento y la eliminación.

Las estimaciones del volumen de almacenamiento subterráneo dependen de las propiedades geológicas (área, espesor y porosidad de las formaciones) y la eficiencia del almacenamiento (la fracción del volumen de poro accesible que ocupará el CO₂ inyectado).

La estimación en masa de recursos de almacenamiento de CO_2 en yacimientos de petróleo y gas se obtiene de la siguiente ecuación:

$$G_{CO2} = Ah_n \Phi_e (1 - S_{wi}) B_{\rho CO2std} E_{oil/gas}$$
 (1)

Donde A es el área que define el yacimiento de petróleo o gas que se está evaluando para el almacenamiento de CO_2 , h_n es la altura de la columna de petróleo y gas en el depósito, Φ e es la porosidad efectiva media en volumen definida por el espesor de la red, Swi es la saturación media inicial de agua dentro del área total (A) y espesor neto (h_n) , B es el factor de volumen de formación de fluido; ρCO_{2std} es la densidad estándar de CO_2 evaluada a presión y temperatura estándar y $E_{oil/gas}$ es el factor de eficiencia de almacenamiento de CO_2 ; el factor B, convierte el volumen estándar de aceite o gas en volumen subsuperficial (a presión y temperatura del depósito), por ejemplo, el volumen del tanque de almacenamiento de petróleo por volumen del yacimiento de petróleo, mientras que el factor de eficiencia de almacenamiento $E_{oil/gas}$ es el volumen de CO_2 almacenado en un depósito de petróleo o gas por unidad de volumen de petróleo o gas original (OOIP o OGIP - *Original Oil In Place u Original Gas In Place*).

La estimación en masa de recursos de almacenamiento de ${\rm CO_2}$ en un acuífero salino profundo:

$$G_{CO2} = A_t h_g \Phi_{tot} \rho E_{saline}$$
 (2)

Donde A_t es el área geográfica que deslinda la cuenca o región evaluada para el almacenamiento de CO_2 , hg es el espesor bruto de las formaciones salinas para las que se evalúa el almacenamiento de CO_2 en la cuenca o región de origen por A, Φ_{tot} es la porosidad total en el volumen definido por el espesor neto, ρ es la densidad de CO_2 evaluada a presión y temperatura que representa las condiciones de almacenamiento previstas para una unidad geológica específica promediada sobre h_g y A_t y E_{saline} es el factor de eficiencia del almacenamiento de CO_2 que retiene una fracción del volumen total de los poros que está lleno de CO_2 .

La estimación en masa de recursos de almacenamiento de CO₂ de los mantos de carbón no minable.

$$G_{CO2} = Ah_gC_{s,max}\rho_{CO2std}E_{coal}$$
 (3)

Donde A es el área geográfica que delimita la cuenca o región carbonífera para el cálculo del almacenamiento de CO_2 , hg es el espesor bruto de los mantos de carbón para las que se evalúa el almacenamiento de CO_2 dentro de la cuenca o región determinada por A, $C_{s,max}$ es el volumen estándar máximo adsorbido de CO_2 por unidad de volumen de carbón *in situ*; asume condiciones de carbón saturado de CO_2 al 100%; si está libre de ceniza seca, se debe realizar la conversión, ρ_{CO2std} es la densidad estándar de CO_2 , y E_{coal} es el factor de eficiencia de almacenamiento de CO_2 que refleja una fracción del volumen total de carbón a granel que es contactado por el CO_2 .

Luego de la exploración, en la etapa de caracterización del sitio (ver Tabla 4), será de suma importancia determinar la inyectividad de cada formación geológica, entendiéndose que inyectividad es una medida cuantitativa de la facilidad con la que un gas o líquido o fluido en estado supercrítico, se introduce dentro de una formación geológica por unidad de espesor de la formación. Se deberá establecer también el diseño de la malla, la distribución espacial de los pozos de inyección y evaluar eventualmente la extracción de agua mientras se inyecta CO₂.

Otro aspecto importante que no se puede soslayar en los tiempos actuales es la licencia social y el Perú como signatario de convenios internacionales, por ejemplo: El convenio 169 de la OIT (1989): pueblos indígenas e inclusión social, está en la obligación de consultar a los habitantes de las localidades y a los pueblos originarios aquellas decisiones que los puedan afectar directamente o aquellas que estén relacionadas con el uso de los recursos geológicos y/o del subsuelo en los territorios donde habitan. En esa línea los proyectos de captura y almacenamiento geológico de CO₂, deberán de ser socializados desde etapas tempranas de su desarrollo de acuerdo con la normatividad existente.

Conclusiones

La captura y el secuestro o almacenamiento geológico de CO_2 es la mejor alternativa para reducir el exceso de emisiones de CO_2 antropogénico al medio ambiente, tanto por consideraciones técnicas como económicas. Los volúmenes de almacenamiento de CO_2 y los tiempos de residencia prolongados en los depósitos geológicos lo hacen particularmente interesante.

El más importante potencial de secuestro o almacenamiento geológico de CO₂ identificado en el Perú, está en los depósitos de hidrocarburos, tanto en los explotados y los que aún están en operación o por explotarse, y se emplaza en las cuencas de Talara y Marañón y Ucayali.

En el Perú, NO se han estudiado aún formaciones con acuíferos salinos profundos (entre 800 y 2500 m de profundidad), por lo tanto, hay mucho trabajo pendiente en esta área. Presumiblemente en el caso peruano éste debe ser el almacén geológico más importante que existe.

Las formaciones de volcánicos con basaltos tienen una amplia distribución en el territorio nacional y el trabajo que sigue es ubicarlos y precisar sus características para cuantificar su potencial de almacenamiento geológico de CO₂.

Agradecimientos

Agradecemos a los revisores de éste artículo por sus importantes sugerencias para mejorarlo y darle el aspecto que finalmente tiene.

Referencias

- Bachu, S. (2008). CO₂ storage in geological media: Role, means, status and barriers to deployment. *Progress in Energy and Combustion Science*, 34(2), 254-273. https://doi.org/10.1016/j.pecs.2007.10.001
- Bachu, S.; Bonijoly, D.; Bradshaw, J.; Burruss, R.; Holloway, S.; Christensen, N.P.; Mathiassen, O.M. (2007). CO₂ storage capacity estimation: Methodology and gaps. *International Journal of Greenhouse Gas Control*, 1(4), 430-443. https://doi.org/10.1016/S1750-5836(07)00086-2
- Beltrán, L.; Dávila, M.; Contreras, C.; Arévalo, V.; Valenzuela, J.M.; Jiménez, O.; Medina, E. (2012). *Atlas de Almacenamiento Geológico de CO*₂ . Secretaria de Energía, Comisión Federal de Electricidad, México
- Bradshaw, B.E.; Spencer, L.K.; Lahtinen, A.L.; Khider, K.; Ryan, D.J.; Colwell, J.B.; Chirinos, A.; Bradshaw, J.; Draper, J.; Hodgkinson, J.; McKillop, M. (2011). An assessment of Queensland's CO₂ geological storage prospectivity—The Queensland CO₂ Geological Storage Atlas. *Energy Procedia*, 4, 4583-4590. https://doi.org/10.1016/j.egypro.2011.02.417
- Burruss, R.C.; Brennan, S.T.; Freeman, P.A.; Merrill, M.D.; Ruppert, L.F.; Becker, M.F.; Herkelrath, W.N.; Kharaka, Y.K.; Neuzil, C.E.; Swanson, S.M.; Cook, T.A.; Klett, T.R.; Nelson, P.H.; Schenk, C.J. (2009). Development of a probabilistic assessment methodology for evaluation

- of carbon dioxide storage. U.S. Geological Survey Open- File Report 2009-1035
- Calhoun, Jr., J.C. (1982). Fundamentals of reservoir engineering. Norman: University of Oklahoma Press
- Chadwick, A.; Arts, R.; Bernstone, C.; May, F.; Thibeau, S.; Zweigel, P. (2008).

 Best practice for the storage of CO₂ in saline aquifers observations and guidelines from the SACS and CO₂STORE projects. British Geological Survey
- ChemicaLogic Corporation (1999). Carbon Dioxide: Temperature Pressure Diagram
- CO2CRC. (2012). The cooperative research centre for greenhouse gas technologies. What-is_CCS? CO2CRC. Consultado el 18 de octubre de 2018. http://www.co2crc.com.au/
- Dirección General de Electricidad. (2016). Anuario ejecutivo de electricidad 2016. Ministerio de Energía y Minas, Lima, Perú.
- DOE Laboratory, U.D. (2010). Carbon sequestration Atlas of the United States and Canada. U.S. Department of Energy's (DOE).
- DOE & NETL. (2015). Carbon Storage Atlas. (5th ed.). Department of Energy's (DOE) National Energy Technology Laboratory (NETL). https://www.netl.doe.gov/
- Frailey S.M.; Finley R.J. (2009). Classification of CO2 Geologic Storage: Resource and Capacity. Energy Procedia, 1(1), 2623-2630. https://doi.org/10.1016/j.egypro.2009.02.029
- Goodman, A.; Hakala, A.; Bromhal, G.; Deel, D.; Rodosta, T.; Frailey, S.; Small, M.; Allen, D.; Romanov, V.; Fazio, J.; Huerta, N.; McIntyre, D.; Kutchko, B.; Guthrie, G. (2011). U.S. DOE methodology for the development of geologic storage potential for carbon dioxide at the national and regional scale. *International Journal of Greenhouse Gas Control*, 5(4), 952-965. htt ps://doi.org/10.1016/j.ijggc.2011.03.010
- INGEMMET (2020). Mapa Geológico del Perú. INGEMMET, Perú.
- Leung, D.Y.; Caramanna, G.; Maroto-Valer, M.M. (2014). An overview of current status of carbon dioxide capture and storage technologies. *Renewable and Sustainable Energy Reviews, 39*, 426-443. https://doi.org/10.1016/j.rser.2014.07.093
- Medina-Ketzer, J.M.; Machado, C.X.; Rockett, G.C.; Iglesias, R.S. (2016). *Atlas Brasileiro de Captura e Armazenamento Geológico de CO*₂. Universitária da PUCRS.
- MINEM (2017). Plan de desarrollo de los recursos de hidrocarburos 2017-2021. Ministerio de Energía y Minas.
- Naciones Unidas UNFCC (2015). Aprobación del Acuerdo de Paris.
- Norwegian Petroleum Directorate. (2014). CO₂ Storage Atlas: Norwegian Continental Shelf. https://www.npd.no/en/facts/publications/co2-atlases/co2-atlas-for-the-norwegian-continental-shelf/
- OIT (1989). Convenio (N. 169) sobre pueblos indígenas y tribales en países independientes. C169. Organización Internacional del Trabajo.
- PNUMA. (2005). La captación y el almacenamiento de dióxido de carbono. Grupo Intergubernamental de Expertos sobre el Cambio Climático.

Society of Petroleum Engineers. (2018). Sistema de Gerencia de los Recursos de Petróleo. Ed. Society of Petroleum Engineers and the Oil and Gas Reserves

Van der Meer, L.G.H.; Yavuz, F. (2009). CO₂ storage capacity calculations for the Dutch subsurface. *Energy Procedia*, 1(1), 2615-2622. https://doi.org/10.1016/j.egypro.2009.02.028

Anexo 1

Anexo 1
Formaciones con basaltos en la carta geológica nacional. Mapa geológico del Perú - 1:100 000 – 2018.

Obj ID	Cod.	Descripción	Nombre	Unidad	Hoja	Área	Long
26249	2745	Basalto	P-ba	Basalto	32u	0,000006	0,011018287
26250	2745	Basalto	P-ba	Basalto	32u	0,000002	0,0070631
26251	2745	Basalto	P-ba	Basalto	32u	0,000003	0,018197597
26252	2745	Basalto	P-ba	Basalto	32u	0,000001	0,008914019
26253	2745	Basalto	P-ba	Basalto	32u	0,000004	0,021040458
26254	2745	Basalto	P-ba	Basalto	32u	0,000003	0,012963709
26255	2745	Basalto	P-ba	Basalto	32u	0,000001	0,008897514
26256	2745	Basalto	P-ba	Basalto	32u	0,000007	0,032304048
89070	139	Basaltos gris oscuros de textura porfirítica con fenocristales de plagio- clasas de olivino.	PN-cay	Formación Cayconi	29v	0,000012	0,013459398
89071	139	Basaltos gris oscuros de textura porfirítica con fenocristales de plagio- clasas de olivino.	PN-cay	Formación Cayconi	29v	0,000007	0,010919067
89072	139	Basaltos gris oscuros de textura porfirítica con fenocristales de plagio- clasas de olivino.	PN-cay	Formación Cayconi	29v	0,000020	0,021014726
89073	139	Basaltos gris oscuros de textura porfirítica con fenocristales de plagio- clasas de olivino.	PN-cay	Formación Cayconi	29v	0,000141	0,056178127
89120	139	Basaltos gris oscuros de textura porfirítica con fenocristales de plagio- clasas de olivino.	PN-cay	Formación Cayconi	29v	0,000105	0,060994189
89121	139	Basaltos gris oscuros de textura porfirítica con fenocristales de plagio- clasas de olivino.	PN-cay	Formación Cayconi	29v	0,000024	0,022355905
89245	139	Basaltos gris oscuros de textura porfirítica con fenocristales de plagio- clasas de olivino.	PN-cay	Formación Cayconi	29v	0,000775	0,143682039
89248	139	Basaltos gris oscuros de textura porfirítica con fenocristales de plagio- clasas de olivino.	PN-cay	Formación Cayconi	29v	0,000019	0,023557134
89249	139	Basaltos gris oscuros de textura porfirítica con fenocristales de plagio- clasas de olivino.	PN-cay	Formación Cayconi	29v	0,000063	0,054152709
89250	139	Basaltos gris oscuros de textura porfirítica con fenocristales de plagio- clasas de olivino.	PN-cay	Formación Cayconi	29v	0,000056	0,043636955
89254	139	Basaltos gris oscuros de textura porfirítica con fenocristales de plagio- clasas de olivino.	PN-cay	Formación Cayconi	29v	0,000023	0,026339129
89255	139	Basaltos gris oscuros de textura porfirítica con fenocristales de plagio- clasas de olivino.	PN-cay	Formación Cayconi	29v	0,000051	0,035781075
89257	139	Basaltos gris oscuros de textura porfirítica con fenocristales de plagio- clasas de olivino.	PN-cay	Formación Cayconi	29v	0,000044	0,032132865
108573	247	Basaltos, areniscas y limoarcillas rojas.	Ki-ch	Formación Chayllacatana	251	0,000024	0,065657993

Continuación Anexo 1.

Obj ID	Cod.	Descripción	Nombre	Unidad	Hoja	Área	Long
108689	247	Basaltos, areniscas y limoarcillas rojas.	Ki-ch	Formación Chayllacatana	251	0,000020	0,046146509
108690	247	Basaltos, areniscas y limoarcillas rojas.	Ki-ch	Formación Chayllacatana	251	0,000055	0,139084036
108696	247	Basaltos, areniscas y limoarcillas rojas.	Ki-ch	Formación Chayllacatana	251	0,000039	0,09992425
108741	247	Basaltos, areniscas y limoarcillas rojas.	Ki-ch	Formación Chayllacatana	251	0,000007	0,019604073
108742	247	Basaltos, areniscas y limoarcillas rojas.	Ki-ch	Formación Chayllacatana	251	0,000004	0,012938973
108744	247	Basaltos, areniscas y limoarcillas rojas.	Ki-ch	Formación Chayllacatana	251	0,000063	0,165387388
108865	247	Basaltos, areniscas y limoarcillas rojas.	Ki-ch	Formación Chayllacatana	251	0,000023	0,057279738
108866	247	Basaltos, areniscas y limoarcillas rojas.	Ki-ch	Formación Chayllacatana	251	0,000115	0,282496586
108867	247	Basaltos, areniscas y limoarcillas rojas.	Ki-ch	Formación Chayllacatana	251	0,000113	0,280212212
108872	247	Basaltos, areniscas y limoarcillas rojas.	Ki-ch	Formación Chayllacatana	251	0,000004	0,010274794
108873	247	Basaltos, areniscas y limoarcillas rojas.	Ki-ch	Formación Chayllacatana	251	0,000011	0,02747867
108874	247	Basaltos, areniscas y limoarcillas rojas.	Ki-ch	Formación Chayllacatana	251	0,000073	0,18828744
108875	247	Basaltos, areniscas y limoarcillas rojas.	Ki-ch	Formación Chayllacatana	251	0,000031	0,076052938
108876	247	Basaltos, areniscas y limoarcillas rojas.	Ki-ch	Formación Chayllacatana	251	0,000050	0,120818434
108882	247	Basaltos, areniscas y limoarcillas rojas.	Ki-ch	Formación Chayllacatana	251	0,000024	0,037315721
108899	247	Basaltos, areniscas y limoarcillas rojas.	Ki-ch	Formación Chayllacatana	251	0,000005	0,014135769
108900	247	Basaltos, areniscas y limoarcillas rojas.	Ki-ch	Formación Chayllacatana	251	0,000095	0,236545299
108901	247	Basaltos, areniscas y limoarcillas rojas.	Ki-ch	Formación Chayllacatana	251	0,000039	0,099901028
108902	247	Basaltos, areniscas y limoarcillas rojas.	Ki-ch	Formación Chayllacatana	251	0,000033	0,083040888
109507	247	Basaltos, areniscas y limoarcillas rojas.	Ki-ch	Formación Chayllacatana	25m	0,000000	0,002847194
109509	247	Basaltos, areniscas y limoarcillas rojas.	Ki-ch	Formación Chayllacatana	25m	0,000028	0,067162545
109808	247	Basaltos, areniscas y limoarcillas rojas.	Ki-ch	Formación Chayllacatana	25m	0,000002	0,006605013
109839	247	Basaltos, areniscas y limoarcillas rojas.	Ki-ch	Formación Chayllacatana	25m	0,000046	0,103278533
109840	247	Basaltos, areniscas y limoarcillas rojas.	Ki-ch	Formación Chayllacatana	25m	0,000003	0,009564841
109841	247	Basaltos, areniscas y limoarcillas rojas.	Ki-ch	Formación Chayllacatana	25m	0,000008	0,023490345
109842	247	Basaltos, areniscas y limoarcillas rojas.	Ki-ch	Formación Chayllacatana	25m	0,000039	0,074683909
109870	247	Basaltos, areniscas y limoarcillas rojas.	Ki-ch	Formación Chayllacatana	25m	0,000047	0,106468027
109930	247	Basaltos, areniscas y limoarcillas rojas.	Ki-ch	Formación Chayllacatana	25m	0,000023	0,065712174
109931	247	Basaltos, areniscas y limoarcillas rojas.	Ki-ch	Formación Chayllacatana	25m	0,000006	0,017556514

Continuación Anexo 1.

Obj ID	Cod.	Descripción	Nombre	Unidad	Hoja	Área	Long
109932	247	Basaltos, areniscas y limoarcillas rojas.	Ki-ch	Formación Chayllacatana	25m	0,000008	0,018885631
109933	247	Basaltos, areniscas y limoarcillas rojas.	Ki-ch	Formación Chayllacatana	25m	0,000006	0,018385582
109968	247	Basaltos, areniscas y limoarcillas rojas.	Ki-ch	Formación Chayllacatana	25m	0,000037	0,087328936
109992	247	Basaltos, areniscas y limoarcillas rojas.	Ki-ch	Formación Chayllacatana	25m	0,000009	0,022485073
109996	247	Basaltos, areniscas y limoarcillas rojas.	Ki-ch	Formación Chayllacatana	25m	0,000011	0,027455023
109997	247	Basaltos, areniscas y limoarcillas rojas.	Ki-ch	Formación Chayllacatana	25m	0,000010	0,024397227
109998	247	Basaltos, areniscas y limoarcillas rojas.	Ki-ch	Formación Chayllacatana	25m	0,000004	0,011743396
110018	247	Basaltos, areniscas y limoarcillas rojas.	Ki-ch	Formación Chayllacatana	25m	0,000003	0,008206609
110019	247	Basaltos, areniscas y limoarcillas rojas.	Ki-ch	Formación Chayllacatana	25m	0,000005	0,013172885
110020	247	Basaltos, areniscas y limoarcillas rojas.	Ki-ch	Formación Chayllacatana	25m	0,000003	0,010611795
110021	247	Basaltos, areniscas y limoarcillas rojas.	Ki-ch	Formación Chayllacatana	25m	0,000018	0,041272425
110022	247	Basaltos, areniscas y limoarcillas rojas.	Ki-ch	Formación Chayllacatana	25m	0,000049	0,110907976
110024	247	Basaltos, areniscas y limoarcillas rojas.	Ki-ch	Formación Chayllacatana	25m	0,000013	0,030694194
110025	247	Basaltos, areniscas y limoarcillas rojas.	Ki-ch	Formación Chayllacatana	25m	0,000025	0,058802505
110026	247	Basaltos, areniscas y limoarcillas rojas.	Ki-ch	Formación Chayllacatana	25m	0,000043	0,099804026
110027	247	Basaltos, areniscas y limoarcillas rojas.	Ki-ch	Formación Chayllacatana	25m	0,000038	0,085681664
110028	247	Basaltos, areniscas y limoarcillas rojas.	Ki-ch	Formación Chayllacatana	25m	0,000021	0,049861811
110029	247	Basaltos, areniscas y limoarcillas rojas.	Ki-ch	Formación Chayllacatana	25m	0,000051	0,116846795
114648	247	Basaltos, areniscas y limoarcillas rojas.	Ki-ch	Formación Chayllacatana	26m	0,000114	0,268703711
114653	247	Basaltos, areniscas y limoarcillas rojas.	Ki-ch	Formación Chayllacatana	26m	0,000039	0,119802399
114654	247	Basaltos, areniscas y limoarcillas rojas.	Ki-ch	Formación Chayllacatana	26m	0,000004	0,015035166
114655	247	Basaltos, areniscas y limoarcillas rojas.	Ki-ch	Formación Chayllacatana	26m	0,000008	0,028597103
114656	247	Basaltos, areniscas y limoarcillas rojas.	Ki-ch	Formación Chayllacatana	26m	0,000149	0,32068859
114660	247	Basaltos, areniscas y limoarcillas rojas.	Ki-ch	Formación Chayllacatana	26m	0,000033	0,10173469
114927	247	Basaltos, areniscas y limoarcillas rojas.	Ki-ch	Formación Chayllacatana	26m	0,000001	0,004277999
115129	247	Basaltos, areniscas y limoarcillas rojas.	Ki-ch	Formación Chayllacatana	26n	0,000012	0,028022956
115130	247	Basaltos, areniscas y limoarcillas rojas.	Ki-ch	Formación Chayllacatana	26n	0,000030	0,036140598
115152	247	Basaltos, areniscas y limoarcillas rojas.	Ki-ch	Formación Chayllacatana	26n	0,000002	0,006600665
115153	247	Basaltos, areniscas y limoarcillas rojas.	Ki-ch	Formación Chayllacatana	26n	0,000378	0,230501314

Continuación Anexo 1.

Obj ID	Cod.	Descripción	Nombre	Unidad	Hoja	Área	Long
115154	247	Basaltos, areniscas y limoarcillas rojas.	Ki-ch	Formación Chayllacatana	26n	0,000032	0,055921616
115155	247	Basaltos, areniscas y limoarcillas rojas.	Ki-ch	Formación Chayllacatana	26n	0,000016	0,023238396
115156	247	Basaltos, areniscas y limoarcillas rojas.	Ki-ch	Formación Chayllacatana	26n	0,000008	0,015923746
115257	247	Basaltos, areniscas y limoarcillas rojas.	Ki-ch	Formación Chayllacatana	26n	0,000005	0,012821568
115258	247	Basaltos, areniscas y limoarcillas rojas.	Ki-ch	Formación Chayllacatana	26n	0,000037	0,053347879
115259	247	Basaltos, areniscas y limoarcillas rojas.	Ki-ch	Formación Chayllacatana	26n	0,000060	0,076790022
115302	247	Basaltos, areniscas y limoarcillas rojas.	Ki-ch	Formación Chayllacatana	26n	0,000027	0,045071037
115322	247	Basaltos, areniscas y limoarcillas rojas.	Ki-ch	Formación Chayllacatana	26n	0,000051	0,081527404
115323	247	Basaltos, areniscas y limoarcillas rojas.	Ki-ch	Formación Chayllacatana	26n	0,000099	0,085470574
115324	247	Basaltos, areniscas y limoarcillas rojas.	Ki-ch	Formación Chayllacatana	26n	0,000007	0,012243766
115325	247	Basaltos, areniscas y limoarcillas rojas.	Ki-ch	Formación Chayllacatana	26n	0,000154	0,118633423
115326	247	Basaltos, areniscas y limoarcillas rojas.	Ki-ch	Formación Chayllacatana	26n	0,000035	0,062430567
115327	247	Basaltos, areniscas y limoarcillas rojas.	Ki-ch	Formación Chayllacatana	26n	0,000038	0,056656844
115328	247	Basaltos, areniscas y limoarcillas rojas.	Ki-ch	Formación Chayllacatana	26n	0,000031	0,029645507
115341	247	Basaltos, areniscas y limoarcillas rojas.	Ki-ch	Formación Chayllacatana	26n	0,000006	0,017711305
115342	247	Basaltos, areniscas y limoarcillas rojas.	Ki-ch	Formación Chayllacatana	26n	0,000046	0,046484914
115344	247	Basaltos, areniscas y limoarcillas rojas.	Ki-ch	Formación Chayllacatana	26n	0,000120	0,114733667
115345	247	Basaltos, areniscas y limoarcillas rojas.	Ki-ch	Formación Chayllacatana	26n	0,000090	0,120392569
115350	247	Basaltos, areniscas y limoarcillas rojas.	Ki-ch	Formación Chayllacatana	26n	0,000037	0,04524267
115366	247	Basaltos, areniscas y limoarcillas rojas.	Ki-ch	Formación Chayllacatana	26n	0,000120	0,117886639
115367	247	Basaltos, areniscas y limoarcillas rojas.	Ki-ch	Formación Chayllacatana	26n	0,000032	0,067464939
115368	247	Basaltos, areniscas y limoarcillas rojas.	Ki-ch	Formación Chayllacatana	26n	0,000018	0,033390239
115442	247	Basaltos, areniscas y limoarcillas rojas.	Ki-ch	Formación Chayllacatana	26n	0,000153	0,105659774
115449	247	Basaltos, areniscas y limoarcillas rojas.	Ki-ch	Formación Chayllacatana	26n	0,000064	0,124623022
115450	247	Basaltos, areniscas y limoarcillas rojas.	Ki-ch	Formación Chayllacatana	26n	0,000079	0,086580385
115451	247	Basaltos, areniscas y limoarcillas rojas.	Ki-ch	Formación Chayllacatana	26n	0,000151	0,180010371
115452	247	Basaltos, areniscas y limoarcillas rojas.	Ki-ch	Formación Chayllacatana	26n	0,000056	0,045351984
115453	247	Basaltos, areniscas y limoarcillas rojas.	Ki-ch	Formación Chayllacatana	26n	0,000006	0,013249368
115454	247	Basaltos, areniscas y limoarcillas rojas.	Ki-ch	Formación Chayllacatana	26n	0,000063	0,062139602

Continuación Anexo 1.

Obj ID	Cod.	Descripción	Nombre	Unidad	Hoja	Área	Long
115455	247	Basaltos, areniscas y limoarcillas rojas.	Ki-ch	Formación Chayllacatana	26n	0,000206	0,130582522
115539	1282	Coladas volcánicas de basalto.	Nm-ru/i	Formación Rumichaca - Miembro inferior	26n	0,000113	0,089185605
115839	247	Basaltos, areniscas y limoarcillas rojas.	Ki-ch	Formación Chayllacatana	26n	0,000236	0,278233207
119823	247	Basaltos, areniscas y limoarcillas rojas.	Ki-ch	Formación Chayllacatana	27n	0,000042	0,049407291
119854	247	Basaltos, areniscas y limoarcillas rojas.	Ki-ch	Formación Chayllacatana	27n	0,000019	0,036975766
119855	247	Basaltos, areniscas y limoarcillas rojas.	Ki-ch	Formación Chayllacatana	27n	0,000026	0,03076005
141202	247	Basaltos, areniscas y limoarcillas rojas.	Ki-ch	Formación Chayllacatana	22k	0,000035	0,061775297
144738	247	Basaltos, areniscas y limoarcillas rojas.	Ki-ch	Formación Chayllacatana	23k	0,000015	0,034314198
144739	247	Basaltos, areniscas y limoarcillas rojas.	Ki-ch	Formación Chayllacatana	23k	0,000025	0,050840851
144740	247	Basaltos, areniscas y limoarcillas rojas.	Ki-ch	Formación Chayllacatana	23k	0,000007	0,022907407
144741	247	Basaltos, areniscas y limoarcillas rojas.	Ki-ch	Formación Chayllacatana	23k	0,000022	0,050371252
144742	247	Basaltos, areniscas y limoarcillas rojas.	Ki-ch	Formación Chayllacatana	23k	0,000032	0,051396973
144743	247	Basaltos, areniscas y limoarcillas rojas.	Ki-ch	Formación Chayllacatana	23k	0,000017	0,035839153
144744	247	Basaltos, areniscas y limoarcillas rojas.	Ki-ch	Formación Chayllacatana	23k	0,000046	0,069384417
145010	247	Basaltos, areniscas y limoarcillas rojas.	Ki-ch	Formación Chayllacatana	23k	0,000027	0,041177514
145012	247	Basaltos, areniscas y limoarcillas rojas.	Ki-ch	Formación Chayllacatana	23k	0,000007	0,014437254
148610	5230	Basalto traquiandesita basaltica	N-ba,taba	Sills o coladas de basalto (N-B)	24k	0,000001	0,006340751
149450	5230	Basalto traquiandesita basaltica	N-ba,taba	Sills o coladas de basalto (N-B)	241	0,000074	0,075068459
149453	5230	Basalto traquiandesita basaltica	N-ba,taba	Sills o coladas de basalto (N-B)	241	0,000139	0,135172841
149454	5230	Basalto traquiandesita basaltica	N-ba,taba	Sills o coladas de basalto (N-B)	241	0,000112	0,188466847
149455	5230	Basalto traquiandesita basaltica	N-ba,taba	Sills o coladas de basalto (N-B)	241	0,000004	0,012110927
149456	5230	Basalto traquiandesita basaltica	N-ba,taba	Sills o coladas de basalto (N-B)	241	0,000050	0,068132825
149459	5230	Basalto traquiandesita basaltica	N-ba,taba	Sills o coladas de basalto (N-B)	241	0,000030	0,061258682
149460	5230	Basalto traquiandesita basaltica	N-ba,taba	Sills o coladas de basalto (N-B)	241	0,000275	0,261132053
149461	5230	Basalto traquiandesita basaltica	N-ba,taba	Sills o coladas de basalto (N-B)	241	0,000140	0,168754677

Información adicional

Forma de citar: Paredes-Ángeles, J.H. (2020). Consideraciones generales para la elaboración de un atlas de almacenamiento geológico de CO₂ del Perú. Boletín de Geología, 42(3), 243-260. DOI: https://doi.org/10.18273/revbol.v42n3-2020011

