Secciones
Referencias
Resumen
Servicios
Descargas
HTML
ePub
PDF
Buscar
Fuente


Palynology of Cretaceous amber deposits of the Oriente Basin-Ecuador and the Eastern Cordillera-Colombia
Palinología de depósitos de ámbar cretácicos de la Cuenca Oriente-Ecuador y la Cordillera Oriental-Colombia
Boletín de Geología, vol. 45, no. 3, pp. 63-77, 2023
Universidad Industrial de Santander

Artículos científicos


Received: 25 January 2023

Accepted: 31 July 2023

DOI: https://doi.org/10.18273/revbol.v45n3-2023004

Abstract: Several Cretaceous amber-bearing localities were recently discovered, including the Oriente Basin of Ecuador (Hollín Formation), and the Eastern Cordillera of Colombia (Une Formation at La Popa mine). A palynological study of 48 samples was carried out to date them and assess their broad floristic content. We date the Hollín Formation as spanning the late Aptian to the early Albian based on the co-occurrence of Callialasporites trilobatus, Retitricolpites operculatus and Callialasporites dampieri, among others. The sandstone lens containing amber from Une Formation at La Popa mine were dated as latest Aptian to early Cenomanian based upon the co-occurrence of Callialasporites dampieri, Afropollis jardinus, Ischyosporites variegatus and Gnetaceaepollenites retangularis. The palynoflora is dominated by high spore diversity suggesting humid climate conditions in the northwestern margin of Gondwana.

Keywords: Palynology, cretaceous, amber, Colombia, Ecuador, tropical floras.

Resumen: Recientemente fueron descubiertas varias localidades con ámbar cretácicas, incluidas la Cuenca Oriente de Ecuador (Formación Hollín) y la Cordillera Oriental de Colombia (Formación Une en la mina La Popa). Se realizó un estudio palinológico de 48 muestras para datarlas y evaluar su amplio contenido florístico. Nosotros datamos la Formación Hollín entre el Aptiano tardío y el Albiano temprano, con base en la co-ocurrencia de Callialasporites trilobatus, Retitricolpites operculatus y Callialasporites dampieri, entre otros. Los lentes de arenisca con ámbar de la Formación Une en la mina La Popa fueron datados como Aptiano tardío a Cenomaniano temprano basados en la co-ocurrencia de Callialasporites dampieri, Afropollis jardinus, Ischyosporites variegatus y Gnetaceaepollenites retangularis. El contenido palinológico es dominado por una alta diversidad de esporas, lo que sugiere condiciones climáticas húmedas en el margen noroccidental de Gondwana.

Palabras clave: Palinología, cretácico, ámbar, Colombia, Ecuador, floras tropicales.

Introduction

The early diversification of angiosperms has been studied mostly by dispersed pollen and detached leaves (e.g., Doyle and Hickey, 1976; Hughes, 1976; Hickey and Doyle, 1977; Hughes, 1994) and flowers (Friis et al., 2011). There is not a distinctive pattern in the latitudinal distribution of early flowering plants, as Early Cretaceous angiosperms from both middle northern paleolatitudes and the tropics, are similar in diversity and abundance (Friis et al., 2011). Macrobotanical evidence from North America indicates that angiosperms only became ecologically significant at high latitudes by the earliest Late Cretaceous, but mostly restricted to riparian environments (Wing et al., 1993). Estimates based on pollen (diversity and abundance) suggest that angiosperms were already dominant in some environments at mid-paleolatitudes by the Cenomanian (Lupia, 1999). In contrast, the Cretaceous patterns of angiosperm radiation and diversification at low latitudes are not well understood (Mejia-Velasquez et al., 2012; Jaramillo, 2012, 2019), particularly because there are very few studies from tropical latitudes that have assessed the whole floristic composition (Crane and Lidgard, 1989; Mejia-Velasquez et al., 2012).

Floras preserved in amber can be very informative but they are very rare in the geological record. Recently, we found two amber deposits in Ecuador (Hollín Formation) and Colombia (Une Formation) that have the potential to be very useful to unravel the nature of tropical floras during the early Cretaceous. Here, we analyze the palynological content of both deposits to assess their age, determine their broad floristic composition, and interpret if they accumulated under humid or arid conditions.

Methods

Several localities with amber were studied for the Hollín Formation in Ecuador. The first consists of strata from the lower Hollín Formation that crop out at the abandoned Pungarayacu quarry, Oriente Basin (Lat: -0.70700, Long: -77.74100), the second also from the lower Hollín Formation at the Genoveva mine, Oriente Basin, Ecuador (Figure 1A) (Lat: -0.71102, Long: -77.78778; Albian paleolatitude: -6.92, paleolongitude: -53.87, coordinate reconstruction by Muller et al. (2016)). The third set was collected from upper Hollín Formation outcrops along the Misahualli river (Lat: -1.00120, Long: -77.67280). Along the same river, several samples of the lower Napo Formation were also collected (Table SM1).


Figure 1
Geologic maps of the study zones. A. Genoveva mine in Ecuador. Map after Eguez et al. (2017). B. La Popa mine in Colombia. Map after Buitrago et al. (2008) and Alcárcel and Gómez (2019).

Samples of the Une and the overlying Chipaque Formations were collected from outcrops within the abandoned La Popa mine (Figure 1B) (Lat: 4.70866, Long: -73.95213, Albian paleolatitude -1.77, paleolongitude -50.29, coordinate reconstruction by Muller et al. (2016). At this site, the Une Formation is seen as lens of sandstone that is rich in amber and it is bounded above and below by the shales of the Chipaque Formation, and the contact seems to be tectonic. Additional samples were collected just above and below the amber-bearing lens in shales of what appears to be the Chipaque Formation. Additional samples were taken elsewhere in the mine from shales of the Chipaque Formation.

Geologic setting

Paleozoic basement, Mesozoic-Cenozoic volcanic rocks, and Cretaceous-Cenozoic sedimentary units are exposed in the Oriente Basin of Ecuador (Vallejo et al., 2002). The Hollín Formation has been widely studied because it is the main oil reservoir of the basin (Dashwood and Abbotts, 1990). It comprises two units, the lower Hollín Formation, known as the Main Hollín Sandstone (Baby et al., 2004), and the Lower Sandstone, known as the Upper Hollín Sandstone or upper Hollín Formation (Jaillard et al., 1997). The Hollín age ranges from middle-late Aptian to middle Albian (White et al., 1995; Jaillard et al., 1997; Vallejo et al., 2002; Ordoñez et al., 2006; Romero et al., 2017). In contrast, Sarmiento-Rojas (2019) suggests an early Aptian-middle Albian age. The lower Hollín Formation is dominated by conglomeratic sandstones that grade to quartz sandstones with cross-bedding deposited in braided river channels (White et al., 1995; Romero et al., 2019). The upper Hollín Formation is characterized by sandstones and mudstones intercalations. These mudstones are rich in organic matter and leaf fragments, and the system deposited in coastal plains to shallow platforms (White et al., 1995; Romero et al., 2019; Sarmiento-Rojas, 2019). The upper boundary of Hollín and the overlying Napo Formation corresponds to a major flooding surface (Romero et al., 2019).

The Napo Formation age ranges from late Albian to early Campanian (Mello et al., 1995; Vallejo et al., 2002; Sarmiento-Rojas, 2019) and consists of organic-rich shales, limestones, and sandstones. It is subdivided into several informal members that can be correlated over large distances in the Oriente Basin of eastern Ecuador (Tschopp, 1953). Two sandstone units (labeled T and U sandstones) constitute the most important hydrocarbon reservoirs, and the organic-rich zones (e.g., Basal Shale Member) are considered the source of almost all hydrocarbons in the basin (Rivadeneira, 1986; Dashwood and Abbotts, 1990; Mello et al., 1995; Vallejo et al., 2002). The Napo Basal member has been dated as late Albian by palynological studies (Vallejo et al., 2002) and has been interpreted as deposited in dysoxic-anoxic, paralicneritic environments (Mello et al., 1995) or in inner shelf environments (Sarmiento-Rojas, 2019).

The Eastern Cordillera of Colombia is composed of Phanerozoic sedimentary rocks, with local exposures of a Proterozoic-lower Paleozoic basement with multiple orogenic episodes (Etayo-Serna et al., 1983; Cediel et al., 2003; Bayona et al., 2008; Horton et al.,, 2010; Saylor et al., 2012). The Une Formation can be several hundred-meters thick, it is widely distributed in the Eastern Cordillera, and is a clastic unit (Zavala et al., 2009). The Une Formation forms strong geomorphological escarpments that contrasts with the underlying Fómeque Formation and the overlying Chipaque Formation, which are both fine-grained and generate valleys (Ulloa et al., 2001; Corredor and Terraza, 2015). The Une Formation is composed by black mudstones, dark grey quartz-siltstones and white quartz-sandstones with dark siltstone intercalations that are found in thin to very thick tabular layers. The siltstones are locally calcareous and fossiliferous, while the mudstones have lenticular bedding with the presence of fossil bivalves and abundant plant remains (Reyes, 1984; Corredor and Terraza, 2015). The formation has been dated as Albian-Cenomanian (Renzoni, 1981; Fabre, 1985; Montoya and Reyes, 2003) and interpreted as accumulated from very shallow marine settings to deltaic deposits (Renzoni, 1962; Ulloa et al., 2001; Sarmiento-Rojas, 2019). The overlying Chipaque Formation is dominated by claystones and mudstones (Renzoni, 1962; Guerrero and Sarmiento, 1996; Corredor and Terraza, 2015). This unit has been dated as late Cenomanian to Santonian (Montoya and Reyes, 2003; Corredor and Terraza, 2015), while Guerrero and Sarmiento (1996) indicated that the lower part of the Chipaque Formation is early Turonian. It accumulated in a shallow marine platform (Ulloa and Rodríguez, 1976; Villamil, 1998; Sarmiento-Rojas, 2019) when the tectono-eustatic base level reached its maximum level during the Mesozoic (Sarmiento-Rojas et al., 2006; Corredor and Terraza, 2015; Sarmiento- Rojas, 2019).

Sampling and processing

Ten samples of dark, fine-grained facies along the 72.5 m thick stratigraphic section (Figure 2) that is exposed at the Genoveva mine (Ecuador). The strata in the mine indicated a variety of environments that include proximal braided rivers, lacustrines, hyperpycnal flows and distal braided rivers (Table 1). Twelve samples were collected in the Pungarayacu quarry (Lat: 0.70700, Long: -77.74100), three along the Misahualli river and two additional sites (Table SM1). Five samples from the lower Napo Formation were collected along the Misahualli river in four localities (Table SM1).


Figure 2
General orthomosaic and stratigraphic column with 1:200 scale of the Genoveva mine. In the orthomosaic, the brown bar shows where the stratigraphic column was created.

Table 1
Samples (top to base) collected from the Genoveva mine, lithology, sedimentary facies and environment.

At La Popa mine (Colombia), 10 samples were collected from the Une Formation and five samples from the overlying Chipaque Formation (Table SM1). There is a large degree of structural complexity at the mine with several inverse faults and folds, making it difficult to produce a continuous stratigraphic section. The amber deposit is located in a 5 meters thick lens of the Une Formation that is bounded by faults above and below, and embedded in the shales of the Chipaque Formation. It was not possible to determine what was the stratigraphic position of the Une lens within the whole Une Formation that can be up to 600 meters thick.

Samples were prepared following the standard procedure described by Traverse (1988, 2007) at the Laboratorio de Palinología y Materia Orgánica of the Instituto de Investigaciones en Estratigrafía (IIES) at Universidad de Caldas. The sample 47748 from the lower Napo Formation was also processed for calcareous nannoplankton by smear slide (Bown and Young, 1998).

Palynological analysis

The morphological database of Jaramillo and Rueda (2022) which includes all palynological publications from South America was used to identify the palynomorphs. The biostratigraphic zonation of Muller et al. (1987) proposed for northern South America was used for the age determinations. An additional zonation for South America developed for Brazil (Regali et al. 1974) was not used here as it is based on sites from the eastern region of South America while our samples were collected in western South America.

Palynomorphs were grouped into five groups including angiosperm pollen, non-gnetalean gymnosperm pollen, gnetalean pollen, spores (Figures 3-5), and marine palynomorphs. Gnetales were placed in their own category rather than with other gymnosperms because they are an important component of equatorial Cretaceous floras (Herngreen et al., 1996) as well as climate indicators. Humidity was estimated by comparing the total diversity of dry indicators (Classopollis, ephedroid pollen grains, and elater-bearing species) vs humid indicators (fern spores), following previous studies (Herngreen et al., 1996; Mejia-Velasquez et al., 2012, 2018).


Figure 3
Angiosperm taxa found in the study. 1. Afropollis jardinus (T8-2, 47728; Hollín Formation); 2. Baculamonocolpites sp. (D8-3, 47732; Hollín Formation); 3. Clavatipollenites hughesii (F26-1, 47725; Hollín Formation); 4. Cornetipollis perforatus (P37-1, 47725; Hollín Formation); 5. Cretacaeiporites sp. (T14, 47723; Hollín Formation); 6. Droseridites senonicus (O17-3, 46432; Chipaque Formation); 7. Echimonocolpites sp. (U22, 47725; Hollín Formation); 8. Pennipollis peroreticulatus (D3-4, 47728; Hollín Formation); 9. Retitricolpites operculatus (P17, 47720; Hollín Formation); 10. Stellatopollis barghoornii (J36-4, 47728; Hollín Formation); 11. Stellatopollis densiornatus (V7-3, 46872; Hollín Formation); 12. Stellatopollis dubius (Q30-1, 44889; Hollín Formation).


Figure 4
Gymnosperm taxa found in the study. 1-6. Non-gnetalean gymnosperm pollen, 7-12. Gnetalean pollen. 1. Araucariacites australis (G2-1, 44663; Hollín Formation); 2. Callialasporites dampieri (J21, 44663; Hollín Formation); 3. Callialasporites infirmus (K40-4, 47733; Hollín Formation); 4. Callialasporites trilobatus (J10, 44663; Hollín Formation); 5. Classopollis classoides (U3-4, 44884; Hollín Formation); 6. Classopollis meyeriana (M7-2, 47730; Hollín Formation); 7. Elaterosporites klaszii (X16, 44892; Napo Formation); 8. Elaterosporites verrucatus (J42-4, 44892; Napo Formation); 9. Ephedripites ambonoides (Q19, 47748; Napo Formation); 10. Ephedripites barghoornii (N45, 44889; Hollín Formation); 11. Gnetaceaepollenites retangularis (H31-2, 48376; Une Formation); 12. Steevesipollenites cf. multilineatus (S33-4, 47720; Hollín Formation).


Figure 5
Spore taxa found in the study. 1. Appendicisporites erdtmanii (Q28-1, 44889; Hollín Formation); 2. Camarozonosporites ambigens (W16-1, 44892; Napo Formation); 3. Cicatricosisporites avnimelechi (O10-2, 44661; Hollín Formation); 4. Cicatricosisporites hallei (V30, 44661; Hollín Formation); 5. Cicatricosisporites hughesii (V14-1, 44661; Hollín Formation); 6. Cicatricosisporites kedvesii (E22-1, 44662; Hollín Formation); 7. Crybelosporites pannuceus (J15-4, 44661; Hollín Formation); 8. Hamulatisporis insignis (U20-2, 46427; Une Formation); 9. Ischyosporites variegatus (O41, 46426; Chipaque Formation); 10. Microfoveolatosporis skottsbergii (U12-4, 47725; Hollín Formation); 11. Pilosisporitesparvispinosus (H18-1, 44889; Hollín Formation); 12. Sestrosporites pseudoalveolatus (L41-1, 44883; Hollín Formation).

Results

Palynological assemblages

The assemblage found in the Hollín Formation samples includes Afropollis complex, Araucariacites australis, Callialasporites dampieri, Callialasporites trilobatus, Cicatricosisporites hallei, Classopollis classoides, Cretacaeiporites sp., Crybelosporites pannuceus, Ephedripites complex, Gnetaceaepollenites complex, Ischyosporites variegatus, Pennipollis peroreticulatus, Pilosisporites sp., Retitricolpites operculatus and Steevesipollenites complex (Table SM2).

The assemblage of the Napo Formation samples includes Elaterosporites klaszii, Elaterosporites verrucatus and Ephedripites complex (Table SM2). The calcareous nannoplankton of sample 47748 from lower Napo Formation showed a good to moderate preservation (Figure 6). Assemblage includes Chiastozygus spp., Cyclagelosphaera reinhardtii, Rotelapillus crenulatus, Gartnerago cf. nanum, Gartnerago theta, Manivitella pemmatoidea, Prediscosphaera columnata, Radiolithus planus, Staurolithites halfanii, Watznaueria cf. britannica, Zeugrhabdotus scutula, Zeugrhabdotus diplogrammus and Zeugrhabdotus elegans.


Figure 6
Calcareous nannofossils in sample 47748, lower Napo Formation. 1. Chiastozygus spp.; 2. Cyclagelosphaera reinhardtii; 3-4. Rotelapillus crenulatus; 5. Gartnerago cf. nanum; 6. Gartnerago theta; 7. Manivitella pemmatoidea; 8. Prediscosphaera columnata; 9. Radiolithus planus; 10. Staurolithites halfanii; 11. Watznaueria cf. britannica; 12. Zeugrhabdotus scutula; 13. Zeugrhabdotus diplogrammus; 14. Zeugrhabdotus elegans.

The assemblage found in the Une Formation samples includes Afropollis complex, Araucariacites australis, Callialasporites dampieri, Gnetaceaepollenites complex and Ischyosporites variegatus (Table SM2).

The assemblage of the Chipaque Formation samples includes Callialasporites dampieri, Droseridites senonicus and Ischyosporites variegatus (Table SM2).

Floristic composition and climatic estimation

The Hollín Formation palynoflora is composed by 166 taxa, including 52 angiosperms, 14 non-gnetalean gymnosperm pollen, 22 gnetalean pollen and 78 spores. The Napo Formation palynoflora is composed by 25 taxa, including nine angiosperms, five gnetalean pollen, six spores, and five dinoflagellate species. The Une Formation palynoflora is composed by 35 taxa, including 10 angiosperms, five non-gnetalean gymnosperm pollen, two gnetalean pollen and 18 spores. The Chipaque Formation palynoflora is composed by 19 taxa, including six angiosperms, two non-gnetalean gymnosperm pollen, nine spores and two dinoflagellate species. The palynoflora diversity in the Hollín Formation is dominated by humid indicators compared to dry indicators (75%, 78 vs 26 taxa respectively), while the Une Formation also has a higher diversity of humid indicators compared to dry indicators (90%, 18 vs 2 taxa respectively) (Table SM2).

Discussion

Geological Age

The co-occurrence of Callialasporites dampieri, Callialasporites trilobatus, Afropollis jardinus, Cicatricosisporites hallei, Pennipollis peroreticulatus, Crybelosporites pannuceus and Gnetaceaepollenites barghoornii in the Pungarayacu quarry (Table 2) indicate the assemblage belongs to the Zone 5 of Muller et al. (1987), that is dated as latest Aptian to the earliest Albian (Figure 7). The Genoveva mine seems to be in a younger stratigraphic position and the co-occurrence of Retitricolpites operculatus and Gnetaceaepollenites jansonii (Table 2), indicates zones 6 to 8 of Muller et al. (1987), that are dated as Albian to Cenomanian (Figure 7), but given the Genoveva mine is stratigraphically near the base of the formation and therefore close stratigraphically to the Pungarayacu quarry, it seems reasonable to consider the sequence in the Genoveva mine as Albian. The co-occurrence of Crybelosporites pannuceus, Ephedripites barghoornii, Ephedripites multicostatus and Gnetaceaepollenites retangularis in the Misahualli Hollín river (Table 2) indicates zones 5 to 8 of Muller et al. (1987), that are dated as latest Aptian to Cenomanian (Figure 7), but given the strata are stratigraphically near the top of the formation and the lower Napo Formation is dated as late Albian (see below), it seems reasonable to consider the sequence of the upper Hollín Formation in the Misahualli Hollín river as early Albian. Therefore, the whole Hollín Formation would encompass the late Aptian to the early Albian, supporting ages by previous studies (White et al., 1995; Jaillard et al., 1997; Vallejo et al., 2002; Ordoñez et al., 2006; Romero et al., 2017).

Table 2
Biostratigraphic key taxa found in this study. 1 = if taxon is present.

The occurrence of Elaterosporites klaszii and Elaterosporites verrucatus in the lower Napo Formation at the Misahualli river (Table 2) indicate the zones 6 to 7 ofMuller et al. (1987), that are dated as Albian to early Cenomanian (Figure 7). The age is further refined by the calcareous nannoplankton assemblage of sample 47748, which according to the concurrence of Gartnerago theta, Gartnerago cf. nanum, and Prediscosphaera columnata, suggest a zonal range between BC27c to UC3a (Burnett et al., 1998) equivalent to late Albian-middle Cenomanian. Therefore, the lower Napo Formation could be considered as late Albian, an age that agrees with previous interpretations (Mello et al., 1995; Vallejo et al., 2002; Sarmiento-Rojas, 2019).


Figure 7
Temporal distribution of the biostratigraphy index taxa found in this study. The gray band represents the estimated age according to Muller et al. (1987).

The co-occurrence of Callialasporites dampieri, Afropollis jardinus, Ischyosporites variegatus, and Gnetaceaepollenites retangularis in the amber-bearing lens of the Une Formation at La Popa mine (Table 2) belongs to the Zones 5 to 7 of Muller et al. (1987), that is dated as latest Aptian to the early Cenomanian (Figure 7). The age of the lens lies within the age span that has been considered for the formation (e.g., Renzoni, 1981; Fabre, 1985; Montoya and Reyes, 2003).

The occurrence of Droseridites senonicus in one sample of the Chipaque Formation at la Popa mine indicate the Zone 10 of Muller et al. (1987) dated as Coniacian-Santonian (Figure 7), age agree with previous interpretation of the Chipaque Formation (Montoya and Reyes, 2003; Corredor and Terraza, 2015). Callialasporites dampieri occurs in two samples of the Chipaque Formation (Table 2) taken immediately above and below the lens containing the amber. This taxon would imply a not-younger than Cenomanian age according to Muller et al. (1987) zonation. However, we have considered both contacts as faults and it could be possible that both samples are within the fault zone and have a mixture of Chipaque and Une palynofloras as it also contains the dinoflagellate Spiniferites. It also could be possible that the shales above and below also belong to the Une Formation, therefore, further stratigraphic work is needed in La Popa mine which has a high degree of structural complexities.

Humidity

The taxonomic composition of the Albian Hollín Formation indicates a flora dominated by humid indicators, similar to the flora found in the samples of the Une Formation. This result agrees with the previous studies from northwestern tropical South American that also show high levels of rainfall (Mejia-Velasquez et al., 2012, 2018). These results contrast with eastern tropical South American, where the well-studied Crato Formation indicates arid climate conditions (Mohr and Rydin, 2002; Batten, 2007; Braz, 2012; Bernardes-de-Oliveira et al., 2014; Ribeiro et al., 2021). Additional evidence suggests a humid climate during the Albian in northwestern South America, such as the isotopic composition of coal layers found in Albian deposits from the Caballos Formation in Colombia that showed mean annual precipitation values slightly higher than the those occurring today in tropical latitudes (Suarez et al., 2010). Furthermore, several Global circulation climate models also predict a precipitation gradient within the tropics in South America, from being wet in the west towards dry in the east (Ufnar et al., 2004; Fluteau et al., 2007; Hay and Floegel, 2012; Kuethe, 2016).

Conclusions

The Hollín Formation was dated as spanning the late Aptian to early Albian while the lower Napo Formation has a late Albian age.

The amber-bearing lens of the Une Formation at La Popa mine was dated as latest Aptian to early Cenomanian, while one sample of the Chipaque Formation was dated as Coniacian-Santonian.

The overall floristic assemblage suggests a humid climate conditions in the northwestern margin of Gondwana.

Acknowledgments

Thanks to the Smithsonian Tropical Research Institute, the Anders Foundation, 1923 Fund, and Gregory D. and Jennifer Walston Johnson for the financial support.

References

Alcárcel, F.A.; Gómez, J. (2019). Mapa Geológico de Colombia 2019. Escala 1:2 000 000. Servicio Geológico Colombiano, Colombia.

Baby, P.; Rivadeneira, M.; Barragán, R. (2004). La cuenca Oriente: geología y petróleo. Institut français d'études andines.

Batten, D. (2007). Spores and pollen from the Crato Formation: Biostratigraphic and palaeoenvironmental implications. In: D. Martill; G. Bechly; R. F. Loveridge (ed.). The Crato Fossil Beds of Brazil: Window into an Ancient World (pp. 566-574). Cambridge University Press. https://doi.org/10.1017/CBO9780511535512.021

Bayona, G.; Cortés, M.; Jaramillo, C.; Ojeda, G.; Aristizabal, J.; Reyes-Harker, A. (2008). An integrated analysis of an orogen-sedimentary basin pair: Latest Cretaceous-Cenozoic evolution of the linked Eastern Cordillera orogen and the Llanos foreland basin of Colombia. GSA Bulletin, 120(9), 1171-1197. https://doi.org/10.1130/B26187.1

Bernardes-de-Oliveira, M.E.C.; Sucerquia, P.A.; Mohr, B.; Dino, R.; Antonioli, L.; Garcia, M.J. (2014). Indicadores paleoclimáticos na paleoflora do Crato, final do Aptiano do Gondwana norocidental. In: I. de Souza-Carvalho; M.J. Garcia; C.C. Lana; O. Strohschoen (ed.). Paleontologia: cenários da vida-paleoclimas, 5 (pp. 101-119). Interciencia.

Bown, P.R.; Young, J.R. (1998). Techniques. In: P.R. Bown (ed.). Calcareous nannofossil biostratigraphy (pp. 16-28). Springer.

Braz, F.F. (2012). Registro angiospérmico eocretáceo do membro crato, Formação Santana, Bacia do Araripe, NE o Brasil: interpretações paleoambientais, paleoclimáticas e paleofitogeográficas. M. Sc. Thesis, Universidad de São Paulo, São Paulo, Brazil.

Buitrago, J.A.; Terraza, R.; Etayo, F. (2008). Plancha 228 Santafé de Bogotá Noreste. Instituto Colombiano de Geología y Minería, Colombia. It includes a 1:100,000 scale map.

Burnett, J.A.; Gallagher, L.T.; Hampton, M.J. (1998). Upper cretaceous. In: P.R. Bown (ed.). Calcareous nannofossil biostratigraphy (pp. 132-199). Springer.

Cediel, F.; Shaw, R.; Cáceres, C. (2003). Tectonic assembly of the northern Andean block. In: C. Bartolini; R. Buffler; J. Blickwede (ed.). The Circum-Gulf of Mexico and the Caribbean: Hydrocarbon Habitats, Basin Formation, and Plate Tectonics (pp. 815-848). AAPG, 79. https://doi.org/10.1306/M79877C37

Corredor, V.E.; Terraza, R. (2015). Geología de la plancha 228 Bogotá Noreste. Servicio Geológico Colombiano, Colombia. It includes a report, 109

Crane, P.R.; Lidgard, S. (1989). Angiosperm Diversification and Paleolatitudinal Gradients in Cretaceous Floristic Diversity. Science, 246(4930), 675-678. https://doi.org/10.1126/science.246.4930.675

Dashwood, M.F.; Abbotts, I.L. (1990). Aspects of the petroleum geology of the Oriente Basin, Ecuador. Geological Society, London, Special Publication, 50, (89-117). https://doi.org/10.1144/GSL.SP.1990.050.01.06

Doyle, J.A.; Hickey, L.J. (1976). Pollen and leaves from the mid-Cretaceous Potomac Group and their bearing on early angiosperm evolution. In: C.B. Beck (ed.). Origin and Early Evolution of Angiosperms (pp. 139-206). Columbia University Press.

Eguez, A.; Gaona, M.; Albán, A. (2017). Mapa Geológico de la República del Ecuador. Instituto de Investigación Geológico y Energético, Ecuador. It includes a 1:1,000,000 scale map.

Etayo-Serna, F.; Barrero, D.; Lozano, H.; Espinosa, A.; Gonzalez, H.; Orrego, A.; Ballesteros, I.; Forero, H.; Ramirez, C.; Zambrano, F.; Duque, H.; Vargas, R.; Nuñez, A.; Alvarez, J.; Ropain, C.; Cardozo, E.; Galvis, N.; Sarmiento, L.; Albers, J.; Case, J.; Singer, D.; Bowen, R.; Berger, B.; Cox, D.; Hodges, C. (1983). Mapa de Terrenos Geológicos de Colombia. Instituto Nacional de Investigaciones Geológico Mineras, Colombia.

Fabre, A. (1985). Geología de la Sierra Nevada del Cocuy, Cordillera Oriental de Colombia. Evolución Cretácica y terciaria de una cuenca formada por extensión de la litosfera. Universite de Geneve.

Fluteau, F.; Ramstein, G.; Besse, J.; Guiraud, R.; Masse, J.P. (2007). Impacts of palaeogeography and sea level changes on Mid-Cretaceous climate. Palaeogeography, Palaeoclimatology, Palaeoecology, 247(3-4), 357-381. https://doi.org/10.1016/j.palaeo.2006.11.016

Friis, E.M.; Crane, P.R.; Pedersen, K.R. (2011). Early flowers and angiosperm evolution. Cambridge University Press.

Guerrero, J.; Sarmiento, G. (1996). Estratigrafía Física, Palinológica, Sedimentológica y Secuencial del Cretácico Superior y Paleoceno del Piedemonte Llanero. Implicaciones en Exploración Petrolera. Geología Colombiana, 20, 3-66.

Hay, W.W.; Floegel, S. (2012). New thoughts about the Cretaceous climate and oceans. Earth- Science Reviews, 115(4), 262-272. https://doi.org/10.1016/j.earscirev.2012.09.008

Herngreen, G.F.W.; Kedves, M.; Rovnina, L.V.; Smirnova, S.B. (1996). Cretaceous palynofloral provinces: a review. In: J. Jansonius; D. McGregor (ed.). Palynology: Principles and applications (pp. 1157-1188). American Association of Stratigraphic Palynologists Foundation.

Hickey, L.J.; Doyle, J.A. (1977). Early Cretaceous fossil evidence for angiosperm evolution. The Botanical Review, 43(1), 3-104. https://doi.org/10.1007/BF02860849

Horton, B.K.; Saylor, J.E.; Nie, J.; Mora, A.; Parra, M.; Reyes-Harker, A.; Stockli, D.F. (2010). Linking sedimentation in the northern Andes to basement configuration, Mesozoic extension, and Cenozoic shortening: evidence from detrital zircon U-Pb ages, Eastern Cordillera, Colombia. Geological Society of America Bulletin, 122(9-10), 1423- 1442. https://doi.org/10.1130/B30118.1

Hughes, N.F. (1976). Palaeobiology of angiosperm origins: problems of Mesozoic seed-plant evolution. Cambridge University Press.

Hughes, N.F. (1994). The Enigma of Angiosperm Origins. Cambridge University Press.

Jaillard, E.; Caron, M.; Dhondt, A.; Ordoñez, M.; Lascano, M.; Andrade, R.; Bengtson, P.; Bulot, L.; Cappetta, H.; Dávila, C.; Díaz, R.; Huacho, J.; Huamán, C.; Jimenez, D.; Jimenez, N.; Montenegro, J.; Néraudeau, D.; Rivadeneira, M.; Toro, J.; Villagómez, R.; Zambrano, I. (1997). Síntesis Estratigráfica y Sedimentológica del Cretáceo y Paleógeno de la Cuenca Oriental del Ecuador. ORSTOM-Petroproducción, Ecuador.

Jaramillo, C. (2012). Historia geológica del bosque húmedo neotropical. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 36(138), 57-77.

Jaramillo, C. (2019). 140 million years of tropical biome evolution. In: J. Gómez; A.O. Pinilla- Pachon (ed.). The Geology of Colombia (pp. 209- 236). Volume 2. Servicio Geológico Colombiano. https://doi.org/10.32685/pub.esp.36.2019.06

Jaramillo, C.; Rueda, M. (2022). A Morphological Electronic Database of Cretaceous-Cenozoic and Extant pollen, spores, and dinoflagellates from Northern South America. Smithsonian Tropical Research Institute databases. https://biogeodb.stri.si.edu/jaramillosdb/web/

Kuethe, J.R. (2016). Flora of the Cretaceous. Diversity and migration with an emphasis on flowering plants. Ph.D. Thesis, Birkbeck University, London, United Kingdom.

Lupia, R. (1999). Discordant morphological disparity and taxonomic diversity during the Cretaceous angiosperm radiation: North American pollen record. Paleobiology, 25(1), 1-28.

Mejia-Velasquez, P.J.; Dilcher, D.L.; Jaramillo, C.A.; Fortini, L.B.; Manchester, S.R. (2012). Palynological composition of a Lower Cretaceous South American tropical sequence: Climatic implications and diversity comparisons with other latitudes. American Journal of Botany, 99(11), 1819-1827. https://doi.org/10.3732/ajb.1200135

Mejia-Velasquez, P.J.; Manchester, S.R.; Jaramillo, C.A.; Quiroz, L.; Fortini, L. (2018). Floristic and climatic reconstructions of two Lower Cretaceous successions from Peru. Palynology, 42(3), 420- 433. https://doi.org/10.1080/01916122.2017.137 3310

Mello, M.R.; Koutsoukos, E.A.M.; Erazo, W.Z. (1995). The Napo Formation, Oriente Basin, Ecuador: hydrocarbon source potential and palaeoenvironmental assessment. In: B.J. Katz (ed.). Petroleum source rocks (pp. 167-181). Springer. https://doi.org/10.1007/978-3-642-78911-3_10

Mohr, B.; Rydin, C. (2002). Trifurcatia flabellata n. gen. n. sp., a putative monocotyledon angiosperm from the Lower Cretaceous Crato Formation (Brazil). Fossil Record, 5(1), 335-344. https://doi.org/10.1002/mmng.20020050121

Montoya, D.; Reyes, G. (2003). Geología de la Plancha 209 Zipaquirá. Instituto Colombiano de Geología y Minería, Colombia. It includes a report, 156 p.

Muller, J.; di Giacomo, E.; van Erve, A. (1987). A palynological zonation for the Cretaceous, Tertiary and Quaternary of Northern South America. American Association of Stratigraphic Palynologists Contribution Series, 19, 7-71.

Muller, R.D.; Qin, X.; Sandwell, D.T.; Dutkiewicz, A.; Williams, S.E.; Flament, N.; Maus, S.; Seton, M. (2016). The GPlates Portal: Cloud- Based Interactive 3D Visualization of Global Geophysical and Geological Data in a Web Browser. PLOS ONE, 11(3), e0150883. https://doi.org/10.1371/journal.pone.0150883

Ordoñez, M.; Jimenez, N.; Suarez, J. (2006). Micropaleontología Ecuatoriana. Petroproducción-Centro de Investigaciones Geológicas Guayaquil, Ecuador.

Regali, M.S.P.; Uesugui, N.; Santos, A.S. (1974). Palinologia dos sedimentos meso-cenozoicos do Brasil (I). Boletim técnico Petrobrás, 17(3), 177- 191.

Renzoni, G. (1962). Apuntes acerca de la litología y tectónica de la zona al este y sureste de Bogotá. Boletín Geológico, 10(1-3), 59-80. https://doi.org/10.32685/0120-1425/bolgeol10.1-3.1962.208

Renzoni, G. (1981). Geología del cuadrángulo J-12, Tunja. Boletín Geológico, 24(2), 31-54. https://doi.org/10.32685/0120-1425/bolgeol24.2.1981.66

Reyes, I. (1984). Geología de la región de Duitama- Sogamoso-Paz de Río, departamento de Boyacá. Universidad Pedagógica y Tecnológica de Colombia, Colombia.

Ribeiro, A.C.; Ribeiro, G.C.; Varejão, F.G.; Battirola, L.D.; Pessoa, E.M.; Simões, M.G.; Warren, L.V.; Riccomini, C.; Poyato-Ariza, F.J. (2021). Towards an actualistic view of the Crato Konservat-Lagerstätte paleoenvironment: A new hypothesis as an Early Cretaceous (Aptian) equatorial and semi-arid wetland. Earth-Science Reviews, 216, 103573. https://doi.org/10.1016/j.earscirev.2021.103573

Rivadeneira, M. (1986). Evaluación geoquímica de Rocas Madres de la Cuenca Amazónica Ecuatoriana. 4thCongreso Ecuatoriano de Geología, Minas y Petróleo, Quito, Ecuador.

Romero, C.; Vallejo, C.; Cerón, G. (2017). La Formación Hollín en la Cordillera del Cóndor: Estudio de la transición Fluvio-Marina, en la transgresión del Albiano. Datos Preliminares. VIIIJornadas en Ciencias de la Tierra, Quito, Ecuador.

Romero, C.; Gramal, A.; Carranco, F.; Toainga, S. (2019). Asociación de facies: la clave para la identificación de la Formación Hollín en la región Sur Oriental del Ecuador. Revista Científica GEOLatitud, 2(1), 9-23.

Sarmiento-Rojas, L.F.; van Wess, J.; Cloetingh, S. (2006). Mesozoic transtensional basin history of the Eastern Cordillera, Colombia Andes: Inferences from tectonic models. Journal of South American Earth Sciences, 21(4), 383-411. https://doi.org/10.1016/j.jsames.2006.07.003

Sarmiento-Rojas, L.F. (2019). Cretaceous Stratigraphy and Paleo-Facies Maps of Northwestern South America. In: F. Cediel; R.P. Shaw (ed.). Geology and Tectonics of Northwestern South America (pp. 673-747). Springer Nature. https://doi.org/10.1007/978-3-319-76132-9_10

Saylor, J.E.; Horton, B.K.; Stockli, D.F.; Mora, A.; Corredor, J. (2012). Structural and thermochronological evidence for Paleogene basement-involved shortening in the axial Eastern Cordillera, Colombia. Journal of South American Earth Sciences, 39, 202-215. https://doi.org/10.1016/j.jsames.2012.04.009

Suarez, M.B.; González, L.A.; Ludvigson, G.A. (2010). Estimating the oxygen isotopic composition of equatorial precipitation during the Mid-Cretaceous. Journal of Sedimentary Research, 80(5), 480-491. https://doi.org/10.2110/jsr.2010.048

Traverse, A. (1988). Paleopalynology. Unwin Hyman.

Traverse, A. (2007). Paleopalynology. Second Edition. Springer.

Tschopp, H. (1953). Oil Explorations in the Oriente of Ecuador, 1938-1950. AAPG Bulletin, 37(10), 2303-2347. https://doi.org/10.1306/5CEADD94-16BB-11D7-8645000102C1865D

Ufnar, D.F.; Gonzalez, L.A.; Ludvigson, G.A.; Brenner, R.L.; Witzke, B.J. (2004). Evidence for increased latent heat transport during the Cretaceous (Albian) greenhouse warming. Geology, 32(12), 1049-1052. https://doi.org/10.1130/G20828.1

Ulloa, C.; Rodríguez, E. (1976). Geología de las planchas 171 Duitama, 191 Tunja, 211 Tauramena y 230 Monterrey. Escala: 1:100.000. Boletín Geológico, 24(2), 1-48.

Ulloa, C.; Rodríguez, E.; Fuquen, J.; Acosta, J. (2001). Geología de la plancha 192 Laguna de Tota. Instituto Colombiano de Geología y Minería, Colombia. It includes a report, 50 p.

Vallejo, C.; Hochuli, P.A.; Winkler, W.; von Salis, K. (2002). Palynological and sequence stratigraphic analysis of the Napo Group in the Pungarayacu 30 well, Sub-Andean Zone, Ecuador. Cretaceous Research, 23(6), 845-859. https://doi.org/10.1006/cres.2002.1028

Villamil, T. (1998). Chronology, Relative Sea Level History and a New Sequence Stratigraphic Model for Basinal Cretaceous Facies of Colombia. In: J.M. Pindell; C. Drake (ed.). Paleogeographic Evolution and Non-Glacial Eustasy, Northern South America (pp. 161-216). Society for Sedimentary Geology. https://doi.org/10.2110/pec.98.58.0161

White, H.J.; Skopec, R.; Ramirez, F.; Rodas, J.; Bonilla, G. (1995). Reservoir characterization of the Hollin and Napo formations, western Oriente basin, Ecuador. In: A.J. Tankard; R. Suarez-Soruco; H.J. Welsink (ed.). Petroleum Basins of South America (pp. 573-596). American Association of Petroleum Geologists, 62.

Wing, S.L.; Hickey, L.J.; Swisher, C.C. (1993). Implications of an exceptional fossil flora for Late Cretaceous vegetation. Nature, 363, 342-344. https://doi.org/10.1038/363342a0

Zavala, C.; Arcuri, M.; de Freitas, M.; Mesa, A. (2009). Modelo depositacional para la Formación Une (Albiano-Cenomaniano), Cordillera Oriental, Colombia. X Simposio Bolivariano-Exploración Petrolera en las Cuencas Subandinas, Cartagena, Colombia.

Notes

How to cite: Castaño-Cardona, R.F.; Jaramillo, C.; Pardo-Trujillo, A.; Vento, B.; Quiroz-Cabascango, D.; Angulo-Pardo, E. (2023). Palynology of Cretaceous amber deposits of the Oriente Basin-Ecuador and the Eastern Cordillera-Colombia. Boletín de Geología, 45(3), 63-77. https://doi.org/10.18273/revbol.v45n3-2023004
Supplemental Material: This paper contains Supplemental Material (Tables SM1, SM2 and SM3).

Author notes

(*)rf.castanocardona@gmail.com



Buscar:
Ir a la Página
IR
Scientific article viewer generated from XML JATS4R by