Servicios
Descargas
Buscar
Idiomas
P. Completa
In vitro inhibition of Candida spp., strains by wild mountain mint essential oil: A traditional medicinal plant in the high Andean regions of Peru
Salas-Apaza, Alex Mario
Salas-Apaza, Alex Mario
In vitro inhibition of Candida spp., strains by wild mountain mint essential oil: A traditional medicinal plant in the high Andean regions of Peru
Inhibición in vitro de cepas de Candida spp., mediante el aceite esencial de muña silvestre: Una planta tradicional, de uso medicinal en zonas alto andinas del Perú
Journal of the Selva Andina Research Society, vol. 15, núm. 2, pp. 90-99, 2024
Selva Andina Research Society
resúmenes
secciones
referencias
imágenes

Abstract: Medicinal plants have been used for centuries by various cultures as a source of treatment and prevention for diseases. Ethnobotanical and scientific studies of "muña" have gained significance due to its bioactive potential against fungi of public health importance. The study was conducted in Puno, Peru (longitude: 15° 50' 15'' W, latitude: 70° 01' 18'' S, altitude: 4047 meters above sea level), with the aim of evaluating the in-vitro inhibition of wild mountain mint essential oil on Candida spp., strains. An experimental in-vitro study was carried out, where 90 inhibitory halos were evaluated at different concentrations using the agar dilution method. The experimental groups consisted of concentrations of mountain mint at: 25, 50, 100, 150, 200, and 250 % (experimental groups), a Fluconazole experimental group (positive group), and a distilled water experimental group (negative group). The experimental groups presented inhibitory halos at 25 % (3.5±1.5 mm), 50 % (11.1±0.6 mm), 100 % (15.8±0.7 mm), 150 % (19.1±0.7 mm), 200 % (24.1±0.5 mm), 250 % (29.3±0.6 mm), fluconazole (25.5±0.6 mm), and for distilled water, no inhibitory halos were observed, as it did not have any inhibitory phytochemical components in its composition. It was observed that the concentration at 250 % presented a superior inhibitory halo compared to the experimental groups and Fluconazole, this is explained by the higher concentration of secondary metabolites present in a higher concentration.

Keywords: Antifungal, phytochemicals, inhibition, in vitro, wild mountain mint, medicinal plants.

Resumen: Las plantas medicinales han sido utilizadas durante siglos por diversas culturas como fuente de tratamiento y prevención de enfermedades, estudios etnobotánicas y científicos de la muña, adquieren relevancia debido a su potencial bioactivo contra hongos de importancia en la salud pública. El estudio se realizó en Puno-Perú (longitud: 15° 50' 15´´ O, latitud: 70° 01' 18´´ S, y altitud: 4047 msnm), con el objetivo de evaluar la inhibición in vitro del aceite esencial de la muña silvestre sobre cepas de Candida spp. Se realizó un estudio experimental in vitro, se evaluaron 90 halos inhibitorios a diferentes concentraciones, mediante el método de dilución en agar. Los grupos experimentales fueron concentraciones de muña al: 25, 50, 100, 150, 200 y 250 % (Grupos experimentales) un grupo experimental fluconazol (grupo positivo) y un grupo experimental agua destilada (grupo negativo). Los grupos experimentales presentaron halos inhibitorios que fueron al 25 % (3.5±1.5 mm), 50 % (11.1±0.6 mm), 100 % (15.8±0.7 mm), 150 % (19.1±0.7 mm), 200 % (24.1±0.5 mm), 250 % (29.3±0.6 mm), fluconazol (25.5±0.6 mm) y para agua destilada, no se observó halos inhibitorios, al no tener ningún componente fitoquímico inhibidor en su composición. Se observó que la concentración al 250 % presento un halo inhibitorio superior en comparación a los grupos experimentales y el fluconazol, esto se explica por la mayor concentración de metabolitos secundarios presentes en una concentración superior.

Palabras clave: Antifúngico, fitoquímicos, inhibición, in vitro, muña silvestre, plantas medicinales.

Carátula del artículo

NOTAS DE INVESTIGACIÓN

In vitro inhibition of Candida spp., strains by wild mountain mint essential oil: A traditional medicinal plant in the high Andean regions of Peru

Inhibición in vitro de cepas de Candida spp., mediante el aceite esencial de muña silvestre: Una planta tradicional, de uso medicinal en zonas alto andinas del Perú

Salas-Apaza, Alex Mario*
Universidad Nacional del Altiplano. Facultad de Ciencias Biológicas. Programa Académico de Microbiología y Laboratorio Clínico. Av. Floral 1153, Puno 21001. Campus: Av. Sesquicentenario N.º 1150. Puno, Perú
Journal of the Selva Andina Research Society, vol. 15, núm. 2, pp. 90-99, 2024
Selva Andina Research Society

Recepción: 01 Febrero 2023

Corregido: 01 Junio 2023

Aprobación: 01 Mayo 2024

Publicación: 01 Agosto 2024

Introduction

Throughout history, fungi have been the least investigated and addressed pathogenic microorganisms by public health programs, both nationally and globally, in contrast to other infectious agents affecting humans1. Invasive fungal infections represent a complex challenge on a global scale, especially due to their high incidence and the high mortality rate they entail2. They are of fungal origin caused by opportunistic yeasts belonging to the genus Candida, which are very common nowadays3.

Candidiasis represents the most common morbimortality factor in the world, studies point out its high prevalence and incidence rate, being Candida albicans the most recurrent invasive species4, as well as C. parapsilosis, C. tropicalis, C. glabrata, C. krusei and other Candida spp.5-7, most people carry species of the Candida genus, as healthy carriers, however, this microorganism is considered commensal and not pathogenic8.

The main representative of the genus and species is C. albicans, which presents a variety of pathological conditions, superficial mucosal infections are the most common due to its high presence9, very frequently causing involvement of specific organs in patients with chronic conditions that place it in depressive conditions. Oropharyngeal infections attributed to Candida contribute significantly to the morbidity associated with HIV infection, with oral infection in this type of patient10-12. The various risk factors for infection are crucial because of their prevalence, which increases due to factors such as prolonged hospital stay, use of intensive care units (ICU), surgical interventions, catheterization, immunosuppressive treatment and states of immune suppression5.

Interest in the therapeutic use of antifungals arose due to the constant presence of infections reported over the years, however, the range of available anti-fungal treatments are restricted and progress in the development of new drugs has been slow, therefore, the exploration of alternative pharmacological options that present reduced rates of resistance and minimal side effects remains a significant challenge13. Ancestral natural medicine possesses a vast knowledge of pharmaceutical riches, with diverse preventive health benefits, derived from complex and historical-cultural knowledge14.

Muña, an aromatic plant species native to the Andes of South America, distributed between 2500 and 3500 meters above sea level, between temperate and cold climates of the central, northern and southern High Andean zones of Peru15, is traditionally used as a natural medicine, for its essential oil (EO), due to its composition with antioxidant, antibacterial and antifungal properties, these properties being recognized16, Studies on the use of muña on various Candida isolates have justified its efficient capacity, showing positive results17-19 however, the literature points out the broad antifungal activity of various vegetative species, such as lemon verbena, oregano, chamomile, lemon balm, rosemary, cinnamon, clove20-25, indicating their broad antifungal activities and great inhibitory efficacy on Candida.

Although there are no clinical reports on the use of EO from pineapple, ethnopharmacological and botanical knowledge can be of great help15. Its broad antimicrobial capacity is of great importance and public interest; evaluating in vitro inhibition provides important knowledge that lays the foundations for the use of traditional and modern medicine.

Materials and methods

Place of study. The research work was carried out in the high Andean lake city of Puno, district, province, department of Puno in the extreme south of Peru (longitude: 15° 50' 15'' W, latitude: 70° 01' 18'' S, altitude: 3827 masl), a region of vast natural wild growth of muña.


Figure 1
Steam injection entrained distillation process

Obtaining and preparation of plant material. The plant material (muña) used in the present study was obtained from woody shrubby plants of natural growth in wild form, in phenological state of vegetative growth (juvenile) in flowering periods, with the help of a commercial sickle 60 kg of the shrubby plant (gross weight) were harvested, selecting impurities and storing them in sacks of agricultural harvest, for its transfer to the laboratory of operations and unitary processes of the Universidad Nacional del Altiplano, only leaves were disintegrated for later drying without solar action, obtaining a final weight of 20 kg (net weight). The leaves were subjected to the process of distillation by dragging with steam injection, reaching a boiling point of 84° C, separating the water and oil as steam, condensing in a refrigeration system and separating the oil from the water by difference of densities in a decantation pear (Figure 1), the whole process lasted a period of 2.5 h, obtaining 75 mL of EO, finally it was conserved in a dark amber flask well closed in a fresh, dry place, protected from light, heat and humidity.


Figure 2
Isolated strains of Candida spp.

Experiment design. The Candida spp. strains used for the in vitro inhibition of the study were isolated from the post-practicum work tables of each laboratory of the School of Biological Sciences, using a sterile swab soaked in saline solution (Figure 2). The samples were cultured in glass Petri dishes with Sabo-uraud glucose agar (ASD) modified with the addition of chloramphenicol and incubated at 37° C for 72 h. In vitro inhibition was evaluated by observing the formation of inhibitory halos (HI) on Mueller-Hilton agar, seeded with Candida spp. using the dilution technique on modified agar, 50 µL of the different concentrations were deposited in wells (6 mm in diameter). Different concentrations 25, 50, 100, 150, 200 and 250 %, experimental groups (EG) where (25, 50, 100, 150, 200 and 250 µL respectively were the OE and 1000 µL of distilled water for each concentration), as well as the GE fluconazole of 25 µg GE positive (GE+) and the distilled water GE negative (GE-), after an incubation period at 37° C for 72 h, the reading of the quantitative results (mm) and evaluation of each EG under study was made.

Inferential statistical analysis. The data obtained by in vitro inhibition were subjected to an analysis of variance (ANOVA) and for the multiple comparison of means, the Tukey test (p = 0.05) was performed with the SAS statistical program version 3.6 (Basic Edition).

Results

The HI achieved by wild pineapple EO against Candida spp. strains tended to increase with respect to the concentration. On the other hand, the in vitro inhibition of wild pineapple EO at 250 % over a period of 72 h was superior to that of the other SGs and to that of SG+ (Table 1 and Figure 3).

Table 1
Variation of inhibitory halos of wild pineapple EO against Candida spp strains

GE+: Positive experimental group, N°: Number of replicates, SD (±): Standard deviation, mm: Millimeters, different letters between rows (GE) indicate significant difference. Tukey (p<0.05) for each GE.


Figure 3
Inhibitory halos (positive and negative group)

The different concentrations of wild pineapple EO show a varied susceptibility to Candida spp. strains, directly related to the increase in concentration. The concentration of wild pineapple EO at 250 % showed the highest HI and the highest in vitro susceptibility to Candida spp. strains and to GE+ (Table 1 and Figure 4).


Figure 4
Inhibitory haloes at different concentrations

When comparing the HI between the concentrations of wild pineapple EO at 25, 50, 100, 150, 200, and 250 %, GE+ and GE-, within 72 h, it could be observed that there was a significant difference (p < .0001) between each GE.

Discussion

Studies indicate the in vitro inhibitory effect of pineapple EO on various mycotic microorganism isolates; depending on its concentration, efficacy varies26-27, its optimum activity is reflected at high concentrations19,28, equaling the action of antifungal agents such as fluconazole29, in effect, the HI will be proportional to the concentration applied, possibly explained by the action of monoterpenes such as pulegone, menthone, limonene and myrcene18,30.

The higher HI with larger diameters obtained, compared to the other concentrations, indicate a greater antifungal inhibition31-33, the evaluation of HI based on the size of its diameter, provides a more detailed interpretation and evaluation, reason for the qualification of halos of 30 mm in diameter, after the application of 100 % pineapple oil, as sensitive17,18.

The application of EO, independent of the microorganisms, in the formation of HI will always be proportional to the concentration used, and HI of up to 19 mm in diameter can be observed in Streptococcus mutans and Lactobacillus acidophilus28,34. In the same context, studies on the extraction and use of EOs from various plant species have a broad antifungal capacity on various isolates of Candida, such as Schinus molle, Cymbopogon citratus (lemon verbena), Origanum vulgare (oregano), Matricaria chamonilla (chamomile), Melissa officinalis (lemon balm), Rormarinus officinalis (rosemary), Cinnamomun zeylanicum (cinnamon), Syzygium. aromaticum (clove)20-26,35 and species of the Baccharis genus36, reaffirming their innate inhibitory effect.

It is necessary to emphasize that the application of pineapple EO suggests a wide inhibitory activity, thus, they also point out the antibacterial capacity in vitro, inhibiting the development of Pseudomonas aeruginosa, Salmonella enterica, Staphylococcus aureus, Escherichia coli, Streptococcus mutans, Lactobacillus acidophilus, Salmonella sp, and Staphylococcus epidermidis34,37-41, increasing their efficacy in proportion to the concentration42, possibly due to the composition of active principles such as monoterpenes, alcohols, ketones and terpenic oxides, which have the capacity to inhibit microbial growth43, in addition to carvacrol and thymol, recognized oxygenated monoterpenes with antibacterial activity41.

Finally, the study suggests the in vitro inhibitory capacity of wild pineapple EO on Candida spp. strains, applied at different concentrations, with superior HI in relation to fluconazole. The EO extracted from wild pineapple offers an attractive option as a complementary therapy against fungal infections, due to its potential to combat antimicrobial resistance. The bioactive compounds present in pineapple, corroborated by previous studies, have shown a remarkable capacity to inhibit the growth of microorganisms, which may be especially relevant in a context where resistance to antifungals is a growing problem, the use of pineapple as part of a comprehensive therapeutic approach makes it a valuable option in the fight against fungal infections resistant to conventional treatments. In conclusion, knowing the in vitro inhibition of pineapple EO against microorganisms is fundamental to evaluate its therapeutic potential, optimize its use in the treatment of infectious diseases and better understand the underlying mechanisms of its antimicrobial activity.

Material suplementario
Literatura Citada
1. Gómez BL, Escandón P. Fungal infections: A growing threat. Biomedica 2023;43 Suppl 1: 11-6. DOI: https://doi.org/10.7705/biomedica.7214
2. Bassetti M, Taramasso L, Nicco E, Molinari MP, Mussap M, Viscoli C. Epidemiology, species distribution, antifungal susceptibility and outcome of nosocomial candidemia in a tertiary care hospital in Italy. PLoS One 2011;6(9):e24198. DOI: https://doi.org/10.1371/journal.pone.0024198
3. Pemán J, Quindós G. Current aspects of invasive diseases caused by Candida and other yeast fungi. Rev Iberoamer Micol 2016;33(3):133-9. DOI: https://doi.org/10.1016/j.riam.2015.10.001
4. Gudlaugsson O, Gillespie S, Lee K, Vande Berg J, Hu J, Messer S, et al. Attributable mortality of nosocomial candidemia, revisited. Clin Infect Dis 2003;37(9):1172-7. DOI: https://doi.org/10.1086/378745
5. Marchetti O, Bille J, Fluckiger U, Eggimann P, Ruef C, Garbino J, et al. Epidemiology of candidemia in Swiss tertiary care hospitals: secular trends, 1991-2000. Clin Infect Dis 2004;38(3):311-20. DOI: https://doi.org/10.1086/380637
6. Bailly S, Maubon D, Fournier P, Pelloux H, Schwebel C, Chapuis C, et al. Impact of antifungal prescription on relative distribution and susceptibility of Candida spp. - Trends over 10 years. J Infect 2016;72(1):103-11. DOI: https://doi.org/10.1016/j.jinf.2015.09.041
7. Anzules Guerra JB, Chila Santana LA, Milian Hernández EJ, Izaguirre Bordelois M. El Perfil clínico-microbiológico de la candidiasis vulvo-vaginal en mujeres embarazadas. Rev Higía de la Salud 2022;6(1). DOI: https://doi.org/10.37117/higia.v6i1.651
8. Martin MV, Lamb DJ. Frequency of Candida albicans serotypes in patients with denture-induced stomatitis and in normal denture wearers. J Clin Pathol 1982;35(8):888-91. DOI: https://doi.org/10.1136/jcp.35.8.888
9. Mantilla-Florez YF, Tuta-Quintero E, Brito-Rodriguez AJ, Clavijo-Moreno LC. Candidiasis y Candida albicans. Bol Mal Salud Amb 2021;61 (3):391-400. DOI: https://doi.org/10.52808/bmsa.7e5.613.003
10. Pinheiro A, Marcenes W, Zakrzewska JM, Robinson PG. Dental and oral lesions in HIV infected patients: a study in Brazil. Int Dent J 2004; 54(3):131-7. DOI: https://doi.org/10.1111/j.1875-595x.2004.tb00268.x
11. Moris DV, Melhem MSC, Martins MA, Mendes RP. Oral Candida spp. colonization in human immunodeficiency virus-infected individuals. J Venom Anim Toxins Incl Trop Dis 2008;14(2): 224-57.
12. Soysa NS, Samaranayake LP, Ellepola AN. Antimicrobials as a contributory factor in oral candidosis-a brief overview. Oral Dis 2008;14 (2):138-43. DOI: https://doi.org/10.1111/j.1601-0825.2006.01357.x
13. Negri M, Salci TP, Shinobu-Mesquita CS, Capoci IR, Svidzinski TI, Kioshima ES. Early state research on antifungal natural products. Molecules 2014;19(3):2925-56. DOI: https://doi.org/10.3390/molecules19032925
14. Bustamante-Paulino N, Aliaga-Camarena RJ, Guerra-Carhuapoma T. La pachamuña (Hedeoma mandoniana Wedd), medicina ancestral en pobladores de Huánuco, Perú. Rev Salud Pública 2021; 23(3):1-7. DOI: https://doi.org/10.15446/rsap.v23n3.88842
15. Rojas-Armas JP, Arroyo-Acevedo JL, Ortiz-Sánchez JM, Palomino-Pacheco M, Hilario-Vargas HJ, Herrera-Calderón O, et al. Potential toxicity of the essential oil from Minthostachys mollis: A medicinal plant commonly used in the traditional andean medicine in Peru. J Toxicol 2019; 2019:1987935. DOI: https://doi.org/10.1155/2019/1987935
16. Carhuapoma M, López S, Roque M, Velapatiño B, Whu D. Actividad antibacteriana del aceite esencial de Minthostachys mollis Griseb "Ruyaq muña". Ciencia e investigación 2009;12(2):83-9. DOI: https://doi.org/10.15381/ci.v12i2.3404
17. Cano Perez CA. Actividad antimicótica in vitro y elucidación estructural del aceite esencial de las hojas de Minthostachys mollis "muña" [tesis maestría]. [Lima]: Universidad Nacional Mayor de San Marcos; 2007 [citado 26 de octubre de 2022]. Recuperado a partir de: https://cybertesis.unmsm.edu.pe/handle/20.500.12672/2573
18. Cano C, Bonilla P, Roque M, Ruiz J. Actividad antimicótica in vitro y metabolitos del aceite esencial de las hojas de Minthostachys mollis "muña". Rev Peru Med Exp Salud Publica 2008;25(3):298-301.
19. Alcalá-Marcos KM, Alvarado-Gamarra AG, Alejandro-Paredes LA, Huayané-Linares E. Actividad antimicótica del aceite esencial de las hojas de Minthostachys mollis (muña) comparado con el fluconazol en cultivo de Candida albicans. Cienc Investig Méd Estud Latinoam 2011;16(2):83-6.
20. Chamba Pascal LM. Efecto antifúngico del aceite esencial del Origanum vulgare (orégano) y Cymbopogon citratus (hierba luisa), sobre cepas de Cándida albicans en comparación con la nistatina estudio invitro [tesis licenciatura]. [Quito]: Universidad Central del Ecuador; 2015 [citado 26 de octubre de 2023]. Recuperado a partir de: https://www.dspace.uce.edu.ec/entities/publication/416cd295-5afb-4177-ad7f-ce1975007029
21. Castillo Fernandez RM. Efectividad antimicótica del aceite esencial Origanum vulgare sobre Candida albicans ATCC10231 [tesis licenciatura]. [Lima]: Universidad Privada Norbert Wiener; 2021 [citado 26 de octubre de 2023]. Recuperado a partir de: https://hdl.handle.net/20.500.13053/5853
22. Alca Cruz Y. Efectividad antifúngica in vitro individual y su asociación de los aceites esenciales Origanum vulgare (Orégano) y Cinnamomum zeylanicum (Canela) a diferentes concentraciones sobre Candida albicans, Cusco 2018. Vis Odontol 2019;6(1):44-50.
23. Vásquez Gavidia CR. Efecto antimicótico in vitro de diferentes concentraciones del aceite esencial de la flor de Matricaria chamomilla (manzanilla) en cultivo de Candida albicans cepa ATCC 10231 [tesis licenciatura]. [Trujillo]: Universidad Católica los Angeles de Chimbote; 2018 [citado 16 de octubre de 2023]. Recuperado a partir de: https://repositorio.uladech.edu.pe/handle/20.500.13032/5259
24. Márquez Ruiz GC. Actividad antifúngica de Rosmarinus officinalis (Romero) y Melissa officinalis (Toronjil) contra especies del género Candida, aisladas de pacientes con vulvovaginitis [tesis licenciatura]. [Cumaná]: Universidad de Oriente; 2012 [citado 16 de octubre de 2023]. Recuperado a partir de: http://ri2.bib.udo.edu.ve/handle/123456789/2753?locale=en
25. Moran Andrade G, Sicha Quispe D, Tasayco Yacato NJ. Efecto antifúngico in vitro del aceite esencial de clavo de olor (Syzigium aromaticum) frente a Cándida albicans ATCC 10231 [tesis licenciatura]. [Lima]: Universidad Interamericana para el desarrollo; 2018 [citado 26 de octubre de 2023]. Recuperado a partir de: http://repositorio.unid.edu.pe/handle/unid/12
26. Huamaní Bendezú KF. Actividad antifúngica in vitro del aceite esencial de Minthostachys mollis comparado con el fluconazol sobre Candida albicans ATCC10231 [tesis licenciatura]. [Lima]: Universidad Nacional Federico Villarreal; 2021 [citado 16 de octubre de 2023]. Recuperado a partir de: https://repositorio.unfv.edu.pe/handle/20.500.13084/4655
27. Paucar-Rodriguez E, Peltroche-Adrianzen N, Cayo-Rojas CF. Actividad antibacteriana y anti-fúngica del aceite esencial de Minthostachys mollis frente a microorganismos de la cavidad oral. Rev Cuba Invest Biomed 2021; 40 Suppl 1: e1450.
28. Neyra Espinoza LCJ, Armas Galvez NM. Evaluación in vitro de la actividad fungicida y fungistática del extracto metanólico de la Minthostachys mollis (muña) sobre cepa de Candida albicans ATCC(r)1023 [tesis licenciatura]. [Lima]: Universidad Peruana de Ciencias Aplicadas; 2018 [citado 26 de octubre de 2023]. Recuperado a partir de: https://repositorioacademico.upc.edu.pe/handle/10757/625175
29. Jauregui Rojas AS. Efecto sinergico in vitro del aceite esencial de Minthostachys mollis más fluconazol sobre Candida albicans ATCC 10231 [tesis licenciatura]. [Trujillo]: Universidad Privada Antenor Orrego; 2016 Recuperado a partir de: https://repositorio.upao.edu.pe/handle/20.500.12759/4061
30. Maquera Lupaca D, Tello Villavicencio M, Romero Matos S, Cotacallapa Vilca D. Componentes químicos de los aceites esenciales de muña Minthostachys mollis (kunth.) griseb. en Huánuco. Investig Valdizana 2009;3(2):100-6.
31. Hernandez Cabrera ME. Efecto antifúngico del aceite esencial de Minthostachys mollis (muña) sobre las cepas de Cándida albicans ATCC 10231. Estudio in vitro [tesis licenciatura]. [Quito]: Universidad Central del Ecuador; 2018 [citado 12 de octubre de 2023]. Recuperado a partir de: https://www.dspace.uce.edu.ec/entities/publication/d8864a41-6ca2-4c78-9492-650287ad196f
32. Aranibar Quiroz VA. Eficacia antimicótica del aceite esencial de Minthostachys mollis (muña) sobre cepas de Candida albicans aisladas, Arequipa 2018 [tesis licenciatura]. [Arequipa]: Universidad Alas Peruanas; 2019 [citado 26 de octubre de 2023]. Recuperado a partir de: https://repositorio.uap.edu.pe/handle/20.500.12990/7351
33. Cruz Choque AM, Huamaní Rojas W. Aceites esenciales de plantas medicinales con efecto anti-fúngico en sudamérica: una revisión sistemática [tesis licenciatura]. [Lima]: Universidad Maria Auxiliadora; 2020 [citado 16 de octubre de 2023]. Recuperado a partir de: https://repositorio.uma.edu.pe/handle/20.500.12970/348
34. Sánchez-Tito MA, Cartagena-Cutipa R, Collantes-Díaz I. Efecto antibacteriano del aceite esencial de Minthostachys mollis (Griseb) L. frente a Streptococcus mutans y Lactobacillus acidophilus. Rev Cubana Invest Bioméd 2021;40(3): e961.
35. Lalangui Pazmiño GG, Palacios Paredes EW. Efecto inhibitorio del aceite esencial de Schinus molle a diferentes tiempos y concentraciones, sobre Cándida albicans. RECIMUNDO 2021;5(2): 398-06. DOI: https://doi.org/10.26820/recimundo/5.(2).abril.2021.398-406
36. Martínez S, Mollinedo P, Mamani O, Almanza G, Terrazas E. Estudio in vitro de la actividad antifúngica de extractos vegetales del género Baccharis sobre Candida albicans. Rev Bol Quím 2011;28(1):35-40.
37. Ordinola Becerra CM, Vera Gonzalez MM. Efecto inhibitorio in vitro de extractos etanólicos de Minthostachys mollis (Benth.) Griseb., Argemone subfusiformis Ownbey y Solanum americanum Mill. sobre Staphylococcus aureus y Klebsiella pneumoniae y su toxicidad sobre Artemia salina en condiciones de laboratorio [tesis licenciatura]. [Lambayeque]: Universidad Nacional Pedro Ruiz Gallo; 2022 [citado 16 de octubre de 2023]. Recuperado a partir de: https://repositorio.unprg.edu.pe/handle/20.500.12893/10009
38. Abanto Machuca M, Perez Marchena R. Efecto antibacteriano in vitro del aceite esencial de las hojas de Minthostachys mollis (Kunth) Griseb "muña" en cepas de Escherichia coli y Staphylococcus aureus [tesis licenciatura]. [Cajamarca]: Universidad Privada Antonio Guillermo Urrelo; 2016 [citado 16 de octubre de 2023]. Recuperado a partir de: http://repositorio.upagu.edu.pe/handle/UPAGU/352
39. Barba Carrión BE. Efecto antibacteriano in vitro del aceite esencial de Minthostachys mollis (muña), sobre Salmonella comparado con Cotrimoxazol [tesis licenciatura]. [Trujillo]: Universidad Cesar Vallejo; 2019 [citado 26 de octubre de 2016]. Recuperado a partir de: https://repositorio.ucv.edu.pe/handle/20.500.12692/40287
40. Rojas-Molina JO, Pino JA, Cevallos-Carvajal ER, Zambrano-Ochoa ZE, Vaca-Castro CE, Molina-Borja FA, et al. Aceite esencial de hojas de Minthostachys mollis [HBK] Griseb. del Ecuador: Extracción, composición química, capacidad antioxidante y actividad antimicrobiana. Bol Latinoam Caribe Plantas Med Aromát 2024;23(3): 437-4. DOI: https://doi.org/10.37360/blacpma.24.23.3.30
41. Torrenegra-Alarcón M, Granados-Conde C, Durán-Lengua M, León-Méndez G, Yáñez-Rueda X, Martínez C, et al. Composición química y actividad antibacteriana del aceite esencial de Minthostachys mollis. Orinoquia 2016;20(1):69-74. DOI: https://doi.org/10.22579/20112629.329
42. Cruzado Donato JL. Concentración inhibitoria mínima "in vitro" del Minthostachis mollis (muña) frente al Streptococcus mutans ATCC 35668 [tesis licenciatura]. [Trujillo]: Universidad Nacional de Trujillo; 2012 [citado 16 de octubre de 2023]. Recuperado a partir de: https://dspace.unitru.edu.pe/bitstreams/08f7164d-d95f-4a51-9594-9595a1a41be9/download
43. Laura-Ticona J, Chambi-Rodriguez AD, Coaquira-Quispe JJ. Efecto antimicrobiano in vitro de aceite esencial de eucalipto (Eucalyptus globulus labill) y muña (Minthostachys mollis). Rev Investig Altoandin 2024;26(1):36-45. DOI: http://dx.doi.org/10.18271/ria.2024.586
Notas
Notes
Source of financing: The investigation was assumed by the researcher.

_______

Conflicts of interest: There is no conflict of interest in the investigation.

________

Acknowledgments: To the Universidad Nacional del Altiplano, School of Biological Sciences, Microbiology and Clinical Laboratory Program.

________

Ethical considerations: The research complied with the requirements established by the Universidad Nacional del Altiplano through the Vice Rector's Office for Research and the PILAR Platform (Platform for University Research Integrated to Academic Work with Accountability).

________

Research limitations: There were no limitations to the research.

________

Article ID: 164/JSARS/2023

________

Editor's Note: Journal of the Selva Andina Research Society (JSARS) remains neutral with respect to jurisdictional claims published in maps and institutional affiliations, and all statements expressed in this article belong solely to the authors, and do not necessarily represent those of their affiliated organizations, or those of the publisher, editors, and reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is neither guaranteed nor endorsed by the publisher.
Notas de autor
* Dirección de contacto: Universidad Nacional del Altiplano. Facultad de Ciencias Biológicas.Programa Académico de Microbiología y Laboratorio Clínico. Av. Floral 1153, Puno 21001. Campus: Av. Sesquicentenario N.º 1150. Tel: +51-925701623. Puno, Perú.

Alex Mario Salas-Apaza E-mail address: asalas@unap.edu.pe


Figure 1
Steam injection entrained distillation process

Figure 2
Isolated strains of Candida spp.
Table 1
Variation of inhibitory halos of wild pineapple EO against Candida spp strains

GE+: Positive experimental group, N°: Number of replicates, SD (±): Standard deviation, mm: Millimeters, different letters between rows (GE) indicate significant difference. Tukey (p<0.05) for each GE.


Figure 3
Inhibitory halos (positive and negative group)

Figure 4
Inhibitory haloes at different concentrations
Buscar:
Contexto
Descargar
Todas
Imágenes
Visor de artículos científicos generados a partir de XML-JATS por Redalyc