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Abstract

Deconvolution attempts compensating for the distortions affecting a recorded seismogram, increasing its
bandwidth and extracting subsurface reflectivity from such seismic trace. The estimated reflectivity needs the
highest reliability and resolution because of its subsequent use in the pre-stack seismic processing sequence and
seismic inversion. We implemented the predictive deconvolution algorithms, the homomorphic Phase Inversion,
and the Extended Kalman Filtering. Their application to synthetic traces extracted reflectivity whose comparison
with well-bore allowed comparing the reliability between methods. The algorithms applied to an offshore record
provided results whose comparison permitted to analyze the impact of the deconvolution assumptions on each
method performance.

Keywords: Deconvolution; Homomorphic; Stochastic; Kalman; Phase-Inversion.

Deconvolucién mediante filtro extendido de Kalman para la rigurosa extraccion de la
reflectividad sismica

Resumen

La deconvoluciéon intenta compensar las distorsiones que afectan los sismogramas, aumentando el ancho
de banda y extrayendo de dicha traza la reflectividad del subsuelo. La reflectividad estimada requiere de
confiabilidad y mejor resolucion, debido a su posterior uso en la secuencia de procesamiento sismico preapilada
y en la inversion sismica. Aqui, se implementan los algoritmos de deconvolucion predictiva, de inversion de fase
homomorfica y de filtro extendido de Kalman. Al aplicarse a trazas sintéticas, los algoritmos extraen perfiles de
reflectividad que, contrastados con informacioén de pozo, permiten comparar la confiabilidad de los métodos.
Estos algoritmos también se aplican a un registro marino. La comparacion de los resultados de los algoritmos
permite analizar como cada supuesto de la deconvolucién afecta el rendimiento de cada método.

Palabras clave: Deconvolucion; Homomorfico; Estocastico; Kalman; Inversion de fase.
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Extended Kalman Filter deconvolution for extracting accurate seismic reflectivity

Introduction

The distortion, signal weakening, and the loss of
resolution affect the wavelet during propagation,
masking the recorded seismograms’ information.
Mathematically, the seismic trace results from the
convolution of Earth’s reflectivity profile with the
signature of energy released by the source (Yilmaz,
2008). Nevertheless, deconvolution is a linear operator
that compensates for the distortion of a recorded signal,
increases the seismic data bandwidth, and extracts the
Earth’s reflectivity. The reflectivity profile requires
the highest reliability and resolution possible because
it is the capital input of subsequent pre-stack steps
of a data processing sequence and seismic inversion
procedures. The most used deconvolution in the oil
industry is the double inverse of Wiener-Levinson
in time WLDI (Robinson and Treitel, 2000) and
frequency FDD (Claerbout, 1985). In the case of a free
noise seismogram and known stationary minimum-
phase wavelet, the deterministic deconvolution
supplies a highly trustworthy reflectivity. The wavelet
is estimable in offshore data but not on onshore
one, and in both cases, it is still non-stationary and
noise-contained. The free noise assumption is tough
to honor due to the impossibility of getting signals
utterly free of noise. On the other side, the predictive
deconvolution seeks the prediction error representing
the reflectivity function. When the prediction distance
is one sample, the prediction error filter becomes the
optimal zero-lag inverse filter, appropriate in the often
fair minimum phase approximation. Even though
predictive deconvolution has been a handy tool for
several years, it is ineffective under any infringement
of the three underlying assumptions. Besides,
there is the white spectrum reflectivity assumption.
Nevertheless, when the rock layering is periodic, its
reflectivity sequence is not random, and the processing
flow must resort to alternative methods. Even though
the extensive use of statistical procedures, there is
no comprehensive response to the three anterior
suppositions (Ziolkowski, 1991).

The Homomorphic deconvolution - HOMD (Ulrych,
1971) and the Phase Inversion deconvolution -
PID (Lichman and Northwood, 1995) estimate the
amplitude spectra of wavelet and reflectivity in the
Cepstrum domain where these spectramustnot overlap.
Both deconvolutions have to fulfill the stationary
and the noise-free wavelet assumptions but not the
random reflectivity and the minimum phase ones
(Arya and Holden, 1978). Crump (1974) designed the
Kalman Filter matrixes for deconvolution, and later,
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Mahalanabis et al. (1983) improved the storage and
updating of the matrix by estimating both the smoothed
forward and backward prediction residuals of the
trace, turning the algorithm computationally more
efficient. Despite the above, the high computational
cost remains. Recently, Deng et al. (2016) presented
a Kalman Filter approach where the reverse wavelet
slides over the reflectivity function instead of slides
the reverse-reflectivity over the wavelet, as the
conventional Kalman approach does. As a result, the
number of parameters can diminish until one, and its
selection should balance resolution and noise. The
Kalman Filter for deconvolution substantially extends
the Wiener filtering to accommodate time-varying
processes, without supposing assumptions, except
noise with a normal distribution of mean zero. In this
research, we designed and implemented in Matlab an
Extended Kalman Filter to Adaptative deconvolution
- EKFD of seismic data based on the approximation
of the linear system through the extension of the
discrete Kalman Filter (Julier and Uhlmann, 1997).
Besides, we implemented in Matlab the deconvolution
methods of the double inverse of Wiener-Levinson,
Phase Inversion, and Extended Kalman Filter. Finally,
the comparison of its outputs allows us to know the
impact of the suppositions of deconvolution on the
performances of considered methods.

Theory

If a wavelet w(t) remains constant during its
propagation, the reflected signal will be the
superposition of delayed wavelets, with their
amplitudes scaled according to the faced reflectivity
r(t) along its path and the degree of geometrical
divergence. According to the convolution model, a
seismic trace x(t) contaminated with noise n(t) is:

x(t) =r(t) »w(t) + n(t) )]

The * symbol represents the convolution operator. The
suppositions of the isotropic, horizontal and parallel
layered medium, and the plane wavelet that incises
normally on the interfaces are necessary to construct
the convolutional model. The absence of noise, the
known stationary wavelet of minimum phase, and
random reflectivity are assumptions required to solve
equation 1. The deconvolution attempts to remove
the wavelet from the seismic trace to retrieve the
earth reflectivity. Under the above restrictions, the
Deterministic deconvolution solves equation 1.
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r(t) = w(t) * x(t), 2)

wt () is an inverse such that w(t) » w(t) = 6(t) and 4(t)
is the Dirac Delta function.

Of course, it is impossible in onshore projects to
determine without any uncertainty the wavelet from
explosive sources, and vibrators and in offshore
from air guns, making unfeasible the deterministic
convolution.

The WLDI is a widely used stochastic approach to solve
equation 1 that build an optimal filter by minimizing
the square mean error € between the recorded trace y(t)
and the signal d(t) desired and supplied by the filter
f(t), according to the expression:

e=—32,_, dO-y®). 3

The minimizing condition expressed as Oe/(oft =
0;vt = 1.--N, provides the following set of N coupled
equations (Robinson and Treitel, 2000):

»N A ft=C,k=01..N, (4)
t=0

Where the vector C, represents the cross-correlation
between the vectors 4 and ¥, and Ak-t is the Toeplitz
matrix that represents the autocorrelation of .
A recursive approach provides the solution of the
equations system 4, i.e., the filter f that extracts the
reflectivity. WLDI supposes a random reflectivity
that implies that the trace autocorrelation scales the
wavelet autocorrelation. In addition to the above,
WLDI assumes no-noise, a minimum and stationary
phase wavelet, the filter length plus another factor that
guarantees the algorithm stability. However, some
researchers (Arya and Holden, 1978; Jurkevics and
Wiggins, 1984) demonstrated that WLDI is not reliable
because of the assumptions’ non-compliance.

In case of no noise, the Neper logarithm of the Fourier
transform of equation 1 becomes:

In [X (w)] =In[R(w)] + In [W(w)], &)

X(w), R(w) and W(w) are the amplitude spectra of x(t),
r(t) and w(t) respectively.

Using equation 5, Ulrych (1971) attempted to separate
the R(w) and W(w) by converting equation 5 into the
time through the inverse Fourier transform:
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x(®) =FT'(In[R(w)]) + FT'(In [W(w)]) (6)

Since W(w) is a function smoother than R(w), they are
separable in this denominated Cepstrum domain, but
not their phase spectra (Lichman, 1999). A low pass
filter retrieves the wavelet contribution, whereas a high
pass filter recovers the part of the reflectivity, maximum
the separation in case of minimum-phase wavelet. The
named HOMD approach requiring neither a random
reflectivity nor a minimum phase wavelet assumes
that R(w) and W(w) do not overlap in the Cepstrum
domain (Arya and Holden, 1978). On the other hand,
the recovery of the wavelet phase spectrum is not a
well-established procedure that depends mainly on the
processor (Lichman and Northwood, 1995).

The PID (Lichman and Northwood, 1995) is a
homomaorphic deconvolution that retrieves the wavelet
phase spectrum by using the next Hilbert transform
relationship:

SIW(@N]=5- P13 In[W(wn)]Cot(3*)do  (7)

In equation 7, P denotes the Cauchy principal value.
However, both HOMD and PID cannot separate
the spectra wholly in the presence of low-frequency
noise or when reflectivity contains low-frequency
components.

Kalman Filter

The Kalman Filter (Kalman, 1960) optimally controls
and estimates white-noisy linear system models. It
achieves the best estimation of a hidden variable
immersed in a measurement, based on the information
supplied by sensors, control action, and the system’s
state at a previous instant. Analytically, the Kalman
Filter assumptions are:

A) The noise measurement V, has a zero mean (v, )=0
normal distribution and diagonal covariance matrix:

EOV(VkIVk)ZIZ/kZ Van’m, (8)

B) The processing noise o, has a zero mean (e, )=0
normal distribution and diagonal covariance matrix:

Cov(wy, @y ) = Q= q8, ©))

C) The measurement and processing noises are
independent, i.e. Cov (vk, wk ) = 0.
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A variable set characterizes the system in time k and
defines the X, state. Equation 10 relates states X, x-1 Of
k , k=1 instants, where A is the transition state matrix,
B is the controlling action matrix and u, is the control
action on the system.

szjkxk—1+§kuk+wk' (10)
Equation 11 relates the X, system state with the
measurements z, in the sensors at instant k through the
matrix H; and the random noise v,.

Zk:I':Ika+ Vk. (11)
In the first phase, the Kalman Filter obtains a first
estimate of the current system state X; as from the
predecessor corrected state X _, using equation 10,

R= A Ky + By (12)
Equation 13 relates R; the covariance matrix for
estimated state £ with Ry _, the covariance matrix for
corrected state %, _ ,, Q; the processing noise covariance
matrix given by equation 8, A, the transition state
matrix and its transposed one A

=11

= A R +Al+Q,. (13)
The second step calculates the Kalman gain matrix
K, = Cov(xk,zk) / Cov(zk ,zx) to diminish uncertainty,
expressed in terms of the system matrixes as

K, = (RcH})/ (Hy RgHE+ V) (14)
The corrected state X, becomes:
%= R + Ky (2 - H Rp), (15)
and the corrected state covariance matrix is:
R,=(-K,H,)R;. (16)

Extended Kalman Filter

To overcome the fact that non-linear systems do not meet
the Kalman assumptions, Julier and Uhlmann (1997)
proposed the Extended Kalman Filter approximation.
In this approach, equation 13 transforms into:

:t‘Ju
|
N
=
=]
>|¢'\
N
N
=~
+
—
==
QI
S
—
N~

(17)
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Where A4, and T, are Jacobian matrices of the state
transition system constructed as first-order partial
derivatives of the state transition equation 10 when
wk=0:

A= 0F (g, Uge, 0) / 0)_q, (18)
The Kalman Extended Filter gain is now:
K= (R )/ (HRiHir A Vi), (20)

H, and A, are Jacobian matrices of the state-
measurements system constructed as first-order partial
derivatives of the state transition equation 11 when
vk =0:

H, = 0G (%;,0) / 0%, 1)

A= 9G (%,0) /v, (22)

The state of the system X;, and its covariance matrixes
Ry are:

R =R+ Ky (2~ G (%;,0)), (23)

=]
o]

=R -K H R, (24)
The anterior Extended Kalman Filter expressions
correspond to the first-order approximation. Their
reliability depends strongly on the non-linearity of
functions and the assumption of slight variations in
each time interval. EKFD approach to deconvolution
is essentially a predictive deconvolution that handles
time-varying processes (Arya and Holden, 1978).

Methodology

Three different Matlab codes implemented the
deconvolutions WLDI, PID, and EKFD. They extracted
reflectivity from a synthetic seismogram constructed
by convolving a 62 Hz causal Sinc wavelet with a well-
log reflectivity. The first tests focused on the impact
of the assumptions of the noise in the signal and the
reflectivity randomness, and another one on the effect
of using non-stationarity wavelet. To evaluate the misfit
caused by the noise in the seismic trace WLDI, PID,
and EKFD deconvolved synthetic traces with different
S/N ratios, equating the standard deviation of white-
noise with the standard deviation of the seismogram.

Boletin de Geologia - Vol. 44 Num. 1
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Measure the effect of randomness in WLDI, PID, and
EKFD, they extracted the reflectivity of a seismogram
provided by the convolution between wavelet and a
non-random reflectivity profile and estimated the misfit
between both reflectivities. A final test contemplated
synthetic traces built by the convolution with a non-
stationary wavelet, counting errors of WLDI, PID,
and EKFD during deconvolution. Formerly, Ricker,
Sinc, and Damped-Sine wavelets as an inputs model to
EKFD allow the estimation of their associated errors.
The guiding function chosen is the complete synthetic
seismogram, q(n) = 63" and v(m)=¢3"M, with the
standard deviation ¢ and 0 < n,m < 20. In a final step,
thirteen transition state functions in EKFD provided
output errors that determined their impacts.

In the final step, applying the three algorithms to a real
shot gather provided images whose quality measures
their performances. The common shot gather has
564 traces with 5 seconds record length with a 1 ms
sampling rate. The pre-processing of the shot-gather

includes amplitude recovery, refraction statics, and
attenuation of the direct wave. The evaluation of the
results took into account frequency content, reflector
continuity, and time-resolution. Notably, the errors
associated with the parameters input to the EKFD
comprise the wavelet model, guide function, states
transition function, processing noise factor g, and noise
measurement factor v, and indicated their selection.

Results and Discussion

Figure 1A shows the causal 60 Hz Sinc wavelet, and
Figure 1B shows the well-log reflectivity profile that
is 60% random. In contrast, Figure 1C contains the
synthetic seismogram supplied by the convolution
between the two anterior. Figure 1D depicts the quasi-
normal distribution of the reflectivity coefficients with
0.0015 mean nearby to zero. The sampling interval is
1 ms for all charts.

Figure 1. A. Causal Sinc wavelet. B. Well-log reflectivity. C. Synthetic seismogram. D. Distribution of reflectivity amplitudes.

Figure 2A shows the searched reflectivity profile;
meanwhile, Figures 2B, 2C, 2D, and 2E contain the
reflectivities estimated by KEFD using Spike, Ricker,
Sine-damped, and Sinc wavelet, respectively. On the
other hand, Figures 2F, 2G, 2H, and 2l depict the errors
caused by each anterior wavelet in KEFD. A red box
encloses part of the reflectivity profiles to improve the
visualization of the result comparison. When using
a spike as an input model, the EKFD works like an
identity operator because the input (Figure 1C) equals
the output (Figure 2B), achieving the highest error

Boletin de Geologia - Vol. 44 Num. 1

shown in Figure 2F. In this extreme case, the use of
a spike wavelet makes EKFD out-off-use. On the
other extreme, when using a 60 Hz Sinc as an input
model, the reflectivity furnished by EKFD in Figure
2E is almost equal to the one observed in the well. In
such circumstances, EKFD becomes a deterministic
deconvolution with the lowest error contained in
Figure 2I. The seismogram in Figure 2C (Ricker),
Figure 2D (damped Sine) and Figure 2E (Sinc) look
nearly identical to Figure 2A. In these cases, the
input models are near similar to the source. Figures
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2F, 2G, 2H, and 21 show that the error decreases from
100% to 0.42%. Albeit the input model and the source
wavelet seem similar, they do not equal exactly. The
evaluation of the parameters of the process noise (q)
and the measurement noise (v) indicated a percentage
of error below 1% when the ratio g/v < 27 achieved the
lowest one errors when q(0)=c the standard deviation
of the trace. When v > q, the results are poor because
the measurement noise is higher than the process
noise. On the other hand, the minor impact of the 13

transition functions in the EKFD allows us to discard
it as a determinant factor. Finally, using the trace as
a guide function causes an error comparable to that
obtained when not using a guide function, implying
the guide function’s unimportant role.

Henceforth, the parameters of the EKFD are a 40 Hz
Sine damped function as the input model, length of
150 ms, q equals the standard deviation of the trace
and v = g/27.

Figure 2. Analysis of input model effect in EKFD performance. A. Well-log reflectivity and estimation using input models,
B. Spike, C. Causal Ricker, D. Causal Sine Damped, and E. Causal Sinc. Estimation errors using F. Spike, G. Ricker, H. Sine

damped, and I. Sinc wavelet.

One of deconvolution’s main assumptions is the
absence of noise in the trace. To assess it, the
application of WLDI, PID, and EKFD to noisy-traces
with the signal to noise ratio varying from 1 to 20
provided their respective errors. Figure 3 shows that
the estimation errors for all methods decrease when the
signal-to-noise ratio increases. As expected, the misfit

or is high if the noise is comparable with the signal.
PIF and EKF get the most negligible errors achieving
values lower than 10% when S/N is over 3.0, while
WLDI gets the worst over 10%. But in all situations,
EKFD always gets the best performance when the
trace contains noise.

Figure 3. Analysis of the S/N ratio’s impact on the errors associated with WLDI, PDI, and EKFD.
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The next test evaluated the response of WLDI, PID,
and EKFD when they did not meet the randomness
assumption. The reflectivity test in Figure 4B indicated
that it does not have a normal distribution, verifying its
lack of randomness; hence, the trace autocorrelation is
not at the same scale that the wavelet autocorrelation.
Figure 4A shows the non-random reflectivity used,
while Figures 4B, 4C, and 4D exhibit the reflectivities
estimated by WLDI, PID, and EKFD, respectively.

Simultaneously, Figures 4F, 4G, 4H, and 41 contain
the errors associated with each method. Comparing the
WLD I deconvolution and the red box’s trace used, the
unfortunate result has an average error of 39.9%, and
an evident low-frequency content. On the other hand,
PID and EKFD achieve results with minor average
errors of 2.18%, and 0.21%, indicating no random
trace character.

Figure 4. Analysis of the impact of A. no random reflectivity in the output error associated with B. WLDI, C. PID, and D. KFD
with different wavelets as input models. Difference between the well-log reflectivity and the estimated ones: E. with WLDI, F.

with PID, and G. with EKFD.

Finally, to evaluate the impact of a stationary
wave assumption, we build a trace decreasing the
frequencies of the Sinc wavelet in-depth, starting from
100 Hz up to 20 HZ. Figure 5 shows the predicted
reflectivity when the non-stationary wavelet interacts
with the well-log reflectivity. Figures 5B, 5C, and 5D
show the results of applying WLDI, PID, and EKFD to
this trace. In the same picture, Figures 5E, 5F, and 5G
contain the errors associated with each method. Figure
5B shows how WLDI cannot extract the rightful
reflectivity according to wavelet deepens and pointed
out by Figure 5E, where the error increases in depth up
to 24.8%. On the contrary, The PID and EKFD recover
the reflectivity achieving similar results, Figure 5C
and 5D. The corresponding low errors of 4.83% and
3.22% point out the reliability of these two methods. In
conclusion, the tests found that WLDI is very sensitive
to the stationarity wavelet and to the reflectivity
randomness; while, PID and EKFD are insensible to
those assumptions. EKFD gets the best results, and
although it requires seven input parameters, only the

Boletin de Geologia - Vol. 44 Num. 1

input model and the g/v relation are relevant in the
deconvolution and related to the trace.

In a subsequent analysis (Figure 6), through WLDI,
PID, and EKFD estimated the reflectivity profile
resulting from the convolution between the non-
random well-log reflectivity noise-contaminated, and
a slightly non-stationary wavelet. Figure 6A shows the
reflectivity obtained by WLDI, and focusing on the red
box indicates that it does not recover the amplitudes
correctly. The misfit occurs throughout the profile
(Figure 6D), achieving values in parts of the pattern
close to the real ones, with an average error of 10.2%.
WLDI is the most used deconvolution in the petroleum
industry, with an unreliable result considering that
such an outcome is the input to the seismic inversion.
Figure 6B contains the reflectivity estimated by
the PID. Although it is hard to note considerable
differences, Figure 6E shows noticeable discrepancies
with the real one at first sight. The average error of
4.08 indicates the PID as a reliable deconvolution.
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It is worth noting that the absence of low-frequency
components in the trace, which favors the PID’s
performance. As known, low-frequency components
hinder the separation of the signals in the Cepstrum.

Figure 6C shows the reflectivity estimated by EKFD
with the best performance achieved. It is supported by
the correlation of 0.96 between the real and estimated
reflectivity, with a mean error of 0.39% (Figure 6F).

Figure 5. Analysis of the impact of a non-stationary wavelet A. in the output error associated with B. WLDI, C. PID and D.
EKFD with different wavelets as input models. Difference between the well-log reflectivity and the estimated ones: E. with

WLDI, F. with PID, and G. with EKFD.

Figure 6. Reflectivity estimated from a trace contaminated with noise and quasi-stationary wave through A. WLDI, B. PID, and
C. EKFD. Difference between the well-log reflectivity and the estimated ones by D. WLDI, E. PID, and F. EKFD.
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Figure 7A shows part of a common-shot with
564 hydrophones before the deconvolution, with
reflectors 1, 2 and 3 to analyze. In Figure 7B, the
WLDI deconvolution with a 100 ms time window
does not throw optimal results, destroying the lateral
continuity of reflectors 1, 2 and 3. Figure 7C contains
the common-shot gather after PID, as a result of its
application the obtained image looks more focused,
maintaining the lateral continuity of the reflectors.
Compared with the image achieved by WLDI, the
PID image contains higher frequencies in the data.
Finally, the result of applying EKFD to the record, in
Figure 7D, shows an image with similar coherence and
quality provided by PID. The input model for EKFD
was a 10 Hz Sinc, corresponding to the dominant
frequency of the common-shot gather. The similarity
in the quality of the images provided by PID and

EKFD is because the marine registry contains a large
bandwidth, avoiding the strong restriction of the PID.
The zoom to an area of the record marked by the red
box reinforces the previous conclusions concerning
the three deconvolution methods considered in Figures
8A, 8B, 8C, and 8D. On the other hand, the images
provided by PID and EKFD have high-frequency
seismic events not generated by spectral whitening,
representing registered seismic reflectors. Figure 9
shows the frequency spectra of the shot gathers before
and after applying the deconvolutions. Figure 9A
shows the amplitude spectrum of the gather without
deconvolution. Figures 9B, 9C and 9D show the spectra
after applying WLDI, PID and EKFD, with increased
high frequency content. Spectra in Figures 9A and 9B
have remnants of the shotgun wavelet, characterized
by low frequency components of strong energy.

Figure 7. A. Onshore common shot gathers before deconvolution, B. after WLDI, C. after PID and E. EKFD.

Boletin de Geologia - Vol. 44 Num. 1
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Figure 8. Zoom of the red box area of Figure 7 in A. Onshore common shot gather before deconvolution, B. after WLDI, C.

after PID and D. EKFD.

Although WLDI achieves the widest frequency
bandwidth, it also increases the power of unreliable
components with frequency above 100 Hz. The PID
and EKFD spectra look similar with a reliable increase

of bandwidth between 20 to 120 Hz. The dominant
frequencies in the Amplitude spectra of Figure 9 are
consistent with those observed in Figure 8.

Figure 9. A. Amplitude spectra of shot gather without deconvolution, B with WLDI, C with PID and D with EKFD.
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Conclusions

The results indicate the lack of reliability of the WLDI
to extract the accurate reflectivity from a seismic trace.
Such reflectivity is the input to the seismic inversion
and puts into doubt its use in deconvolution. Otherwise,
EKFD showed a high performance extracting the most
accurate reflectivity from seismic traces than the WLDI
and the PID. Here, it achieved an error percentage as
low as 0.39% and a correlation as high as 0.96 with the
pursued well-log reflectivity. The tests with synthetic
seismograms demonstrated the EKFD’s robustness
to recover the well-log reflectivity. Concerning
the deconvolution of offshore seismograms, KFD
retrieved the records frequencies and guaranteed the
lateral continuity reflectors. Although PID achieved
results very close to the EKFD’s, the low-frequency
content in the offshore data after processing improved
the PID’s output. Into the bargain, EKFD does not
require to fulfill the critical assumptions on which
deconvolution bases. This paper demonstrates
EKFD’s efficacy over WLDI’s and PID’s algorithms.
Aversely, EKFD’s performance depends on a suitable
input model obtainable from the seismogram through
available statistical procedures.
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