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Abstract

Physically-based models have been used to assess landslide susceptibility, hazard, and risk in many regions worldwide.
They have also been regarded as valuable tools for landslide prediction and the development or improvement of
landslide early warning systems. They are usually validated to demonstrate their predictive capacity, but they are
not deeply studied regularly to understand the sensitivity of the input variables and the behavior of the models under
many different rainfall scenarios. In this research paper, we studied two distributed physically-based models for
shallow landslides: SLIP and Iverson. For this, the first-order second-moment (FOSM) method was used to calculate
the contribution of random input variables (soil strength, unit weight, and permeability parameters) to the variance
of the factor of safety. Different intensity and duration rainfall events were simulated to assess the response of the
models to those rainfall conditions in terms of the factor of safety and failure probability. The results showed that
the shear strength (cohesion and friction angle, in order of significance) parameters have the largest contribution to
the variance in both models, but they vary depending on geological, geotechnical, and topographic conditions. The
Iverson and SLIP models respond in different ways to the variation of rainfall conditions: for shorter durations (e.g.
< 8 h), increasing the intensity caused more unstable areas in the SLIP model, while for longer durations the unstable
areas were considerably higher for the lverson model. Understanding those behaviors can be useful for practical and
appropriate implementation of the models in landslide assessment projects.

Keywords: Shallow landslide; SLIP; Iverson; Intensity; Duration; FOSM.

Comprensién de la sensibilidad a las propiedades del suelo y condiciones de lluvia de
dos modelos de estabilidad de taludes basados en la fisica

Resumen

Se han implementado modelos basados en la fisica para evaluar la susceptibilidad, laamenazay el riesgo de movimientos
en masa en muchas regiones del mundo. También se han considerado herramientas valiosas para la prediccion de
movimientos en masa y el desarrollo o mejora de sistemas de alerta temprana. Por lo general, se validan para demostrar
su capacidad predictiva, pero pocas veces se estudian en profundidad para comprender la sensibilidad de las variables
de entrada y el comportamiento de los modelos en diversos escenarios de lluvias. En este articulo de investigacion se
utilizaron dos modelos distribuidos de base fisica para deslizamientos superficiales: Iverson y SLIP. Para ello, se utiliza
el método de first-order second moment (FOSM) para calcular la contribucion de las variables de entrada aleatorias
(resistencia del suelo, peso unitario y pardametros de permeabilidad) a la varianza del factor de seguridad. Se simularon
eventos de lluvia de diferente intensidad y duracion para evaluar la respuesta de los modelos a esas condiciones de
lluvia en términos del factor de seguridad y probabilidad de falla. Los resultados mostraron que los pardmetros de
resistencia al corte (cohesion y &ngulo de friccion, en orden de importancia) tienen la mayor contribucién a la varianza
en ambos modelos, pero varian segun las condiciones geologicas, geotécnicas y topograficas. Los modelos Iverson
y SLIP responden de diferentes maneras a la variacion de las condiciones de lluvia: para duraciones mas cortas (por
ejemplo, < 8 h), el aumento de la intensidad provocd mas areas inestables en el modelo SLIP; mientras que, para
duraciones mas largas, las areas inestables fueron considerablemente mayores para el modelo de Iverson. Comprender
esos comportamientos puede ser Util para una implementacion practica y adecuada de los modelos en proyectos de
evaluacion de deslizamientos de tierra.

Palabras clave: Deslizamientos superficiales; SLIP; Iverson; Intensidad; Duracion; FOSM.
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Understanding the sensitivity to the soil properties and rainfall conditions of two physically-based slope stability models

Introduction

Physically-based models have been used in the last few
decades to assess landslide susceptibility and hazard in
many regions worldwide (Baum et al., 2005; Lin et al.,
2021; Michel etal., 2014; Montrasio etal., 2011). There
are developing methodologies such as probabilistic
applications (Marin and Mattos, 2020; Raia et al.,
2014), or rainfall threshold definition (Alvioli et
al., 2018; Marin, 2020; Marin et al., 2020, 2021c,
2021d; Papa et al., 2013). Even though the spatial and
temporal prediction of landslides is considered a very
difficult (almost impossible in many cases) task due to
the high variability and that many factors (with great
uncertainty) intervene in their occurrence, landslide
early warning systems in different regions worldwide
have adopted different methods trying to forecast
landslide occurrence (Guzzetti et al., 2020).

To make possible the implementation of physically-
based models on an operational landslide early
warning system (LEWS) validation of the predictive
capacity of the model is preeminent. It is usually done
by comparing the spatial and temporal occurrence
of landslides in a certain terrain area with the slope
stability results obtained from simulations of the
landslide triggering events (e.g., antecedent or
intensity-duration rainfall event) incorporated as an
input variable of the model. Some of the physically-
based models for shallow landslides implemented and
validated worldwide are SHALSTAB (Aristizébal et
al., 2015; Fernandes et al., 2004; Marin et al., 2020;
Montgomery and Dietrich, 1994), TRIGRS (Baum et
al., 2010; Liao et al., 2011; Marin et al., 2021a; Park
et al., 2013), SINMAP (Michel et al., 2014; Pack et
al., 1998), SHIA_ Landslide (Aristizabal et al., 2016),
SLIP (Montrasio and Valentino, 2008; Montrasio et.
al, 2018; Schilird et al., 2016), and lverson’s model
(2000) (D’Odorico et al., 2005; Marin et al., 2021b).
On the other hand, due to the implications that the
landslide occurrence prediction can have in saving
human lives, a deep understanding of the functioning
of the models and the effect of its input parameters is
needed since it could make it possible to implement
them in reliable LEWSs. It is also very important to
understand the sensitivity of the input parameters in
the model because assumptions and simplifications
are commonly required (e.g., homogeneous soil layers
and constant mechanical parameters for a complete
geological unit).

Choo et al. (2019) studied the effect of the input
parameters on the factor of safety (FS) calculated
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using the Mohr-Coulomb failure law (infinite slope
stability model), as presented by Hammond et al.
(1992). They performed a sensitivity analysis varying
one input parameter and fixing the others to calculate
the FS. They used 9 input parameters: root and soil
cohesion, slope gradient (angle), soil and water density,
soil thickness, groundwater level, acceleration, and
friction internal angle. They determined that in their
study case, the slope angle, soil thickness, and friction
angle have a great effect on the factor of safety results.
On the other hand, the soil cohesion and soil density
had little effect on the FS. Nevertheless, other studies
have regarded a more significant influence of cohesion
on the slope stability results (Maula and Zhang, 2011,
Stockton et al., 2019).

Other authors analyzed the soil properties’ spatial
variability and their effect on slope stability. Bjerager
and Ditlevsen (1983) studied the effect of the friction
angle and cohesion uncertainty on slope stability.
In this preliminary study, it was being noticed the
dependency between the parameters uncertainty and
the slope stability uncertainty. Fenton and Griffiths
(2008) investigated the influence of the shear strength
parameters (cohesion and friction angle) implementing
a reliability-based risk assessment method (random
finite element method, RFEM). Nguyen et al. (2017)
studied the influence of spatial variability of cohesion
and friction angle on slope failure using Monte Carlo
simulations. Other studies investigated the effect of
hydraulic conductivity or other hydraulic properties on
slope stability (Dou et al., 2015; Marin and Velasquez,
2020; Wang et al., 2020).

This research paper aimed to evaluate the sensitivity
of mechanical and hydraulic input parameters of two
physically-based slope stability models (SLIP and
Iverson), and to study the variability of the factor
of safety and failure probability results to different
rainfall intensities and durations. It was done using
the first-order second-moment (FOSM) method and
deterministic applications of the Iverson and SLIP
models in a tropical mountain watershed of the
Colombian Andes. The specific variance of 4 random
variables (cohesion, friction angle, soil unit weight
or specific gravity, and hydraulic conductivity) was
calculated to represent the effect of each random
variable on the total variance to quantify the effect on
the slope stability results. Finally, different low and
high rainfall intensities were combined with short and
long rainfall durations to assess the response of the
physically-based models to those rainfall scenarios in
terms of the factor of safety and failure probability.
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Methodology

In this research study, it was simulated 48 rainfall
scenarios varying the duration (D =1, 2, 4, 8, 16, and 32
h) and constant average intensity (I = 0.1, 10, 20, 40, 60,
80, 100, and 130 mm/h) of rainfall to assess the variation
of the factor of safety (FS) and failure probability (Pf)
calculated using the Iverson and SLIP distributed model.
In addition, to assess the FS variation dependence on the
variance of soil input parameters it was run a rainfall
event obtained from intensity-duration-frequency (IDF)
curves of the study area, selecting a return period of 100
years (D =4 h; | =23.02 mm/h).

tan ¢’

lverson model

The Iverson (2000) model is a shallow landslide
model that evaluates the failure of infinite slopes using
an equation that balances the descending component
of the motor gravitational stress with the resistance
stress due to basal friction; the latter is mediated by
the pressure of the water in the pores. The safety factor
(FS) is calculated using equation 1.

Y(Zt) ywtan ¢’ c’ )

Fs= tan

Where ¢’ is the effective friction angle of the soil,
is the slope angle, v (Z, t) is the distribution of the
groundwater pressure head, Z is the depth at which the
slope fault occurs (measured vertically from the ground
surface), t is the time, ¢’ is the effective cohesion of
the soil, y, is the unit weight of the water and y, is the
average unit weight of the soil.

In Iverson’s model, the response of the pressure head to
transient rain (in which the intensities vary during the
event) is obtained from a solution in which fixed intensity
and duration of rainfall are considered. In this solution,
the Richards equation and superpositions of individual
responses are used, as shown in equations 2-4.

V@O = Z- DB +—REDZ @)
Where,
et
AT 3)
D = 4Dy cos? 4)

In which K is the vertical hydraulic conductivity,
d is the depth of the groundwater level measured
normal to the ground surface, L, is the intensity of the
rainfall, t* is the normalized time, D, is the maximum
characteristic hydraulic diffusivity, D is the effective
hydraulic diffusivity and R (t*) is the response function
of the pressure head that is calculated using equation 5.

R(t® = Jt*/mexp (=1/t%) —erfc (1/JE%) (5

Where erfc is the complementary error function. It is
worth noting that the response function, R (t*), depends
only on the normalized time.
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SLIP model

SLIP (Shallow Landslides Instability Prediction)
(Montrasio and Valentino, 2008) is a model of shallow
landslides that uses the infinite slope method. The
SLIP model assumes that the entire amount of rainfall
infiltrates the soil and that the collapse of the slope is
characterized by the formation of a finite-thickness soil
layer. Based on these hypotheses, the model considers
that the subsoil is divided into two zones: a partially
saturated overlying zone and a saturated underlying
zone; the latter has a much lower permeability than
the overlying stratum. The limit equilibrium method
used to calculate the safety factor (FS) is shown in
equations 6-9.

cotftand' [T+ m(ny— 1]+ C'Q

5= '+ mny ©)
Where,
I'=Gs(1—n)+nS, 7
nw=n(l-S5) (®)
2
~ sin 2B Hyw ©)

In which H is the thickness of the soil, n is the porosity,
S, is the degree of saturation, G_ is the specific gravity,
C’ is the total intercept of cohesion, and m is the
dimensionless thickness of the saturated soil zone
(ranges between 0 and 1). The total cohesion intercept,
C’, is calculated from the Mohr-Coulomb failure
criterion (equation 10).
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C'=[c"+cy] As=[c"+ ASy (1 — 5% (1 — m)*] As

Where ¢, is the apparent cohesion related to the suction
matrix, 4 is the unit length of an infinite slope section,
A is a parameter that depends on the relationship
between the type of soil and the peak shear stress at the
fault, and « is a parameter that gives a non-linear trend
to the curve that represents the function of equation 10.

The parameter m can be constant or variable over time
and is correlated with the depth of infiltrated rain (h),
and the volume of water required to saturate the soil;
the latter is characterized by a degree of saturation
S,<I. The parameter m is calculated using equation 11.

_ h
M HA=S) (1)
A detailed description of the SLIP model can be
consulted in Montrasio et al. (2014).

FOSM method

FOSM (First-Order Second Moment) is a method
that uses the first-order terms of the Taylor series
expansion to find the expected value, E [F], and the
variance, %, of a function F (X, X,, ..., X)), in which
X, are independent variables. When the variables
are uncorrelated, the statistical moments of F are
calculated using equations 12-14.

E[F] =pup=F (X1,X2, .., Xn) (12)
ob~5i_1(25) o (13

Where,
%= F(xi+AAXxii)—F (x) (14)

In which the x; are values of the variables X; that enters
in the calculation of F. In this study, F is the safety factor
(FS), calculated by the Iverson and SLIP models. The
usual practice is to assume that the variables X, and FS
are distributed according to a Normal distribution and
Ax; is taken as 10% of the mean value of each variable X,
(Baecher and Christian, 2003). The contribution to the
variance of each variable is calculated by equation 15.

V) =2 (15)

F
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(10)

Alternatively, the FOSM method is used to determine
the probability of slip failure, PF, of slopes using
equation 16.

PF=0 <@> (16)

Of

Where @ is the cumulative standard normal function.
The term “failure” does not refer to collapse, but refers
to slope performance that does not meet expected
conditions.

To model soil parameters as Gaussian random
variables, it is required to know the mean and the
coefficient of variation (COV). This last parameter is
relevant because it is used as a measure of uncertainty
in the characterization of soils, especially for land
areas at the basin scale (Marin and Mattos, 2020).
Table 1 shows the COV values established by the
ISSMGE-TC304 (2021) technical committee and other
researchers for parameters that are random variables in
this study.

Table 1. COV of soil parameters (clays, silts, and sands).

Soil parameter COV (%) Reference
Frictionangle, ¢*  4.2-125  ISSMGE-TC304 (2021)
Cohesion, ¢’ 38-51.4 ISSMGE-TC304 (2021)
Unit weight, y, ~ 2.6-3.3  ISSMGE-TC304 (2021)
Feng and Vardanega
Permeability, K 12.4-77.4 (2019)

Feng et al. (2019)

In this study, the selection of the variability of the soil
parameters comes from Table 1 and corresponds to a
consistent analysis of the literature. It is assumed that
COV (¢°) =10%, COV (c’) =40%, COV (y,) =3%, and
COV (K) =12.4%. The selection of the variability of
COV (K) is given to characterize the minimal effect on
the Iverson and SLIP models of a highly uncertain and
little-studied K parameter and its effect on FS in large
areas of land.

Study site

The study area is a small watershed located in the
municipality of Envigado (Colombia). It is a tropical
mountain terrain from the Colombian Andes. It has
elevations ranging from 1698.7 to 1612.0 m.a.s.l.
(meters above sea level). The location of this watershed

Boletin de Geologia - Vol. 44 Num. 1
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and the digital elevation model is shown in Figure 1.
The municipality has reported average temperatures of
around 22°C, meaning annual rainfalls of 2170 mm,
climatic classification of humid tropical forest (Garcia-
Aristizabal et al., 2019; Marin et al., 2019). Figure 2A
shows the slope map of the Envigado watershed. It has
slope angles above 28° (10% of the total area), with
maximum slopes around 50.5°. 20% of the total area
is between 15.0° and 22.4°, and 60% has slopes lower
than 15.0°.

Figure 1. Location of the Envigado (Colombia) watershed and
digital elevation model.

The area of the watershed is approximately 65,061 m?.
Figure 2B shows the surface geological units of the
watershed: amphibolites from Medellin (TraM),
anthropogenic fills (QII), and two distinguished
debris/mudflow deposits (NQFII and NQFIV). The
amphibolites from Medellin are primarily composed
of medium-sized hornblende and plagioclase feldspar
series. Their texture varies between medium to
fine grain sizes (foliated to massive appearance).
The anthropogenic fills have a large variation in
heterogeneity, including homogeneous materials
conformed by technical standards for building
purposes, but also with the presence of waste material
(garbage), primal (or organic) matter, and loose debris
materials.

The debris (NQFII) and mudflow (NQFIV) deposits are
composed of gneiss (primarily), described as mildly/
moderately weathered rock fragments, with silty sand/
clay matrix. Different landslide types such as debris or
planar slides, falls, and spreads have occurred in those
terrains (DEACIVIL, 2015; Marin and \elasquez
2020). Figure 2B also shows the landslide scarps
delimited by AMVA and UNAL (2018) in a regional
landslide hazard assessment.

Boletin de Geologia - Vol. 44 Num. 1

Figure 2. Property maps: A. Slope angle, B. Geology, C. Soil
depth.

Parameterization

The spatial resolution of the DEM used is 2 m x 2 m
(from Instituto Geografico Agustin Codazzi, IGAC).
The mechanical parameters were obtained from a
geotechnical study carried out by DEACIVIL (2015),
including laboratory tests. The soil effective cohesion
(c’) and friction angle (¢’) were obtained from direct
shear tests. The soil unit weight (y) was calculated from
natural humidity and specific gravity. These parameters
were adjusted following a landslide regional study
(AMVA and UNAL, 2018), where the mechanical
parameters were compared with typical values for
the soil types. The standard deviation for the four
random variables was defined assuming coefficients
of variation (COV); typical values from the scientific
literature were adopted for the random input variables
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(Lumb, 1966; Phoon and Kulhawy, 1999) (except for
K,, proposed considering its high variability): cohesion
(40%), friction angle (10%), soil unit weight (3%), and
saturated hydraulic conductivity (12.4%).

The saturated hydraulic conductivity (K was defined
from typical values from the literature, since the
spatial variability of this parameter is very uncertain
and laboratory or field tests were not available. Other
hydraulic parameters (D,, n, S) were also obtained
analyzing the available data from the laboratory tests,
but assumptions (including revising literature values)
were necessary, since the data was limited. The values

tan 6—tan Sypin

of A, A, and a (SLIP model) were chosen according
to the proposed values by Montrasio and Valentino
(2008) for the predominant soil types of the geological
units. It was assumed applicable to these soil types
considering the particle sizes as the predominant
characteristics of their behavior (for the selection
of those model parameters). Table 2 shows the soil
parameters for the two physically-based models in the
Envigado basin.

The soil thickness was estimated as a function of the
slope angle, and minimum values of soil thickness and
slopes, as proposed by Saulnier et al. (1997):

dlz =Zmax [1—

tan Smax — tan Smln

Wherez . andz_are the minimum and maximum soil
thickness (for each geological unit), o the slope angle,
and § . /6 the minimum/maximum slope angles of
the geological unit. According to (DEACIVIL, 2015;
AMVA and UNAL, 2018), for the geological units,
z, .. was defined as 0.2 m. z__ was used as 2 m for
the amphibolites from Medellin, and 3.5 for the other
geological units. We considered using Saulnier et al.
(1997) equation as proper for our study site since the

distribution between the minimum and maximum soil

Zons

( {_ _“min )]’ (17)
Zmax

depths gives higher soil depths (for lower slope angles)

and tends to significantly decrease in the greater slope

angles (it occurs for the tangent of the slope angle of
equation 8).

The initial groundwater level was set at the soil
thickness basal boundary (d, ), as done by other
researchers (Baumann et al., 2018; Kim et al., 2010;
Park et al., 2013).

Table 2. Mechanical and hydraulic soil properties of the geological units of the Envigado watershed.

Parameter (lverson, SLIP) Units  NQFII TRaM NQFIV Qll
Soil classification (USCS) MH CL MH SM
Cohesion (¢’) kN/m? 17.7 10 20 7.9
Friction angle (¢’) 28.5 30 15 30
Saturated hydraulic conductivity (K, and K.) m/s  6.94x10° 4.86x10° 6.94x10° 1.67x10°
Iverson
Soil unit (y). kN/m®  19.6 18 18.5 19.4
Hydraulic diffusivity (D,) m?s  2.78x10* 1.39x10* 2.78x10* 5.56x10*
SLIP
Specific gravity (G) 2.69 2.73 2.69 2.66
Parameter A 0.4 0.4 0.4 0.4
Parameter A 80 100 80 40
Parameter o 3.4 3.4 3.4 3.4
Saturation degree (Sr) 0.4771 0.4312 0.4771 0.3865
Porosity (n) 0.44 0.45 0.44 0.35
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Results
Analysis of the spatial variation of the
contribution to the variance of soil parameters

Figure 3 shows the spatial distribution of the
contribution to the variance of random variables on FS

of the Iverson and SLIP models. The results indicate
that the parameter that has the greatest influence on
the lverson stability model is the cohesion (¢’). The
contribution to the cohesion variance, V (¢’) = o2, /%,
ranges between 0.318 and 0.998 (Figure 3A).

Figure 3. Spatial variation of the contribution to the variance of the soil parameters on FS of the lverson and SLIP models.

Boletin de Geologia - Vol. 44 Num. 1
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The highest values of the contribution to the cohesion
variance [V (¢’) > 0.726] occur predominantly in the
debris/mud flow deposits (NQFII and NQFIV), and
the amphibolite from Medellin (Figure 3A and Figure
3B). In the mudflow deposits (NQFIV), the cohesive
properties predominate over the frictional properties
for a high soil thickness (H), and the greatest value of
V (¢’) is within this geological unit. In the debris/mud
flow deposits II and the amphibolite from Medellin, V
(¢”) has a spatial variation delimited by the inclination
of the slopes (). The lowest values of the cohesion
variance [V (¢ ) <0.202] occur mostly in anthropogenic
fills, which are relatively frictional soils and are found
in areas of lower slope and higher soil thickness.

Likewise, in the lverson model, the soil friction angle
(¢") is the parameter that has the greatest influence after
cohesion. The contribution to the variance of the friction
angle (Figure 3C), V (¢°), reaches a maximum of
0.673 in anthropogenic fills and its variation decreases
significantly [V (¢°) <0.202] in areas where the cohesive
properties of soils and high slopes predominate, even
though soil thickness is variable. This trend is consistent
with the spatial variation of V (¢”).

Figure 3E and Figure 3G show that there is a wide spatial
variation of the contribution to the variance of the soil
unit weight, V (y.), and permeability of the soil, V (K),
respectively. The spatial variation of both parameters is
characterized by geological and topographic factors. V
(K) has a greater influence on debris/mud flow deposits
[0.038 <V (¢°) <0.063], although it is minor compared
toV (¢) and V (¢°). In general, in the Iverson model,
the maximum contribution of the soil unit weight and
hydraulic conductivity variances (combined), V (y)
and V (K), does not reach 7%. This result is limited by
the minimal variability (10%) assumed in the FOSM
method in this investigation. It reaffirms the higher
effect represented by the cohesion and (to a lesser
degree) the friction angle on the variation of the FS,
but for all the random variables assessed in this study
(c’, ¢, v, and K)) their influence is conditioned by the
specific geological and topographic characteristics.

As in the Iverson model, the most influential parameter
in the SLIP model is V (¢’) (Figure 3B), followed
by V (¢”) (Figure 3D), and V (K) (Figure 3H). In
particular, the contribution to the maximum variance
of permeability, V (K), is close to 29%, and its spatial
variation is controlled by geology and soil thickness.
In both models, V (y,) (Figure 3F) and V (K) present a
similar spatial variation. In the case of SLIP, the spatial
trend of variances is very similar to what was seen
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with Iverson, although the maximum effect of V (G )
reaches 1.73% in the amphibolite from Medellin. On
the contrary, V (¢”) and V (¢°) of the SLIP model vary
according to the geology, topography, and thickness
of the soil with maximum values of V (¢’) = 0.856 in
the debris/mud flow deposits and V (¢) = 0.606 in the
anthropogenic fills.

In general, in both models, the effect of the shear
strength parameters on the safety factor variance
depends directly on the geology and topography. In the
SLIP model, there is a high spatial variance contrast
of the strength parameters; that is, in an area with a
high variance of cohesion, a low variance of friction
occurs. This contrast is more tenuous in the Iverson
model, even with equal (or very close) values of V
(¢)) and V (¢°) in some areas. In the SLIP model, the
contrast is presented by the effect of the soil hydraulic
conductivity. The spatial variation of the hydraulic
conductivity variance is abrupt. For example, in
the amphibolite from Medellin, V (K) = 0.297 is the
maximum value, but in the anthropogenic fills it
falls to V (K) = 0.064 as the minimum value. These
results lead to the permeability uncertainty having to
be characterized appropriately since an inadequate
estimation could lead to inconsistent results in the
SLIP model.

Analysis of the spatial and temporal variation
of FS and Pf

Figure 4 shows the spatial distribution of the stability
of the cells as a function of the rainfall intensity (1)
and duration (D). Figure 4A shows cells at the failure
(FS < 1.0) and close to the failure (FS < 1.3) for the
Iverson model according to relatively small intensity
and duration values (.= 0.1 mm/h, D = 1 h); while
for the SLIP model, all cells are relatively far from
failure (FS > 1.3). For the same intensity and duration,
the distribution pattern of cells with higher failure
probability (Pf) changes for the Iverson model but
remains unchanged for the SLIP model. The lverson
model shows a greater number of unstable cells but
also lower values of reliability index (calculated in the
FOSM method, not shown as maps), causing higher
failure probabilities. It can be assumed that the random
variables cause more dispersion of FS (for the cells),
which increases the standard deviation calculating Pf.

Figure 4 shows that for a significant increase in
intensity (1 = 80, 100, or 130 mm, D = 1 h), the SLIP
model slightly varies the number of cells in the failure
(and close to the failure) and the failure probability.
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It matches with the unstable cell areas of the Iverson
model (much more unstable results), but there is a
perceptible variation on the stability results (FS and
Pf) varying I (from I = 0.1 mmto I, =0 mm) in SLIP,
unlike in the Iverson model.

Figure 4J and Figure 4L show that for a higher intensity
(I, = 100 mm/h, D = 1 h), the SLIP model presents
an increase in unstable cells that becomes significant

for an area of high slope constituted by anthropogenic
fills. Figure 4N and Figure 4P show that for even
higher intensity (I, = 130 mm/h, T = 1 h), the pattern
of unstable cells extends to other topographically and
geologically influenced zones, although they coincide
in relatively low soil thicknesses H < 2.64 m in these
other zones (see Figure 2B). On the other hand, in the
Iverson model, the failure patterns remain unchanged
until I =130 mm/h.

Figure 4. Spatial distribution of the stability of the cells as a function of the intensity (1) and duration of the rain (D = 1 h).

Figure 5 shows the spatial variation of the stability of
the cells for different values of intensity and duration
(1,= 0.1, 80, 100, 130 mm/h, D = 2 h). The results
show that the SLIP model presents greater failure areas
(FS < 1.0) and failure probabilities as |, increased,
compared with the 1 h rainfall event (Figure 4). Maps
of rainfall intensities between 0.1 mm/h to 40 mm/h
were not shown for a rainfall duration of 1 h (Figure
4) and 2 h (Figure 5), since no appreciable differences
were seen (in unstable areas).

In this case, the increases in the failure probability

in the SLIP model are regarded to the sensitivity of
the FS to the thickness of the unsaturated layer, the
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variation of the shear strength parameters, and the
permeability of the cells with a steep slope gradient.
In contrast, the failure patterns of the Iverson model
remain practically invariant for different rainfall
intensity values (I,= 0.1 to 130 mm/h) and D = 2 h.
In terms of Pf, the shallow landslide-prone areas are
similar in both models for the most extreme rainfall
intensity (130 mm/h). Again, the Iverson model
presented instabilities or higher Pf values starting
from the very low intensity (I, = 0.1 mm/h) scenario
with very little (or no) variation as |, increased. The
SLIP model showed more progressive instabilities as I,
increased (at least for higher I values).
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Figure 5. Spatial distribution of the stability of the cells as a function of the intensity (1) and duration of the rainfall (D = 2 h).

Figure 6 shows that the spatial distribution of the
unstable cells in the lverson model increased marginally
for a rainfall duration of 4 h (compared with shorter
durations). The FS decreased as rainfall intensity
increased even with the lower intensity values that were
simulated (slight variations are noticed for I = 10 mm/h
and 20 mm/h). For SLIP, the difference in the distribution
of FS and Pf is little when comparing the smallest
event (I. = 0.1 mm, D = 4 h) with rainfalls of shorter
duration. Failure was not reached for any cell and Pf
values were lower than 10% (with a very small area with
values between 5% and 10%) for intensities lower than
20 mm/h. With increasing rainfall intensity for D = 4 h,
the SLIP model yields a considerable increase in the area
of unstable cells and greater Pf. For D = 4 h, the Iverson
model presented no appreciable variations for the
longer intensities (not presented in the figure); the SLIP
model presented increasing instability as the intensity
increased. Unlike in the shorter rainfall events, in this
case, the SLIP model caused greater unstable areas than
the Iverson model (for the high-intensity rainfall events).

Figure 7 shows that the Iverson and SLIP models
presented very similar stability results (when D = 8 h)
after different 60 and 100 mm/h, respectively. The
Iverson model presented increases in the spatial

102

distribution of unstable cells with the intensity variation
from | = 0.1 to 60 mm/h, but from | = 60 to 130 mm/h
the results were invariable. The SLIP model presented
a similar behavior after I = 100 mm/h. As was seen for
the event of D = 4 h, the SLIP model presents higher
unstable and greater failure probabilities than the Iverson
model, in this case requiring lower intensities than for
shorter rainfall duration events.

Figure 8 shows that when D = 16 h, the behavior of
both models shows an increase in the failure area as
the intensity increases. Interestingly, the tendency that
appeared to stabilize the SLIP model and would present
greater unstable areas for longer and more intense
rainfall events, did not continue for this longer event. In
the lverson model, the distribution of cells near to the
failure (and even the failing cells, slightly) is greater than
in the SLIP model. Regarding the distribution of unstable
cells, in both models, they are similar up to I =20 mm/h,
from which in the SLIP model the number of cells failing
increases noticeably up to | = 60 mm/h. Even though the
constituted by unstable cells of the SLIP model coincides
for the most part with the area conformed by failing cells
(or close to the failure) of the Iverson model, there are
some unstable areas in SLIP that are stable in Iverson,
and vice versa.
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Figure 6. Spatial distribution of the stability of the cells as a function of the intensity (1) and duration of the rain (D = 4 h).

Figure 7. Spatial distribution of the stability of the cells as a function of the intensity (1) and duration of the rainfall (D = 8 h).

For D = 32 h, Figure 9 shows that both models present
the largest spatial distribution of failing cells and
greater failure probabilities even for a rainfall intensity
of 1,= 20 mm/h. The instability is considerably higher
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in the Iverson model, which stabilizes (no significant
variation in the stability results) after I, = 60 mm;
while SLIP stabilizes after I, = 40 mm/h (in terms of
the intensity scenarios simulated).
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Figure 8. Spatial distribution of the stability of the cells as a function of the intensity (I ) and duration of the rainfall (D = 16 h).

Figure 9. Spatial distribution of the stability of the cells as a function of the intensity (1,) and duration of the rainfall (D = 32 h).
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Discussion

The topographic, geological, and soil thickness factors
have a high influence on the contribution to the variance
of the soil properties. The results showed that in the
Iverson and SLIP models, shear strength parameters
have the largest contribution to variance, while
permeability and soil unit weight (or specific gravity)
have a minor effect. It does not mean that the variables
do not affect landslide occurrence. It indicates that
small variations of those parameters (under the actual
conditions of our study area) cause a minor variation in
the effect of safety and failure probability.

Several authors have established the significant effect of
mechanical and hydraulic properties on slope stability
(Marin and Velasquez, 2020; Wang et al., 2020; da
Silva et al., 2021; Materazzi et al., 2021). Listo et al.
(2021) used the TRIGRS model in a basin located in
The Serra do Mar Mountain Range (Brazil), simulating
two scenarios which allowed them to verify that the
model is very sensitive to cohesion and soil depth
(besides the water table, which was well recognized
by other authors, stated also in the TRIGRS manual).
It was also expected for the infinite slope stability
models used in our research work. Nevertheless, more
specific details reported about the variation of this
effect depending on the soil depth or slope angle (also
for the other parameters such as friction angle or soil
unit weight), makes that our results have significance
for the scientific community. Interestingly, different
surface failures such as slope-parallel planar surfaces
(infinite slope stability model), a succession of rigid
bodies of infinite width (Janbu’s model), or ellipsoidal
sliding surfaces modeled by r.slope.stability (Mergili
et al.. 2014) allowed Zieher et al. (2017) to conclude
that the influence of cohesion decreases (non-linearly)
as soil depth increases. In our study, the soil depth was
calculated as an inverse function of the slope gradient
so that it is not completely clear that the dependence of
the cohesion (or any other parameter analyzed in this
research) is directly related to the variation of the soil
depth or slope angle (specifically).

The maximum contribution that permeability and
unit weight together made to the variance did not
exceed 7% of the whole study area. In contrast, in the
SLIP model, only permeability has a contribution to
the maximum variance close to 30%, with an even
greater contribution from cohesion and friction angle
in most cells. Future implementations of the SLIP and
Iverson models should take into consideration a proper
characterization of the mechanical soil properties
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(mainly the soil effective cohesion), but knowledge
about the soil type (e.g. cohesive or frictional soil),
slope angle, or soil depth, can help us to get an idea
of the effect of the variation of the random variables
(studied in this research: ¢’, ¢, v, and K ) on the factor
of safety results.

The results showed that, although the Iverson model
was (apparently) more conservative before rainfall
or for negligible rainfall intensities (I, = 0.1 mm/h),
it was less sensitive to rainfall intensity than SLIP
in shorter durations. For events longer than 8 h, the
Iverson model was very sensitive (FS and Pf varied
with intensity) and disastrous (many more unstable
cells and higher failure probabilities). In the range of
4 to 8 h, an unpredicted behavior occurred since the
SLIP model had more unstable areas than Iverson for
most of the intensities simulated.

In general, the spatial variation of the unstable cells
(or higher failure probability) as a function of intensity
and duration for both models did not allow to establish
absolute tendencies in general terms about the more
conservative. Specific conditions were identified that
can serve to understand the behavior of the models for
short or long rainfall events and low or high-intensity
events. The Iverson and SLIP models respond in
different ways to the variation of rainfall conditions: for
shorter durations (e.g. < 8 h), increasing the intensity
caused more unstable areas in the SLIP model, while for
longer durations the unstable areas were considerably
higher for the Iverson model. In all cases, a maximum
failure area is reached so that a more intense event
(for a specific duration) will not cause more unstable
grid cells. Understanding those behaviors can be
useful for its implementation on landslide prediction
or forecasting, landslide susceptibility, hazards or
risk assessment, and even further implementations in
methodologies to define rainfall thresholds.

Conclusions

In this research study, the first-order second-moment
(FOSM) method allowed calculating the contribution
of the effective cohesion, effective friction angle, unit
weight, and saturated hydraulic conductivity to the
variance of the factor of safety two distribute slope
stability models (SLIP and Iverson). In general terms,
cohesion has the largest contribution to the variance
of the FS, which indicates that a small variation on
this parameter has a greater effect on the FS results.
Nevertheless, the magnitude of this variance varied on
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different geological units and slope angles/soil depths.
Those variations occurred for all the random input
variables analyzed. It suggests that the magnitude of
the specific variable (e.g. cohesion) also affected that a
small or great variation of this parameter has a minor or
greater effect on the FS and failure probability results.
The Iverson and SLIP models respond in different ways
to the variation of rainfall conditions. Understanding
those behaviors can be useful for practical and
appropriate implementation of the models in landslide
assessment projects.

The implication of the differences in the models is
relevant for application in an early warning system
based on rainfall thresholds, landslide zoning, among
others. Therefore, it is advisable to characterize models
assuming different analysis conditions for a specific
study site where it is being implemented or where a
potential application is projected. Future studies could
assess the effect of the random input variability on the
slope stability under the different rainfall scenarios
(short/long durations and low/high intensities).
Also, the uncertainty of the input parameters may
be incorporated and assessed with probabilistic
methodologies (e.g., Monte Carlo simulation). The
predictive capacities of the physically-based models
considering the distribution function of input variables
can be evaluated by calibrating the input data through
back-analysis of real landslide events. In those cases,
the sensibility of the models can be also verified since
most of the model validations in the scientific literature
do not consider the possibility of erroneous predictions
derived from minor variations of the input parameters
(even for probabilistic assessments).
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