

Ingeniería Industrial ISSN: 1815-5936

Facultad de Ingeniería Industrial, Instituto Superior Politécnico José Antonio Echeverría, Cujae.

Rodríguez-Fernández, Yadira; Abreu-Ledón, René; Franz, Matthias Mapeo del Flujo de Valor para el análisis de sostenibilidad en cadenas de suministro agro-alimentarias Ingeniería Industrial, vol. XL, núm. 3, 2019, Septiembre-Diciembre, pp. 316-328 Facultad de Ingeniería Industrial, Instituto Superior Politécnico José Antonio Echeverría, Cujae.

Disponible en: https://www.redalyc.org/articulo.oa?id=360461152010

Número completo

Más información del artículo

Página de la revista en redalyc.org

abierto

Sistema de Información Científica Redalyc

Red de Revistas Científicas de América Latina y el Caribe, España y Portugal Proyecto académico sin fines de lucro, desarrollado bajo la iniciativa de acceso

ARTÍCULO ORIGINAL LOGÍSTICA

Mapeo del Flujo de Valor para el análisis de sostenibilidad en cadenas de suministro agro-alimentarias

Mapping usefulness for sustainability analysis in agri-food supply chains

Yadira Rodríguez-Fernández^I, René Abreu-Ledón^{II}, Matthias Franz^{III}

^I Universidad de Sancti Spíritus José Martí Pérez, Sancti Spíritus, Cuba.

E-mail: yrfernandez@uniss.edu.cu

II Universidad Central Marta Abreu de Las Villas, Santa Clara, Cuba

E-mail: rabreu@uclv.edu.cu

III Hochschule der Medien, Stuttgart, Alemania

E-mail: franz@hdm-stuttgart.de

Recibido: 15 de julio del 2019 Aprobado: 30 de agosto del 2019

RESUMEN

En la actualidad, se intenta determinar cómo alimentar de forma sostenible la creciente población mundial; para ello, es necesario conocer el estado actual y deseado de las cadenas de suministro agro-alimentarias. El presente estudio busca determinar el estado del conocimiento y de la práctica de su implementación para el análisis de sostenibilidad en cadenas de suministro. Mediante con el mapeo de flujo de valor, el análisis sistemático de la literatura existente en bases de datos científicas reconocidas y la utilización de los llamados: métodos de búsqueda hacia detrás y hacia adelante. Se concluye que el Mapeo de Flujo de Valor abarca un amplio rango de elementos, al combinarse con enfoques, tales como: análisis del ciclo de vida, métodos y tiempos de trabajo, ergonomía, seguridad y salud. La simulación del flujo de valor facilita la identificación de mejoras factibles.

Palabras Clave: cadena de suministro, mapeo de flujo de valor, sostenibilidad, revisión de la literatura.

ABSTRACT

Currently, it is attempted to determine how to feed the growing world population sustainably. To achieve it is necessary to know the current and the desired state of the agri-food supply chains; for which, the Value Stream Mapping has been formerly used. The research aims to determine the state of knowledge and its implementation practice for supply chain sustainability analysis through a systematic literature review and use of backward and forward search methods. It is concluded that the Value Stream Mapping encompasses a wide range of elements, when combined with approaches such as Life Cycle Analysis, Methods and Time Study, Ergonomics, Occupational Health and Safety .Besides, the value stream simulation facilitates the identification of feasible improvements.

Keywords: supply chain, value stream mapping, sustainability, literature review.

Sitio web: http://www.rii.cujae.edu.cu 316

I. INTRODUCCIÓN

En los últimos treinta años, se ha avanzado considerablemente en el desarrollo sostenible en el mundo, tal vez más lento de lo que se quisiera, pero hay avances. Dichos avances comprenden el desarrollo conceptual y científico, de institucionalidad, de diseño de políticas públicas, de educación y movimientos ciudadanos, de gestión ambiental, así como en los instrumentos de medición del progreso hacia el desarrollo sostenible [1]. La sostenibilidad es un elemento multidimensional complejo, el cual combina eficiencia y equidad desde el punto de vista ambiental, económico y social (tanto dentro de cada dimensión, como entre ellas). Por lo que los factores que facilitan o dificultan la sostenibilidad en una Cadena de Suministro (CS) dependen fundamentalmente del contexto en que esta se encuentra [2]. Por tanto, la sostenibilidad de las CS, se extiende más allá del concepto de gestión, para lograr la optimización de las operaciones considerando todo el sistema de producción y posproducción.

A partir de la revisión de múltiples artículos Martínez-Jurado y Moyano-Fuentes (2014) concluyen que es necesario identificar indicadores claves del desempeño sostenible. se debe establecer una metodología para su evaluación en el contexto de una CS esbelta y explorar las vías que proporcionan oportunidades a comunidades con bajo desarrollo [3]. Por tanto, un reto para el desarrollo sostenible es la dificultad para medir y comparar el impacto de los cambios en el desempeño ambiental y social. Sobre la Cadena de Suministro Agro-Alimentaria (CS-AA) específicamente, varios enfoques han sido elaborados para medir la sostenibilidad, en especial para la dimensión ambiental. Según Folinas et al. (2013) las evaluaciones dentro del marco de desarrollo del sector agro-alimentario incluyen [4]:

- presupuesto económico de la granja,
- los impactos en la sostenibilidad del ciclo de vida,
- la cantidad de comida,
- la estimación de energía en el ciclo de vida del producto,
- el balance de masas,
- la huella ecológica,
- la sostenibilidad de los indicadores de la granja.

Para el caso específico de las CS-AA lo primero que se debe tener en cuenta es en dónde nos encontramos, cuál es la situación y hacia dónde se quiere ir en un futuro, lo cual se facilita con la ayuda de un mapa. Por tanto, resulta un beneficio utilizar la herramienta de Mapeo de Flujo de Valor o *Value Stream Mapping* (VSM por sus siglas en inglés). Diseñada precisamente para mapear los procesos, flujo de materiales e información desde la concepción del producto hasta el cliente final. Por tanto, esta investigación se propone determinar el estado del conocimiento y de la práctica sobre el análisis de sostenibilidad en cadenas de suministro a través de la herramienta Mapeo del Flujo de Valor, con énfasis en el sector agro-alimentario.

II. MÉTODOS

Para el desarrollo de la investigación se necesita la búsqueda de definiciones y conceptos relacionados al tema objeto de estudio, que sirvan de base en la revisión de la bibliografía científica. Disponible para determinar las potencialidades de la herramienta Mapeo del Flujo de Valor para el análisis de sostenibilidad en la CS-AA. Para ello se realizó un análisis sistemático de la literatura similar al que propone Bouzon et al. (2014)[5]. Se comenzó con la definición del tema general de investigación: aplicación del Mapeo del Flujo de Valor para el análisis de sostenibilidad en CS, con especial interés en el sector agro-alimentario.

A continuación, se definen como áreas específicas de interés:

- (1) aplicación en sistemas productivos y CS del VSM convencional
- (2) el uso de la simulación de conjunto con el VMS
- (3), los diferentes enfoques para la inclusión de métricas sostenibles en el VSM.

Se definen las palabras claves mostradas en la tabla 1 para la búsqueda de información de las áreas de interés definidas, en bases de datos científicas reconocidas (Web of Science, Scopus, ScienceDirect, Taylor and Francis y Emerald). Para ello se utilizaron, además, el método de

búsqueda hacia detrás (*Backwardsearch*) a partir de referencias a nuevas palabras claves y publicaciones anteriores encontradas durante la búsqueda, así como el método de búsqueda hacia adelante (*Forward search*) a partir del seguimiento a autores relevantes.

Tabla 1. Palabras claves según área de interés utilizadas en la búsqueda de literatura

Aplicación del VSM	Uso de la simulación y el VSM	Sostenibilidad y VSM
• Conventional Value	• Simulation +VSM	Energy Value Stream (EVS)
Stream Mapping	• Computer Simulation +	Environmental VSM (EVSM)
(CVSM)	VSM	• Energy and Environment VSM (EE –
• Traditional Value	• VSM Modelling	VSM)
Stream Mapping	• Discrete Event	Green VSM (GVSM)
(TVSM)	Simulation + VSM (DES -	• Ergonomic Value Stream Mapping
• Supply Chain	VSM)	(Ergo – VSM)
• Benefits	• System Dynamics (SD)	• Life cycle assessment + VSM (LCA -
• Limitations	Analysis + VSM	VSM)
		• Sustainable Manufacturing Mapping
		(SMM)
		Sustainable VSM (SVSM)

La muestra fue seleccionada a partir de que los documentos encontrados respondían a alguna de las preguntas de investigación siguientes: ¿Cuáles son los beneficios y/o limitaciones del uso del VSM en CS? ¿Cómo resolver las limitaciones del VSM para el análisis de sostenibilidad de CS? ¿Cuáles son las métricas contenidas en aplicaciones del VSM para el análisis de la sostenibilidad? ¿Cuáles han sido los resultados de la aplicación del VSM en CS-AA? ¿Cuáles son las potencialidades del VSM para el análisis de sostenibilidad en CS-AA?

III. RESULTADOS

La mejora del desempeño de las CS no es una tarea fácil dada la naturaleza fragmentada de las industrias y la extrema especialización funcional de las organizaciones [6]. Para lograr dicho propósito es necesario estudiar el flujo del valor, siendo este la suma de todas las acciones (tanto las que añaden valor, como las que no añaden valor) que son necesarias para obtener un producto a través del flujo productivo desde la materia prima hasta el cliente [7]. El VSM, es una herramienta que se enfoca sobre el diseño del sistema de producción para hacerlo cada vez más competitivo a partir de eliminar interrupciones de desperdicios en aras de producir flujo y reducir los ciclos de producción al mínimo.

En la búsqueda bibliográfica realizada se encontraron inicialmente 147 documentos científicos de interés, luego de eliminados los duplicados y los no relacionados con el tema objeto de estudio. A partir de una revisión preliminar se agregaron otros documentos para un total de 175 relacionados con los temas de interés, de ellos 97 de los últimos 5 años. Del total se encontraron 87 artículos científicos, 68 ponencias de eventos internacionalmente (publicados en su mayoría en la base de datos Science Direct), 15 libros y 5 tesis doctorales. A partir de la revisión de los resúmenes se observó que: en 148 de estos documentos (de ellos 84 de los últimos 5 años) se refieren a la aplicación del VSM en alguna de sus variantes (CVSM, DES - VSM, EVS, EVSM, EE - VSM, GVSM, Ergo – VSM, LCA – VSM, SMM, SVSM). Se seleccionaron para un análisis más profundo 85 documentos que resultaron los más relevantes VSM y 10 revisiones de la literatura. Al respecto (48 artículos científicos, 37 ponencias de eventos internacionalmente, 6 libros y 4 tesis doctorales), de ellos 50 de los últimos 5 años, como se muestra en la figura 1. Las temáticas analizadas se distribuyen como se muestra en la figura 2, donde en 27 documentos se emplea en VSM en su forma tradicional, en 34 documentos se emplea la simulación y en 36 documentos se tratan las diferentes dimensiones de la sostenibilidad. Se considera relevante resaltar que en 2 de los documentos anteriores se emplea de forma conjunta la simulación y la sostenibilidad.

Fig. 1. Distribución de publicaciones por años



Fig. 2. Distribución de publicaciones según temáticas de interés

Por otra parte, se encontró que el 60,42% de las publicaciones han sido realizadas en solo 7 revistas internacionales como se muestra en la figura 3. Mientras que el 32.43% de las ponencias ha sido presentadas en solo 3 eventos internacionales como se muestra en la figura 4.

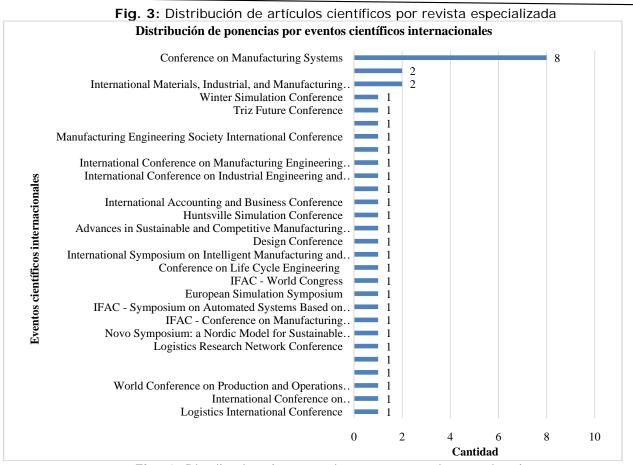


Fig. 4: Distribución de ponencias por eventos internacionales

Beneficios y limitaciones del uso del Mapeo del Flujo de Valor

Las implementaciones del VSM según el análisis de 131 artículos científicos realizado por <u>Shou et al.</u> (2017), han sido significativamente mayores en el sector de la manufactura al compararse con otros sectores [8]. Los principales beneficios de su aplicación son:

- un mayor entendimiento del costo del producto
- un panorama claro del proceso
- una reducción del trabajo en proceso
- reducción del inventario
- reducción en el tiempo de ciclo de producción
- flexibilidad: una respuesta más rápida a los cambios de demanda
- respuesta más rápida a los asuntos sobre calidad
- un énfasis en halar (pull) desde el cliente
- un incremento en la contribución de valor agregado y estandarización de los procesos de producción
- el uso de VSM posibilita a una organización priorizar la implementación de acciones para eliminar el desperdicio

Dichos beneficios son respaldados además por <u>Andreadis et al. (2017)</u> a través del estudio empírico realizado con la participación de 155 expertos a nivel global. Donde se obtuvo como consenso que el uso del VSM posibilita a una organización priorizar la implementación de acciones para eliminar el desperdicio [9]. Por otra parte, adaptaciones de dicha herramienta facilitan la identificación de la carga de trabajo laboral, así como de buenas prácticas ergonómicas, lo cual resulta en impactos sociales positivos [10].

No obstante, la implementación del VSM aún enfrenta desafíos y limitaciones según <u>Dal Forno et al.</u> (2014), tales como [11]:

- dificultad para medir la información de los procesos,
- pocas habilidades del personal para aplicar la herramienta,

- baja integración entre los procesos,
- amplia gama de productos y flujos de producción que no están claramente definidos a través de procedimientos o necesitan ser demasiado flexibles para adaptarse a cambios constantes de la demanda o del producto.

Mientras que las principales limitaciones en la implementación de las soluciones resultantes luego de la aplicación del VSM son la falta de compromiso de la dirección, la no documentación o incorrecta definición de los procesos y la falta de entrenamiento de los empleados [9].

Uso de la simulación para el Mapeo del Flujo de Valor

El VSM es una herramienta ideal para exponer el desperdicio en un flujo de valor e identificar herramientas para mejorar, pero debido a que la mayoría de los VSM se realizan de forma manual, el nivel de precisión es limitado y el número de versiones que se pueden manejar es bajo [12; 13]. El VSM combinado con simulación es una buena alternativa en la toma de decisiones para realizar cambios en el proceso de producción [14]. La simulación es una herramienta que garantiza el ahorro de costos. Dado que un modelo de simulación puede ayudar a los gerentes a ver los efectos antes de una gran implementación, por ejemplo: el impacto de los cambios en el diseño y la reasignación de recursos en los indicadores clave de rendimiento antes y después de la transformación sin realizar la inversión [13]. Una de las primeras aplicaciones de la simulación fue realizada por Donatelli y Harris (2004), quienes al combinar la asignación de flujo de valor y la simulación de eventos discretos, agregaron al Mapa de Flujo de Valor una cuarta dimensión: el tiempo [15]. Posteriormente, Lian y Van Landeghem (2007) proponen un método para implementar VSM "extendido" mediante la simulación con Arena [13]. Donde el modelo simulado se alimenta con información sobre los estados actuales y futuros del VSM. Inicialmente para validar el modelado en relación con el estado actual y luego para analizar el impacto de las mejoras sugeridas, antes de su implementación real [13]. De igual forma, Andrade, et al. (2016) usan la simulación del VSM, en este caso mediante el software Promodel, para predecir modificaciones a una línea de producción a partir de los datos generados [14]. Lugert et al. (2018) también utilizan la simulación de eventos discretos junto con VSM y establecen el éxito de este enfoque combinado, a través de estudios de casos en varios sectores diferentes con Industry 4.0 [16]. Por otra parte, Antonelli y Stadnicka (2018) definen las variables de entrada necesarias (para construir un modelo de VSM) y las variables de salida (para un correcto análisis de las mejoras) [17]. Además de los softwares antes mencionados, Agyapong-Kodua, et al. (2012) realizan un análisis y comparación de siete de las herramientas de modelado de simulación disponibles comercialmente (Lean Modeller, Simul8, iThink / Stella, Lean Enterprise, Arena, Witness, Quest) [12]. Se concluye que con diferentes herramientas de modelado de simulación de eventos continuos y discretos tienen fortalezas relativas, por lo que podrían usarse de manera conjunta para modelar diferentes aspectos de los procesos [12].

Evolución de la inclusión de métricas sostenibles en el Mapeo del Flujo de Valor

En un primer momento aparecen los conjuntos de herramientas de la Agencia de Protección Medioambiental de Estados Unidos [18-20]. En estos, se utilizan casos de estudio para ayudar a los usuarios a identificar fácilmente los desperdicios, reducir las emisiones de Gases de Efecto Invernadero (GEI) y desechos sólidos. Para reducir el uso de sustancias nocivas en los procesos productivos, que puedan tener efectos adversos en las personas. Un resumen de los diferentes enfoques encontrados en la literatura para el análisis del flujo de valor desde el punto de vista ambiental se muestra en la tabla 2. Posteriormente, nuevos conceptos relativos a las tres dimensiones de la sostenibilidad en CS se comienzan a incluir en el VSM, como se muestra en la tabla 3.

Tabla 2. Elementos analizados en diferentes enfoques del VSM desde el punto de vista ambiental

Enfoque	Autores	Elementos analizados	
Mapeo del	[<u>21</u>]	Se enfoca en el consumo de energía y examina cada paso del	
Flujo de Valor		proceso de producción para identificar los desperdicios de	
y energía		energía.	
(EVS)	[<u>22</u>]	Identifica el consumo de energía que no añade valor usando la	
		Teoría de Redes Bayesianas para establecer vías para el ahorro	
		de energía.	
	[23]	Divide la energía consumida en el proceso de reciclado de chips	
		en energía que añade o no añade valor.	
	[24]	Identifica el nivel de energía usada en cada paso y el desperdicio,	
		lo cual da lugar a definir oportunidades para la conservación de la	
		energía ya sea a través de modificaciones a las máquinas	
		herramientas o el cambio de estas por diseños diferentes.	
Mapeo del	[<u>25</u>]	Amplia el enfoque propuesto por <u>US EPA (2007)</u> , se enfoca en el	
Flujo de Valor	L <u>= v</u>]	consumo de agua de la producción de azúcar y alcohol. A pesar	
con enfoque		de que se realiza un análisis detallado solo para el recurso hídrico	
ambiental		(divide las pérdidas de agua en 5 categorías: pérdida latente,	
(EVSM)		real, intrínseca, funcional y funcional real), la identificación visual	
(LV3IVI)		del desperdicio no es clara [18].	
	[26]	Analiza la reducción de la huella de carbono de la producción de	
	[20]	piezas de metal para mejorar la sostenibilidad.	
	[27]	Realiza la modelación de un sistema multi-productos que produce	
	[<u>27</u>]	componentes para la industria ferroviaria, tiene en cuenta la	
		energía y las emisiones de carbono.	
Mapeo del	[28]		
	[20]	Considera el consumo de energía, agua, uso de materiales y	
Flujo de Valor		emisiones de CO ₂ en el proceso, sin embargo, se descuida el uso de energía debido al transporte o almacenamiento.	
y energía con	[00]		
enfoque ambiental	[<u>29]</u>	Ayuda a los decisores a alinear los beneficios financieros y los	
(EE – VSM)		impactos ambientales al proporcionar un enfoque de análisis de	
(EE - VSIVI)	[20]	emisiones de CO ₂ .	
	[<u>30]</u>	Representa gráficamente el consumo de recursos, la agregación	
		de valor y las oportunidades de mejora del rendimiento dentro del	
		sistema de producción al integrar VSM, la contabilidad de costos	
Managa	[04]	de flujo de materiales (MFCA) y el Análisis Pinch.	
Mapeo del	[<u>31</u>]	Incorporar métricas ambientales en el VSM para priorizar la	
Flujo de Valor		solución de problemáticas relacionadas con el efecto dañino de los	
verde	[22]	contaminantes en el aire y el agua.	
(GVSM)	[32]	Se enfoca en los indicadores de energía, agua, materiales,	
		residuos, transporte, emisiones y biodiversidad. La posible	
	[4, 22]	representación visual es limitada.	
	[<u>4</u> ; <u>33</u>]	Se determina el desperdicio en la CS de productos agro-	
		alimentarios. Las estrategias requieren la entrega a tiempo de	
		pequeños lotes, lo que a su vez conduce a un aumento en el	
	FO 43	transporte, el empaque y las actividades de manejo.	
	[<u>34</u>]	Identifica los desechos verdes e investiga áreas de mejora	
		utilizando el Proceso de Jerarquía Analítica (AHP).	
Análisis del	[<u>35</u>]	Desarrolla el EVSM combinado con el Análisis del Ciclo de Vida	
Ciclo de Vida		para ofrecer una representación visual de las pérdidas de tiempo,	
integrado con		energía y materiales.	
VSM (LCA -			
VSM)			

Tabla 3. Elementos analizados en diferentes enfoques del VSM para el análisis de la sostenibilidad

Enfoque	Autores	Elementos analizados
Mapeo del Flujo de Valor ergonómico	[<u>36</u>]	Discute la comparación de los resultados de la aplicación del Ergo – VSM y el VSM en 2 casos de estudio respectivamente en 3 organizaciones de salud.
(Ergo – VŠM)	[<u>37</u>]	Evalúa el tiempo de trabajo manual, las posturas, el esfuerzo físico, la variación de las posiciones de trabajo y el tiempo de recuperación en la manufactura de producciones plásticos. Propone tener en cuenta en estudios futuros factores psicosociales.
Análisis del Ciclo de Vida integrado con VSM (LCA – VSM)	[38]	Considera indicadores de sostenibilidad basados en VSM, evaluación del ciclo de vida (LCA) y simulación de eventos discretos (DES) tales como el número de horas-hombre de trabajo, días de ausencia laboral, número de reclamaciones, etc.
	[<u>39</u>]	Analiza en una organización de fabricación de componentes automotrices el consumo de materias primas, energía, agua, aceite y refrigerante, así como métricas de carácter social: índice de carga física, nivel de ruido y riesgos potenciales en el entorno de trabajo.
Mapeo del Flujo de Valor sostenible (SMM o SVSM)	[<u>40</u>]	Analiza las emisiones de GEI y de CO_2 . Supone que los indicadores sociales se incorporan indirectamente a través de los efectos positivos en la economía y el medio ambiente.
	[<u>41</u>]	Combina el SVSM creado por <u>Simons y Mason (2002)</u> con métricas de sostenibilidad creadas por <u>Norton (2007)</u> para crear un mapa de cadena de valor sostenible con el cual analiza las relaciones y los flujos de información entre los minoristas de alimentos y los fabricantes de alimentos en el Reino Unido [40; 42].
	[<u>43</u>]	Evalúa el consumo de agua de proceso, materias primas, energía, los peligros potenciales relacionados con el entorno laboral y el trabajo físico. Propone los símbolos visuales necesarios para cada métrica utilizada en el SVSM en aras de visualizar fácilmente las áreas potenciales para la mejora continua.
	[44]	Se prueba la versatilidad del SVSM en tres estudios de casos con diferentes variedades y volúmenes de productos. Evalúa el consumo de energía, agua, las emisiones de GEI, los niveles de ruido, etc.
	[<u>45</u>]	Analiza la producción de satélites de televisión teniendo en cuenta métricas ambientales clásicas (consumo de agua, uso de materias primas, consumo de energía) y métricas sociales (índice de carga de trabajo, nivel de ruido).
	[<u>46</u>]	Crea una matriz para calcular un índice de sostenibilidad a partir de métricas económicas y ambientales estándar. Analiza las métricas sociales clásicas y añade los índices de empleo, de diversidad cultural de los empleados y de accidentes y riesgos químicos [45]. Define la satisfacción del cliente a partir de la calidad del producto.
	[47]	Establecen un enfoque para evaluar la creación de residuos en flujos de valor dentro de un modelo basado en el ciclo de reutilización típico-ideal.
	[48]	Combina las métricas ambientales y económicas clásicas para lograr un índice de sostenibilidad ambiental y económica, por operación y por proceso. Propone un indicador de nivel de sostenibilidad social a partir la sumatoria de índices clásicos de esta dimensión y los pondera según la satisfacción de los trabajadores.
	[<u>49</u>]	Analizan las competencias del sistema y la medición de los tiempos de trabajo, para realizar un diseño coordinado y mejorar del diseño del trabajo, los aspectos logísticos de producción en los sistemas de trabajo y sus métodos de trabajo a lo largo del flujo de valor.

Aplicación del VSM para el análisis de sostenibilidad en la cadena de suministro agroalimentaria

<u>De Steur et al. (2016)</u> a partir de una amplia búsqueda filtran 24 artículos donde se emplea el VSM para la reducción de pérdidas y desperdicio de alimentos en al menos uno de los eslabones la CS-AA (siendo estos la mayoría, solo 5 estudios fueron realizados a nivel de la CS) [50]. En este estudio se reafirma que la simulación facilita la aceptación del VSM y se determina que los principales

problemas en dichas cadenas son el exceso de defectos, de inventario, de producción y el procesamiento inadecuado (elementos en su mayoría de carácter económico). Otros estudios relacionados definen estrategias para resolver dichas problemáticas, tales como la entrega a tiempo de pequeños lotes, a pesar de que esto conduce a un aumento en el transporte, el empaque y las actividades de manipulación; lo cual puede estar en contradicción con el enfoque "verde" [4; 33]. Norton y Fearne (2009) combinan el SVSM propuesto por primera vez por Simons y Mason (2002), con métricas de sostenibilidad creadas por Norton (2007) para crear un mapa de cadena de valor sostenible (SVCM) en aras de analizar las relaciones y los flujos de información entre los minoristas de alimentos y las industrias de alimentos [40-42]. Posteriormente, otro estudio identifica áreas de mejora en la CS-AA al utilizar el VSM apoyado por el AHP [34].

III. DISCUSIÓN

El VSM es una herramienta que sirve para ver y entender un proceso e identificar sus desperdicios, además, permite detectar fuentes de ventaja competitiva, ayuda a establecer un lenguaje común entre todos sus usuarios y comunica ideas de mejora. Por lo cual, un VSM puede ser el punto de partida de un plan de mejora estratégico. No obstante, pocos estudios se han centrado en reducir los defectos de los productos en aras de mejorar la efectividad del proceso. Esto sugiere que el VSM tiende a entenderse como una herramienta solamente para visualizar el valor y el desperdicio en los procesos, en lugar de una filosofía de mejora más amplia para todo el sistema [8]. Por tanto, se hace necesario tener en cuenta una gestión por procesos en aras de desarrollar un marco organizativo para de la mejora continua de los flujos de valor a todos los niveles de forma metódica [49].

De las debilidades en los métodos o de la influencia de los desafíos actuales, han surgido un número significativo de enfoques académicos para investigar el desarrollo basado en conceptos de VSM [16]. Por ejemplo, Agyapong-Kodua, et al. (2012) proponen un modelo para el análisis dinámico de flujo de múltiples productos, el cual resulta útil para demostraciones de impacto causal, análisis de costos dinámicos y análisis de valor, así como herramienta y modelos de casos específicos para la mejora y el rediseño de procesos [12]. No obstante, estos presentan limitaciones tales como mucho consumo de tiempo, incapacidad para detallar el comportamiento dinámico de los procesos de producción y para abarcar su complejidad, lo cual ha impulsado a los investigadores a recurrir a la simulación [13].

Lo cierto es que la simulación no solo hace que probar ideas sea más fácil, barato y rápido, sino que también brinda una evaluación inmediata de los cambios propuestos en el sistema [15]. Las mejoras deben buscarse no solo de forma selectiva, sino en plazos cortos, no obstante, modificar el método desde una perspectiva puramente técnica utilizando tecnologías digitales no es suficiente, en cambio, los factores organizacionales y las personas también deben tomarse en consideración [16]. Al combinar la simulación con el poder visual del VSM, se busca una adopción más rápida y menos resistencia al cambio de parte de la fuerza laboral [13]. No obstante la preparación de un modelo para ser simulado requiere de mucho tiempo, por lo cual algunos autores cuestionan cuándo realmente es necesario simular [17].

Por otra parte, varios enfoques encontrados en la literatura consideran de alguna manera la sostenibilidad en el flujo de valor (como se evidencia en la tabla 3), pero solo de manera muy general y sin un modelo universal subyacente para el cálculo de los indicadores de sostenibilidad [49]. Evidentemente, VSM y el análisis ambiental se han fusionado en varias aplicaciones. Para ello también se utiliza el modelado de Sistemas Dinámicos, el cual tiene establecido el análisis de aspectos ambientales. Por otra parte, los aspectos sociales se consideran en varios estudios como una consecuencia de la mejora de los aspectos ambientales [47], por lo que su tratamiento independiente se considera un reto.

A partir de las experiencias positivas recogidas con estas extensiones del VSM se pueden realizar nuevos desarrollos, por ejemplo, el flujo de valores de ergonomía y mantenimiento, una inmersión con las metodologías de Métodos y Tiempos de Trabajo y la aplicación de la VSM en las fases iniciales del diseño del producto [49]. Por otra parte, es necesario considerar a la población como parte de la dimensión social en aras de garantizar una mejora sostenible. Además, las características propias de las CS-AA en cuanto a tipos de alimentos (perecederos o no, necesidad de cadena de frío

o no, etc.) puede influir en que cada cadena requiriera un conjunto diferente de métricas a evaluar [45].

Es evidente que el VSM tiene el potencial, por una parte, para identificar las pérdidas y desperdicios de alimentos lo cual constituye una vía para mejorar la seguridad nutricional y alimentaria, y por ende la sostenibilidad social. Por otra parte, para lograr tanto la satisfacción del cliente con el producto [46], como la mejora de la sostenibilidad ambiental al combinarse con el LCA [35]. Por tanto, su implementación a través de la simulación, permitirá identificar posibles mejoras en forma de menores impactos en todas las etapas del ciclo de vida [38].

V. CONCLUSIONES

- 1. La aplicación del VSM en CS-AA permite identificar visualmente de forma rápida en un mapa los procesos, el flujo de materiales e información desde la concepción del producto hasta el cliente final, así como las actividades que no añaden valor desde el punto de vista económico, ambiental y social. Con el objetivo de identificar los elementos que influyen negativamente en su sostenibilidad y definir oportunidades de mejora.
- 2. Para la CS-AA se debe tener en cuenta que, a diferencia de las métricas para la evaluación del desempeño económico, diferentes métricas ambientales y sociales podrían ser más relevantes [45]. Por lo tanto, es necesario identificar un conjunto general de métricas que tengan una amplia aplicación en función de las características de las CS-AA.
- 3. La simulación contribuye a mejorar la transparencia en la que se visualiza el flujo de valor actual para todos los empleados y se exponen los desperdicios actuales y futuros. Esto se convierte en la base para una variedad de formas diferentes de optimizar los flujos de valor. Incluyendo el análisis de datos, las propuestas de optimización basadas en algoritmos predefinidos que permiten la reconfiguración a corto plazo de los flujos de valor, así como medidas de mejora manual [16].
- 4. Debido a las limitaciones del VSM extendido para mejorar la sostenibilidad, la investigación sobre la extensión del VSM utilizando métricas de sostenibilidad sigue siendo muy interesante. Por tanto, desde un punto de vista analítico, es necesario involucrar a los principales actores de la CS-AA para examinar las pérdidas y los desperdicios, así como para evaluar y determinar en cuáles métricas incidir en aras de lograr mejoras sostenibles.

VI. REFERENCIAS

- 1. Agyapong-Kodua K, Ajaefobi JO, Weston RH, et al. Development of a multi-product cost and value stream modelling methodology. International Journal of Production Research. 2012 nov/15.50(22):6431-56. ISSN 0020-7543. DOI https://doi.org/10.1080/00207543.2011.648777.
- 2. Ahi P, Searcy C. Assessing sustainability in the supply chain: A triple bottom line approach. Applied Mathematical Modelling 2015 jun/1.39(10–11): 2882-96. ISSN 0307-904X.
- 3. Alvandi S, Li W, Schönemann M, et al. Economic and environmental value stream map (E2VSM) simulation for multi-product manufacturing systems. International Journal of Sustainable Engineering. 2016 nov/01.9(6):354-62. ISSN 1939-7038.
- 4. Andrade PF, Pereira VG, Del Conte EG. Value stream mapping and lean simulation: a case study in automotive company. International Journal of Advanced Manufacturing Technology. 2016 jul/01.85(1):547-55. ISSN 1433-3015.
- 5. Andreadis E, Garza-Reyes JA, Kumar V. Towards a conceptual framework for value stream mapping (VSM) implementation: an investigation of managerial factors. International Journal of Production Research. 2017 dic/02.55(23):7073-95. ISSN 0020-7543.
- 6. Antonelli D, Stadnicka D. Combining factory simulation with value stream mapping: a critical discussion.2018 En: 11th CIRP Conference on Intelligent Computation in Manufacturing Engineering, CIRP ICME '17. p. 30-5. ISBN 2212-8271.
- 7. Arbulu R, Tommelein I, Walsh K, et al. Value stream analysis of a re-engineered construction supply chain. Building Research & Information. 2003;31(2):161-71. ISSN 0961-3218.
- 8. Bouzon M, Cauchick-Miguel PA, Taboada-Rodríguez CM. Managing end of life products: a review of the literature on reverse logistics in Brazil. Management of Environmental Quality: An International

Journal. 2014; 25(5): 564 - 84. ISSN 1477-7835.

- 9. Brown A, Amundson J, Badurdeen F. Sustainable value stream mapping (Sus-VSM) in different manufacturing system configurations: application case studies. Journal of Cleaner Production. 2014;85:164-79. ISSN 0959-6526.
- 10. Dadashzadeh M, Wharton TJ. A Value Stream Approach for Greening the IT Department. International Journal of Management & Information Systems. 2012;16(2):125-36. ISSN 1546-5748.
- 11. De Steur H, Wesana J, Dora MK, et al. Applying Value Stream Mapping to reduce food losses and wastes in supply chains: A systematic review. Waste Management. 2016;58:359-68. ISSN 0956-053X.
- 12. Donatelli AJ, Harris GA. Combining Value Stream Mapping and Discrete Event Simulation.2004 En: Huntsville Simulation Conference, Society for Modeling and Simulation International. San Diego, CA. p. [Citado: 26 de agosto del 2019] Disponible en: https://www.researchgate.net/publication/249832360.
- 13. Edtmayr T, Sunk A, Sihn W. An Approach to Integrate Parameters and Indicators of Sustainability Management into Value Stream Mapping.2016 En: 48th CIRP Conference on Manufacturing Systems. p. 289-94. ISBN 2212-8271.
- 14. Edwards K, Winkel J. Ergonomic Value stream Mapping (ErgoVSM) potential for integrating work environment issues in a Lean rationalization process at a Danish hospital.2013 En: 7th Novo Symposium: a Nordic Model for Sustainable Systems in the Health Care Sector. Tampere, Finland. National Institute for Health and Welfare. ISBN 978-952-302-058-0.
- 15. Erlach K, Westkämper E. Energiewertstrom Der Weg zur energieeffizienten Fabrik. Stuttgart, Deutschland: Fraunhofer Verlag; 2009. p. 123. ISBN 3839600103.
- 16. Faulkner W, Badurdeen F. Sustainable Value Stream Mapping (Sus-VSM): methodology to visualize and assess manufacturing sustainability performance. Journal of Cleaner Production. 2014;85:1-11. ISSN 0959-6526.
- 17. Faulkner W, Templeton W, Gullett D, et al. Visualizing Sustainability Performance of Manufacturing Systems using Sustainable Value Stream Mapping (Sus-VSM).2012 En: International Conference on Industrial Engineering and Operations Management. Istanbul, Turkey. ISBN 9781629939117.
- 18. Folinas D, Aidonis D, Triantafillou D, et al. Exploring the greening of the food supply chain with lean thinking techniques.2013 En: 6th International Conference on Information and Communication Technologies in Agriculture, Food and Environment (HAICTA 2013). Greece. p. 416-24. ISBN 2212-0173
- 19. Folinas D, Aidonis D, Voulgarakis N, et al. Applying Lean Thinking Techniques in the Agrifood Supply Chain. 2013 En: 1st Logistics International Conference. Belgrade, Serbia. LOGIC. ISBN 978-86-916153-4-5.
- 20. Helleno AL, de Moraes AJI, Simon AT. Integrating sustainability indicators and Lean Manufacturing to assess manufacturing processes: Application case studies in Brazilian industry. Journal of Cleaner Production. 2017 6/1/.153:405-16. ISSN 0959-6526.
- 21. Jarebrant C, Winkel J, Johansson Hanse J, et al. ErgoVSM: A Tool for Integrating Value Stream Mapping and Ergonomics in Manufacturing. Human Factors and Ergonomics in Manufacturing. 2016; 26(2):191-204. ISSN 1520-6564.
- 22. Keskin C, Asan U, Kayakutlu G. Value Stream Maps for Industrial Energy Efficiency. En: Assessment and Simulation Tools for Sustainable Energy Systems: Theory and Applications. London: Springer London; 2013. p. 357-79. ISBN 9781447151432.
- 23. Kuriger G, Huang Y, Chen F. A lean sustainable production assessment tool.2011 En: Proceedings of the 44th CIRP Conference on Manufacturing Systems. Madison, Wisconsin. ISBN 978-3-18-092307-9
- 24. Li H, Cao H, Pan X. A carbon emission analysis model for electronics manufacturing process based on value-stream mapping and sensitivity analysis. International Journal of Computer Integrated Manufacturing. 2012 2012/12/01.25(12):1102-10. ISSN 0951-192X.
- 25. Lian YH, Van Landeghem H. Analysing the effects of Lean manufacturing using a value stream mapping-based simulation generator. International Journal of Production Research. 2007 2007/07/01.45(13):3037-58. ISSN 0020-7543.
- 26. Litos L, Borzillo F, Patsavellas J, et al. Management Tool Design for Eco-efficiency Improvements in Manufacturing A Case Study.2017 En: 27th CIRP Design Conference. p. 500-5. ISBN 2212-

- 27. Lugert A, Völker K, Winkler H. Dynamization of Value Stream Management by technical and managerial approach. 2018 En: 51st CIRP Conference on Manufacturing Systems p. 701-6. ISBN 9781510865709.
- 28. Marimin, Darmawan MA, Machfud, et al. Value chain analysis for green productivity improvement in the natural rubber supply chain: a case study. Journal of Cleaner Production. 2014. ISSN 0959-
- 29. Martínez León HC, Calvo-Amodio J. Towards lean for sustainability: Understanding the interrelationships between lean and sustainability from a systems thinking perspective. Journal of Cleaner Production. 2017 2017/01/20/.142:4384-402. ISSN 0959-6526.
- 30. Martínez-Jurado PJ, Moyano-Fuentes J. Lean management, supply chain management and sustainability: a literature review. Journal of Cleaner Production. 2014;85:134-50. ISSN 0959-6526.
- 31. Müller E, Schillig R, Stock T, et al. Improvement of Injection Moulding Processes by Using Dual Energy Signatures. 2014 En: 47th CIRP Conference on Manufacturing Systems p. 704-9. ISBN 2212-8271.
- 32. Ng R, Low JSC, Song B. Integrating and implementing Lean and Green practices based on proposition of Carbon-Value Efficiency metric. Journal of Cleaner Production. 2015 2015/05/15/.95:242-55. ISSN 0959-6526.
- 33. Norton A. Sustainable Value Stream Mapping as a Technique for Analysing and Reducing Waste in the UK Chilled Food Sector. London, UK: University of London, Imperial College; 2007. [Citado.
- 34. Norton A, Fearne A. Sustainable value stream mapping in the food industry. En: Handbook of Waste Management and Co-product Recovery in Food Processing. 2da ed. Cambridge: Woodhead Publishing; 2009. p. 3-22. ISBN 9781845693916.
- 35. Paju M, Heilala J, Hentula M, et al. Framework and indicators for a sustainable manufacturing mapping methodology.2010 En: Winter Simulation Conference. Baltimore, Maryland. Winter Simulation Conference. p. 3411-22. ISBN 978-1-4244-9864-2.
- 36. Rother M, Shook J. Learning to See: Value Stream Mapping to Add Value and Eliminate MUDA. Brookline, MA: The Lean Enterprise Institute, Inc.; 1999. p. 112. ISBN 0966784308.
- 37. Shou W, Wang J, Wu P, et al. A cross-sector review on the use of value stream mapping. International Journal of Production Research. 2017 2017/07/03.55(13):3906-28. ISSN 0020-7543.
- 38. Simons D, Mason R. Environmental and Transport Supply Chain Evaluation With Sustainable Value Stream Mapping, 2002 En: 7th Logistics Research Network Conference. Birmingham, UK. p. ISBN 9781904564195.
- 39. Sparks D, Badurdeen F. Combining sustainable value stream mapping and simulation to assess supply chain performance. Lexington, Kentucky: University of Kentucky; 2014.
- 40. Sunk A, Kuhlang P, Edtmayr T, et al. Developments of traditional value stream mapping to enhance personal and organisational system and methods competencies. International Journal of Production Research. 2017 2017/07/03.55(13):3732-46. ISSN 0020-7543.
- 41. Thanki SJ, Thakkar JJ. Value-value load diagram: a graphical tool for lean-green performance assessment. Production Planning & Control. 2016 2016/11/17.27(15):1280-97. ISSN 0953-7287.
- 42. Torres AS, Gati AM. Environmental Value Stream Mapping (EVSM) as sustainability management tool. 2009 En: Portland International Center for Management of Engineering and Technology Conference Portland, Oregon. p. 1689-98. ISBN 978-1-5386-7719-3.
- 43. US EPA. Lean and Environment Toolkit. Washington, D.C: United States Environmental Protection Agency; 2007 [Citado: 26 de agosto del 2019] . Disponible en:
- https://www.epa.gov/sites/production/files/2013-10/documents/leanenvirotoolkit.pdf 44. US EPA. Lean and Energy Toolkit. Washington, D.C: United States Environmental Protection Agency: 2007. ISBN EPA-100-K-06-003.
- 45. US EPA. Lean, Energy and Climate Toolkit. Washington, D.C: United States Environmental Protection Agency; 2011. [Citado: 26 de agosto del 2019] Disponible en:

https://www.epa.gov/sites/production/files/2013-10/documents/lean-energy-climate-toolkit.pdf.

46. Verma N, Sharma V. Energy Value Stream Mapping a Tool to Develop Green Manufacturing.2016 En: International Conference on Manufacturing Engineering and Materials, ICMEM 2016. p. 526-34. ISBN 1877-7058. Disponible en:

https://www.sciencedirect.com/science/article/pii/S1877705816312188.

- 47. Vinodh S, Ben Ruben R, Asokan P. Life cycle assessment integrated value stream mapping framework to ensure sustainable manufacturing: a case study. Clean Technologies and Environmental Policy. 2016 2016/01/01.18(1):279-95. ISSN 1618-9558.
- 48. Whitman LE, Twomey J, Patil A. Greening The Value Stream: Towards an Environmental Index.2006 En: 9th IFAC Symposium on Automated Systems Based on Human Skill and Knowledge. p. 109-13. ISBN 1474-6670.
- 49. Quiroga Martínez R. Indicadores de sostenibilidad ambiental y de desarrollo sostenible: estado del arte y perspectivas: Cepal; 2001. p. 228. ISBN 9213219113.
- 50. Dal Forno AJ, Pereira FA, Forcellini FA, et al. Value Stream Mapping: a study about the problems and challenges found in the literature from the past 15 years about application of Lean tools. International Journal of Advanced Manufacturing Technology. 2014:779-90. ISSN 0268-3768.