Revista Internacional de Contaminación Ambiental Revista internacional de contaminación ambiental ISSN: 0188-4999

Centro de Ciencias de la Atmósfera, UNAM

Soledad-Rodríguez, Beatriz Elena
ANÁLISIS DE CONTAMINANTES AMBIENTALES CON POLÍMEROS DE IMPRONTA MOLECULAR
Revista internacional de contaminación ambiental, vol. 36, núm. 1, 2020, pp. 197-207
Centro de Ciencias de la Atmósfera, UNAM

DOI: https://doi.org/10.20937/RICA.2020.36.32101

Disponible en: https://www.redalyc.org/articulo.oa?id=37072325017

Número completo

Más información del artículo

Página de la revista en redalyc.org

abierto

Sistema de Información Científica Redalyc

Red de Revistas Científicas de América Latina y el Caribe, España y Portugal Proyecto académico sin fines de lucro, desarrollado bajo la iniciativa de acceso

Revisión / Review

ANÁLISIS DE CONTAMINANTES AMBIENTALES CON POLÍMEROS DE IMPRONTA MOLECULAR

Analysis of environmental contaminants with molecularly imprinted polymers

Beatriz Elena SOLEDAD-RODRÍGUEZ

Centro de Investigación y Desarrollo de Ingeniería, Universidad Católica Andrés Bello, Final Av. Teherán, Urbanización Montalbán, Caracas 1020, A.P. 20.332, Venezuela Correo electrónico: bsoledad@ucab.edu.ve

(Recibido: febrero 2018; aceptado: abril 2019)

Palabras clave: ambiente, extracción en fase sólida, MISPE

RESUMEN

Los contaminantes ambientales afectan negativamente al ambiente, deteriorando el planeta. El análisis de mezclas complejas frecuentemente requiere diversos pasos de pretratamiento, y si la sustancia a analizar está presente en baja concentración, es necesario concentrarla para que sea posible detectarla mediante técnicas analíticas estándares. Si se trata de una muestra compleja de compuestos similares, se requiere un paso que implique su limpieza. La extracción en fase sólida es una técnica ampliamente utilizada para el pretratamiento de muestras, ya que es flexible y fácil de automatizar. Los polímeros de impronta molecular tienen propiedades de reconocimiento molecular selectivo debido a que los sitios de reconocimiento dentro de la matriz del polímero son complementarios de la molécula en análisis en la forma y posición de los grupos funcionales. La técnica de impresión molecular se basa en la preparación de un polímero altamente entrecruzado alrededor de un analito utilizado como molécula molde, el cual inicialmente se pone en contacto con un monómero adecuado para formar un complejo de prepolimerización y posteriormente se le añade el entrecruzante, el iniciador y el disolvente con el que se lleva a cabo la polimerización. Una vez obtenido el polímero, se extrae la molécula molde, liberando los sitios de reconocimiento específico. En este trabajo se presenta una revisión del proceso de impresión molecular y sus aplicaciones en combinación con la extracción en fase sólida, para que pueda emplearse como alternativa a la preconcentración de muestras de contaminantes ambientales.

Key words: environment, solid phase extraction, MISPE

ABSTRACT

Environmental pollutants affect negatively the environment, deteriorating the planet. The analysis of complex mixtures frequently requires several pretreatment steps and if the substance to be analyzed is present in low concentration, it needs to be concentrated so that it can be detected by standard analytical techniques. If it is a complex sample of similar compounds, a step is necessary that involves their cleaning. Solid-phase extraction is a widely used technique for sample pretreatment, since it is flexible and easy to automate. Molecularly imprinted polymers possess selective molecular recognition

properties because the recognition sites within the polymer matrix are complementary to the molecule under analysis in the form and position of the functional groups. The molecular imprinting technique is based on the preparation of a highly cross-linked polymer around an analyte used as a template molecule, which is initially contacted with a suitable monomer in order to form a pre-polymerization complex and subsequently adds the cross-linker, the initiator and the solvent with which the polymerization is carried out. Once the polymer is obtained, the template molecule is extracted releasing the specific recognition sites. This paper presents a review of the molecular printing process and its applications in combination with solid phase extraction, to be used as an alternative for the pre-concentration of samples of environmental contaminants.

INTRODUCCIÓN

Una gran cantidad de compuestos químicos de origen antrópico alcanzan el ambiente contaminando aire, suelos y agua. Entre los contaminantes ambientales más comunes se encuentran los fármacos, provenientes tanto de las industrias farmacéuticas como de hospitales, urbanizaciones, cría de animales, pesticidas y herbicidas empleados en la agricultura, colorantes utilizados en industrias textiles, metales provenientes de minas, centrales nucleares y efluentes líquidos generados en actividades mineras (especialmente el drenaje ácido de minas, DAM). Estos compuestos causan grandes problemas ambientales debido a su alto potencial de contaminación tanto de suelos como de los recursos hídricos superficiales v subterráneos, y pueden ingresar en los seres humanos a través de las vías respiratorias, digestivas o de la piel, ocasionando problemas toxicológicos (Zwald et al. 2004, Sawant et al. 2005, Montero y Martínez 2014, Quizhpe et al. 2014).

La química analítica desempeña un papel muy importante en la identificación y cuantificación de estos compuestos, y generalmente las técnicas de análisis empleadas más ampliamente son la cromatografía líquida de alta resolución, la cromatografía de gases y la espectrofotometría.

Como los residuos de los contaminantes ambientales usualmente se encuentran en muy bajas concentraciones (en el orden de µg/kg) es necesario realizar un paso previo de preconcentración de la muestra para incrementar la eficiencia y sensibilidad del análisis instrumental, el cual requiere de equipos con alta sensibilidad. El investigador debe enfocarse a la estandarización de métodos que permitan determinar el analito y contribuyan a mejorar las técnicas de análisis, haciéndolas más rápidas y efectivas, a fin de que puedan aplicarse a diversas muestras. Estas nuevas estrategias de análisis y determinación de muestras pueden emplearse en diversos laboratorios y para ello deben ser validadas, determinándose las

características analíticas del método, tales como el tiempo de retención, el límite de detección, la linealidad del método, su reproducibilidad y repetibilidad, así comoy el porcentaje de recuperación.

La tecnología de impresión molecular está basada en la elaboración de polímeros sintéticos altamente estables llamados polímeros de impronta molecular (MIP, por sus siglas en inglés). Dicha tecnología, basada en los modelos de funcionamiento de los sistemas biológicos de los seres vivos, conduce a polímeros que poseen propiedades de reconocimiento molecular selectivo debido a que los sitios de reconocimiento dentro de la matriz del polímero son complementarios al analito en la forma y posición de los grupos funcionales. Estos materiales sintéticos tienen la capacidad de interaccionar de forma selectiva con los analitos haciéndolos especialmente adecuados para la detección y cuantificación de contaminantes en la química analítica. El avance experimentado por esta tecnología se ha incrementado en los últimos años. De 1930 a la fecha se han publicado numerosos estudios que se han utilizado con diferentes propósitos (Sellergen 2001, Komiyama et al. 2003, Gilart et al. 2014).

Dada la importancia de la preparación de la muestra para la determinación de contaminantes ambientales, el objetivo de este trabajo es presentar una revisión de diversas fuentes bibliográficas sobre el proceso de impresión molecular así como la aplicación de estos polímeros como adsorbentes para la separación y purificación de muestras para análisis, empleando la técnica de extracción en fase sólida (SPE, por sus siglas en inglés) basada en polímeros de impronta molecular (MISPE, por sus siglas en inglés).

PROCESO DE IMPRESIÓN MOLECULAR

La técnica de impresión molecular se basa en la síntesis de polímeros estables con propiedades de reconocimiento molecular. Es necesario que se lleve a cabo la polimerización en presencia del analito que se va a determinar. Posteriormente, los polímeros son utilizados para la separación del compuesto a analizar contenido en una mezcla compleja de sustancias. Dicho reconocimiento está basado en la creación de cavidades que son complementarias, en tamaño y forma a la molécula molde, durante el proceso de polimerización (Piletsky y Turner 2002).

Moléculas molde (templates)

Los compuestos que pueden utilizarse para la preparación de MIP son variados. Entre ellos, se han empleado moléculas como drogas, aminoácidos, carbohidratos, proteínas, hormonas, pesticidas, antibióticos en forma exitosa para la preparación de matrices de reconocimiento selectivo (Gilart et al. 2014).

El analito es el elemento mas importante para la elección de los diferentes componentes en la síntesis de un MIP, y en la medida en que aumenta su tamaño, menor es la probabilidad de que la cavidad formada esté bien definida y sea selectiva para esa molécula. También hay que considerar que moléculas de gran tamaño encontrarán impedimentos estéricos mayores a aquellas de menor tamaño.

Monómeros funcionales

Se debe escoger al monómero más adecuado en función de las características y grupos funcionales del analito, con el cual debe formarse un complejo de prepolimerización estable. Es deseable que entre el analito y el monómero se den interacciones complementarias que aumenten la afinidad y selectividad de las cavidades generadas (Rachkov y Minoura 2001). Debe existir una relación molar entre la molécula molde y el monómero funcional cercana a 1:4 y no debe añadirse un exceso de monómero, ya que puede ocasionar la formación de interacciones no específicas con el analito. Entre los monómeros funcionales típicos usados en la preparación de MIP se encuentran los ácidos carboxílicos (ácido acrílico, ácido metacrílico, ácido 4-vinilbenzoico), los ácidos sulfónicos (ácido 2-acrilamido-2-metil-1-propanosulfónico) y las bases heteroaromáticas débiles (2-vinilpiridina, 4-vinilpiridina, 1-vinilimidazol).

Entrecruzante

El tipo y la cantidad del agente entrecruzante usado en la síntesis del polímero impreso afecta la selectividad, ya que éste es el responsable de la generación del polímero tridimensional, así como de la estabilización de los sitios de enlazamiento. Por otra parte, proporciona la estabilidad mecánica a la matriz

del polímero (Sellergren 2001), lo que le permite un reconocimiento molecular adecuado.

El número de entrecruzantes utilizados es limitado, puesto que es necesario que sean solubles en la solución prepolimérica. Los entrecruzantes más utilizados son el etilenglicol dimetacrilato, el 4-divinilbenceno, el trietilenglicol dimetacrilato, el trimetilolpropano trimetacrilato, el metilen-bisacrilamida y el etilen-bis-acrilamida.

Iniciador

Se emplea para iniciar el proceso de polimerización por radicales libres una vez preparada la mezcla de reactivos. Entre las moléculas iniciadoras más utilizadas se encuentran el peróxido de benzoílo (PB), las de tipo azo, como el 2,2′-azo-bis-isobutironitrilo (AIBN) o el azodimetilvaleronitrilo, así como el peróxido de hidrógeno, el peróxido de acetilo, el peróxido de laurilo y el *t*-butil peracetato (Yan y Row 2006, Soledad-Rodríguez et al. 2017).

Disolvente porogénico

El papel del disolvente porogénico durante el proceso de impresión molecular es el de gobernar la fuerza de las interacciones no covalentes e influenciar la morfología del polímero. Debe cumplir con ciertos requisitos tales como solubilizar a la molécula molde, al iniciador, al monómero funcional y al entrecruzante, y tener la capacidad de producir grandes poros para asegurar las buenas propiedades de intercambio del polímero resultante. Como requisito, debe ser de baja polaridad para reducir las interferencias durante la formación del complejo entre la molécula molde y el monómero, a fin de que exista una alta selectividad del polímero.

PREPARACIÓN DE LOS POLÍMEROS DE IMPRONTA MOLECULAR

Para la preparación de los polímeros de impronta molecular se ponen en contacto la molécula molde con un monómero funcional adecuado con el fin de formar un complejo de prepolimerización. Luego se añaden el entrecruzante, el iniciador y el disolvente (porogen) para que tenga lugar la polimerización; una vez sintetizado el polímero, se extrae la molécula molde, dejando libres los sitios de reconocimiento específico (Lanza et al. 2001, Sellergen 2001, van Nostrum 2005), como se observa en la **figura 1**. El método de impresión molecular depende de la naturaleza del agregado formado entre el monómero y la molécula molde.

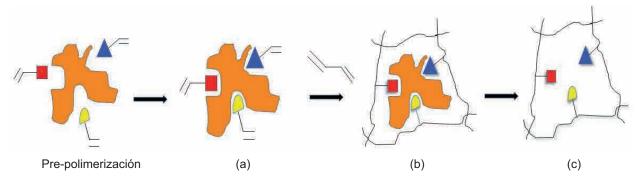


Fig. 1. Pasos a seguir en la preparación de un polímero de impronta molecular

La mezcla o enlazamiento de uno o varios monómeros funcionales con la molécula molde en una cantidad adecuada de solvente o líquido de dispersión se realiza en el paso representado en la figura 1a, en el cual se forma o bien un conjugado covalente (impresión covalente) o un agregado no covalente (impresión no covalente). La polimerización del monómero en presencia de un entrecruzante para preparar una red del polímero en la cual los monómeros funcionales se fijan alrededor de la molécula molde se efectúa en el siguiente paso (Fig. 1b). A continuación se lleva a cabo la eliminación de la molécula molde de la matriz polimérica (Fig. 1c); esto libera las cavidades creadas en la matriz y permite que el MIP pueda reconocer de forma selectiva el analito (y eventualmente otros compuestos estructuralmente análogos). Dependiendo del método de impresión molecular y de la naturaleza del analito, se efectuará la eliminación de la molécula molde.

APLICACIONES DE LOS POLÍMEROS DE IMPRONTA MOLECULAR COMO ADSORBENTES EN LA EXTRACCIÓN EN FASE SÓLIDA Y COMO PRECONCENTRADORES DE MUESTRAS

En el análisis químico ambiental, la tecnología de impresión molecular es utilizada por su versatilidad, economía, robustez, resistencia, estabilidad a elevadas presiones y temperaturas, y sus propiedades de reconocimiento selectivo.

Se han preparado MIP específicos para diferentes contaminantes ambientales tales como pesticidas y productos farmacéuticos (por ejemplo, antibióticos y analgésicos, antiinflamatorios).

Como los polímeros de impronta molecular tienen la capacidad de reconocer las moléculas molde, se han usado en diversas aplicaciones basadas en el reconocimiento molecular. A continuación, se dará una breve reseña de estas aplicaciones y se hará énfasis en su uso como preconcentradores de muestras.

En el **cuadro I** se presentan algunas aplicaciones de los polímeros de impronta molecular efectuadas en años recientes para detectar y determinar los contaminantes en muestras ambientales.

Los polímeros de impronta molecular, se emplean como fase estacionaria para la adsorción, preconcentración y purificación de compuestos en SPE. En una revisión bibliográfica, Komiyama et al. (2003) confirmaron que la aplicación de los MIP en la determinación de contaminantes ambientales empleando diferentes técnicas posibilitan su empleo como adsorbentes en los procesos de SPE para la extracción selectiva de los analitos de muestras complejas. Ésta es una técnica ampliamente utilizada para el pretratamiento de muestras y consiste en percolar un volumen conocido de la muestra a través de un adsorbente sólido empaquetado en condiciones controladas, lo cual favorece la adsorción preferencial del analito sobre los componentes de la matriz. Se recupera luego el analito del adsorbente y se extrae en un pequeño volumen (Rachkov y Minoura 2001). En la figura 2 se presenta el procedimiento de extracción en fase sólida.

Los MIP pueden emplearse directamente como columnas de extracción o como cartuchos y combinarse con diferentes instrumentos de análisis. Su alta afinidad y selectividad se traducen en menores límites de detección, tiempos de análisis más cortos e instrumentación más económica.

La metodología empleada en el análisis de muestras de residuos comprende diversas etapas que incluyen la extracción del analito de la muestra, la limpieza (*clean-up*) para eliminar una parte importante de los interferentes, la concentración del extracto obtenido para el análisis y, finalmente, la detección sensible y selectiva del analito o analitos de interés.

Analito	Matriz	Sistema analítico	Referencia
17 β-estradiol	Aguas	SPE-HPLC	(Li et al. 2009)
Fenoxiácidos	Aguas	Electroforesis capilar o HPLC	(Baggiani y Giovanoli 2005)
Colorantes (AG16)	Aguas	Sensores ópticos biomimeticos	(Foguel et al. 2017)
Disruptores endocrinos	Aguas	HPLC	(Kubo 2012)
Ni (II)	Tierra y mineral de oro polimetálico, pescado, hortalizas, sedimentos de río y agua de río.		(Behbahani et al. 2012)
Pd (II)	Agua de grifo y agua de río, hierba y muestras certificadas de mineral de platino	ETAAS	(Godlewska-Zylkiewicz et al. 2013)
Parabenos	Suelo y sedimentos	HPLC	(Díaz-Álvarez et al. 2016)
Disruptores endocrinos	Sedimentos y muestras de lodos	HPLC	(Núñez et al. 2008)
Benzo[a]pireno (BAP)	Muestras acuosas ambientales	HPLC-MS	(Krupadam et al. 2014)
Cefaclor y cefalexina	Muestras acuosas ambientales	Barra de agitación acoplada con HPLC	(Peng et al. 2017)
AINE	Agua continental y de orina	LC-DAD y MS-MS	(Martínez-Sena et al. 2016)
tolclofos-metilo, phoximo, clorpirifos y paratión-metilo	Aguas ambientales	GC	(Zhou et al. 2015)
Antibióticos de sulfo- namida y metabolitos acetilados	Aguas ambientales	LC-MS	(Chen et al. 2013)
Cu (II)	Aguas ambientales	SEM	(Roushani et al. 2015)
		,	

SPE-HPLC: extracción en fase sólida acoplada a cromatografía líquida de alta resolución, HPLC: cromatografía líquida de alta resolución, FAAS: absorción atómica con llama, ETAAS: espectrometría de absorción atómica, LC-DAD: =cromatografía líquida con diodos, MS-MS: espectrometría de masa-detectores de tándem, GC: cromatografía de gases, LC-MS: cromatografía líquida-espectrometría de masas en tándem, SEM: microscopia electrónica de barrido, AINE: fármacos antiinflamatorios no esteroideos

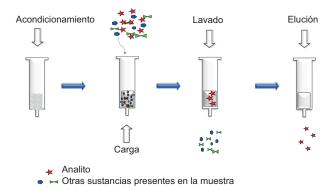


Fig. 2. Procedimiento de extracción en fase sólida

La etapa de preparación de la muestra en un método analítico puede ser la más laboriosa. Entre las estrategias para extraer los residuos y realizar la limpieza de la muestra se encuentran la extracción líquido-líquido, la extracción en fase sólida, la dispersión de matriz en fase sólida, y el método "rápido, fácil, económico, efectivo, fuerte y seguro" (QuEChERs, por sus siglas en inglés), entre otros.

La mejora de la selectividad durante la extracción y/o posterior limpieza de extractos de muestra en el análisis ambiental es un área de intensa actividad de investigación (Martín-Esteban 2016), y la incorporación de MIP en la preparación de muestras aparece como una de las alternativas más versátiles y prometedoras.

El método de extracción más empleado en el análisis de residuos de medicamentos veterinarios en matrices como leche y huevos es la extracción líquido-líquido utilizando acetonitrilo como disolvente, seguida de una etapa de limpieza de la muestra utilizando extracción en fase sólida para permitir la cuantificación de residuos, lo que generalmente se efectúa por cromatografía (Pacheco-Silva et al. 2014).

Se han desarrollado técnicas basadas en la impresión molecular para el reconocimiento molecular selectivo como pretratamiento de contaminantes ambientales. Una de las herramientas más prometedoras en las ciencias de la separación y purificación es la tecnología de impresión de iones, debido a su alta selectividad, buena estabilidad, simplicidad y bajo costo (Hande et al. 2015). El tratamiento de aguas residuales implica la eliminación selectiva de iones metálicos altamente tóxicos como Hg (II), Pb (II), Cd (II) y As (V), entre otros. Se pueden recuperar iones metálicos como oro, plata, platino y paladio mediante la preconcentración de las muestras empleando esta tecnología.

En la determinación de 17 β-estradiol, se preparó un MIP altamente selectivo para dicho analito, usando una técnica de impresión no covalente (Li et al. 2009). Los resultados de la prueba mostraron que el MIP exhibía una afinidad de unión significativa hacia la molécula molde empleando extracción en fase sólida acoplada con cromatografía líquida de resolución (SPE-HPLC, por sus siglas en inglés), lo cual sugiere que el polímero MIP puede emplearse para eliminar estos compuestos de aguas contaminadas.

La presencia de uranio en muestras de suelo y agua subterránea y en algunos casos en el agua potable, ha incrementado los problemas de salud pública debido a la toxicidad química del uranio empobrecido en dosis elevadas. Por esta razón, se han tratado de desarrollar métodos para la extracción de este elemento de fuentes contaminadas, entre los cuales se encuentran técnicas que emplean polímeros de impronta molecular (Aly y Hamza 2013).

La extracción en fase sólida es una manera adecuada de limpiar y preconcentrar muestras que contienen trazas de fenoxiácidos clorados. Se han propuesto procedimientos MISPE como sustitutos válidos de los procedimientos de inmunoafinidad debido a su simplicidad de preparación y alta estabilidad en condiciones químicas extremas. El polímero obtenido mediante la impresión del herbicida ácido 2,4,5-triclorofenoxiacético se utilizó como adsorbente de SPE para extraer y concentrar selectivamente varios fenoxiácidos relacionados (ácido 2,4,5-triclorofenoxiacético, ácido 2,4-diclorofenoxiacético, ácido (R, S) -2- (2,4,5-triclorofenoxi) -propiónico, ácido (R, S) -2- (2,4-diclorofenoxi) -propiónico, ácido 2-metil-4-clorofenoxiacético y ácido (R, S) -2- (2-metil-4-clorofenoxi) -propiónico de muestras de agua antes de realizar el análisis por electroforesis capilar o cromatografía líquida de alta resolución (Baggiani y Giovanoli 2005).

Una alternativa para determinar contaminantes ambientales como tintes textiles, es el uso de polímeros con impresión molecular con extracción en fase sólida o con sistemas de reconocimiento de sensores. La síntesis de MIP se efectúa usando colorante AG16 como molécula molde, 1-vinilimidazol como monómero funcional, etilenglicol dimetacrilato como agente entrecruzante, 2,2'-azobis (2-metilpropionitrilo) como iniciador y metanol como disolvente. El MIP mostró alta eficiencia en la extracción del colorante en muestras de agua, presentando una tasa de recuperación cercana al 100 % y mejor rendimiento que los cartuchos de SPE comerciales, por lo que resulta prometedor para determinar tintes en diferentes matrices de importancia ambiental (Foguel et al. 2017).

Se han estudiado las ventajas y desventajas de la aplicación de varios adsorbentes comunes en el análisis de muestras ambientales incluyendo carbón activado, resina de polímero orgánico, geles de sílice unidos, materiales nanométricos y adsorbentes con polímeros de impronta molecular (Huang y Zhou 2012). En el futuro, las investigaciones deberán centrarse en el desarrollo de adsorbentes con gran área de superficie específica, fuerte capacidad de adsorción, fácil elución y buena selectividad.

La separación selectiva y/o concentración de contaminantes ambientales como disruptores endocrinos, compuestos aromáticos halogenados y toxinas naturales solubles en agua se ha logrado mediante técnicas como la impresión de fragmentos y la técnica de inmovilización de intervalos (Kubo 2012).

Se obtuvo un polímero nanoestructurado iónico para la preconcentración selectiva de los iones Ni (II) por polimerización en masa a partir de 2-vinilpiridina como monómero funcional, dimetacrilato de etilenglicol como entrecruzante, 2,2'-azobisisobutironitrilo como iniciador, rojo de alizarina S (sulfonato de sodio de alizarina) como ligando de unión al níquel y níquel como el ion molde, en solución de acetonitrilo (Behbahani et al. 2012). Las partículas de IIP se caracterizaron mediante análisis elemental, difracción de rayos X (DRX), espectroscopia IR de transformada de Fourier (FT-IR), análisis termogravimétrico (TGA) y térmico diferencial, y por microscopia electrónica de barrido (SEM). Se eliminaron los iones de Ni (II) impresos de la estructura polimérica usando HCl al 5 % como disolvente de elución. El material tuvo la capacidad de unir selectivamente el Ni (II) a partir de soluciones de diversos valores de pH, siendo el mejor el pH 8.0. Tanto el proceso de adsorción como el de desorción ocurrieron en un tiempo de 5 min. La capacidad máxima de adsorbente del polímero impreso con iones fue de 73 mg/g. Después de la desorción, se determinó el Ni (II) por absorción atómica con llama (FAAS, por sus siglas en inglés), con una desviación estándar relativa y un límite de detección de 3.4 % y 0.15 ng/mL, respectivamente.

El método se aplicó a la determinación de níquel en materiales de referencia certificados (tierra y mineral de oro polimetálico), pescado, hortalizas, sedimentos de río y agua de río.

Se prepararon e imprimieron en una red polimérica complejos de Pd (II) con pirrolidinaditiocarbamato de amonio (APDC), N,N'-dietiltiourea (DET) y dimetilglioxima (DMG). Los polímeros con impresión iónica (IIP, por sus siglas en inglés) se sintetizaron por copolimerización de 4-vinilpiridina (VP) y estireno como monómeros funcionales y divinilbenceno como agente entrecruzante en presencia de 2,2-azo-bis-isobutironitrilo como iniciador. Se estudió la influencia del volumen, el pH y el caudal de la muestra sobre la eficiencia de extracción de Pd en condiciones dinámicas. El Pd (II) se pudo retener cuantitativamente en cada uno de los adsorbentes estudiados en un intervalo de pH de 0.5 a 1.0 y se eluyó con una solución ácida de tiourea. El polímero con el complejo Pd-DET-VP impreso ofrecía la más alta selectividad para Pd (II) sobre ciertos componentes de la matriz, tales como Pt (IV), Ni (II) y Cu (II). El bajo pH de la muestra fue una ventaja importante del procedimiento de separación, ya que permitió una separación efectiva de Pd (II) de matrices ambientales complejas. El método de separación desarrollado se aplicó con éxito a la determinación electrotérmica por espectrometría de absorción atómica (ETAAS) de trazas de Pd en agua de grifo y agua de río, hierba y muestras certificadas de mineral de platino (CRM, SARM 7 y SARM 76) con reproducibilidad inferior al 6.5 %. El límite de detección para Pd (II) obtenido por ETAAS después de la preconcentración en el polímero Pd-DET-VP fue de 0.012 ng/mL para 75 mL de volumen de muestra (Godlewska-Zylkiewicz et al. 2013).

Se realizaron con éxito análisis ambientales de muestras sólidas mediante el análisis de parabenos en suelo y sedimentos, gracias a la microextracción en fase sólida con polímeros de impronta molecular. Las recuperaciones relativas obtenidas a niveles de enriquecimiento de 10 ng/g de parabenos fueron de 78-109 % para las muestras de suelo y 83-109 % para las de sedimentos con una desviación estándar relativa < 15 % (n = 3) (Díaz-Álvarez et al. 2016).

Los isómeros de nonilfenol (NP), el nonilfenol lineal (4-n-NP) y los derivados NP etoxilados de cadena corta (NPEO1 y NPEO2) son productos de degradación de polietoxilatos de nonilfenol, un grupo de tensoactivos utilizados en todo el mundo. Todos se consideran disruptores endocrinos debido a su capacidad de imitar los estrógenos naturales. En un trabajo realizado por Núñez et al. (2008) se describe

la preparación y evaluación de varios polímeros con impresión molecular 4-n-NP para la extracción y limpieza selectiva de 4-n-NP, NP, NPEO1 y NPEO2 a partir de muestras sólidas ambientales complejas. Entre las diferentes combinaciones ensayadas, un polímero impreso a base de ácido metacrílico preparado en tolueno proporcionó el mejor rendimiento para SPE con impresión molecular (MISPE). En condiciones óptimas de MISPE, el polímero tuvo la capacidad de retener selectivamente no sólo el NP lineal sino también los disruptores endocrinos NPEO1, NPEO2 y NP con recuperaciones que varían de 60 a 100 %, dependiendo del analito. El procedimiento MISPE desarrollado se utilizó con éxito para la determinación de 4-n-NP, NP, NPEO1 y NPEO2 en sedimentos y muestras de lodos a niveles de concentración según los datos reportados en la literatura para las muestras analizadas. Diversas muestras de lodos recogidas en cinco plantas de tratamiento de aguas residuales de Madrid y lodos comerciales para fines agrícolas fueron analizadas por el método desarrollado y las concentraciones medidas de los diferentes compuestos variaron de 3.7 a 107.5 mg/kg dependiendo del analito y la muestra.

Se han sintetizado microesferas de MIP con diámetros de 60 a 500 µm en un reactor microfluídico de flujo segmentado continuo, las cuales se utilizaron como material de relleno para microtrampas destinadas a la separación selectiva de benzo[a]pireno (BAP) en muestras acuosas ambientales. La síntesis implicó el bombeo de gotitas monodispersas de acetonitrilo que contenía ácido metacrílico como monómero funcional, BAP como molécula molde, y etilenglicol dimetacrilato como monómero entrecruzante en los microcanales del reactor microfluídico. Las microesferas mostraron alta capacidad de adsorción y selectividad para BAP en soluciones acuosas. La capacidad de adsorción de BAP de las microesferas MIP más pequeñas en un rango de tamaño de 60-80 μm, fue de 75 mg/g en soluciones acuosas, y su capacidad de adsorción fue aproximadamente 300 % mayor que la del carbón activado usado comercialmente (Krupadam et al. 2014).

La microextracción polimérica basada en barras de agitación molecularmente impresas es un método conveniente, eficiente, de bajo costo y específico para el enriquecimiento de cefaclor y cefalexina en muestras ambientales (Peng et al. 2017). En un estudio efectuado empleando la microextracción basada en la barra de agitación acoplada con HPLC para la determinación de cefaclor y cefalexina en agua ambiental, se encontró que tenía las ventajas de la extracción de barra de agitación, alta selectividad de

polímeros con impresión molecular y alta eficiencia de adsorción de nanotubos de carbono. Para utilizar este enfoque de pretratamiento, se optimizaron el pH, el tiempo de extracción, la velocidad de agitación, el disolvente de elución y el tiempo de elución. Se halló que el límite de detección (LOD) y límite de cuantificación (LOQ) de cefaclor eran de 3.5 y 12.0 ng/mL, respectivamente, mientras que en el LOD y LOQ de cefalexina se encontró que eran 3.0 y 10.0 ng/mL, respectivamente. Las recuperaciones de cefaclor y cefalexina fueron de alrededor de 86.5-98.6 %. La precisión en la ejecución y entre series fue aceptable (desviación estándar relativa < 7 %). Incluso cuando se utilizó en más de 14 ciclos, el rendimiento de la barra de agitación no disminuyó de manera excesiva.

Se empleó una extracción selectiva en fase sólida para mejorar la determinación de fármacos antiinflamatorios no esteroideos (AINE) en muestras de agua continental y de orina. El cetoprofeno, naproxeno, diclofenaco e ibuprofeno se seleccionaron como analitos diana debido a que son los fármacos más frecuentemente administrados y consumidos. Estos compuestos se extrajeron utilizando polímeros con impresión molecular y se determinaron por cromatografía líquida con diodos (DAD), así como espectrometría de masa-detectores de tándem (MS-MS). Se evaluaron tanto el rendimiento como los límites de cuantificación obtenidos. Después de una extracción en fase sólida con preconcentración de 50 veces, variaron de 20 a 30 μg/L para DAD y de 0.007 a 0.017 μg/L para MS-MS para ambos tipos de matrices de muestra. Se encontraron recuperaciones cuantitativas para las muestras en blanco marcadas con diferentes niveles de concentración de los AINE, que fluctuaron de 0.05 a 10 mg/L para la orina y de 0.5 a 500 µg/L para el agua. La metodología propuesta fue aplicada para la determinación de residuos de AINE en orina y aguas continentales (Martínez-Sena et al. 2016).

Se ha empleado la extracción en fase sólida con polímeros de impronta molecular acoplada con cromatógrafos de gases (GC) para la separación de tolclofos-metilo, phoximo, clorpirifos y paratión-metilo en aguas ambientales. Para ello se sintetizaron microesferas de polímero de impronta molecular usando el análogo estructural tolclofos-metilo como molde. Los plaguicidas se extrajeron usando los polímeros impresos molecularmente y se determinaron por cromatografía de gases usando un detector de nitrógeno fosforoso. Los resultados indican que se eliminaron las interferencias de la matriz. Los gráficos de calibración para los analitos fueron lineales de 0.01-4.0 μg/L y los límites de detección de los plaguicidas se situaron entre 0.8 y 2.7 ng/L en agua ambiental. Las recuperaciones

en dos niveles de fortificación se ubicaron entre 83.2 y 105.4 % con desviaciones estándar relativas inferiores al 8.3 % (Zhou et al. 2015).

Se ha efectuado la síntesis de polímeros magnéticos con marcado molecular selectivo (MMIP) que pueden extraer del agua ambiental cuatro antibióticos de sulfonamida ampliamente utilizados y sus metabolitos acetilados. Los MMIP con valor de magnetización de saturación de 16.7 emu/g pueden separar fácilmente los compuestos de las muestras de agua ambiental mediante la aplicación de un campo magnético adscrito, reduciendo el tiempo de pretratamiento. Se evaluaron las condiciones de extracción y se encontró que las condiciones óptimas fueron las siguientes: tiempo de extracción, 25 min; cantidad de polímero, 90 mg; disolvente de lavado, solución acuosa al 30 % de metanol; y disolvente de elución, metanol-ácido acético, 95:5 v/v. Los analitos se detectaron por cromatografía líquida-espectrometría de masas en tándem y se encontraron límites de detección del método de 0.38-1.32 ng/L. Las desviaciones estándar relativas intra e interdía variaron de 1.3-6.8 % y 1.7-9.1 %, respectivamente, por lo que el método propuesto fue adecuado para el análisis de muestras de agua ambiental (Chen et al. 2013).

Se prepararon nanopartículas de iones (Cu-IIP) de polímeros con impresión de iones Cu (II) utilizando complejos de iones Cu-II-tiosemicarbazida como moléculas molde y ácido metacrílico, etilenglicol dimetacrilato y 2,2'-azo- bis-isobutironitrilo como monómero funcional, entrecruzante e iniciador, respectivamente. Las nanopartículas poliméricas sintetizadas se caracterizaron por FT-IR, TGA, DRX, y SEM. Se estudiaron algunos parámetros como pH, peso del polímero, tiempos de adsorción y elución, y tipo y volumen de eluyente, los cuales afectan a la eficiencia de extracción del polímero. Se calculó que la capacidad adsorbente máxima del polímero impreso con iones fue de 38.8 mg/g y se encontró que el factor de preconcentración, la desviación estándar relativa y el límite de detección del método fueron de 80, 1.7 % y 0.003 μg/mL, respectivamente. Las nanopartículas de polímero impregnadas de iones tienen una selectividad aumentada hacia los iones Cu (II) sobre una gama de iones metálicos competidores con la misma carga y radio iónico similar. El método se aplicó a la determinación de niveles ultra traza de Cu²⁺ en muestras de agua ambiental con resultados satisfactorios (Roushani et al. 2015).

En una revisión efectuada por Wan Ibrahim et al. (2014) respecto de los nuevos adsorbentes y su función en las técnicas de preconcentración para la determinación de oligoelementos en muestras

ambientales y biológicas, se analizan numerosos enfoques analíticos incluyendo la preparación y práctica de modificaciones únicas de materiales en fase sólida, y se describen el rendimiento y las características principales de los polímeros que imprimen iones, nanotubos de carbono, biosorbentes y nanopartículas, en el periodo comprendido entre 2007 y 2012.

Los estudios anteriormente descritos muestran que actualmente existe una extensa búsqueda de nuevos métodos analíticos basados en los polímeros de impronta molecular combinados con la extracción en fase sólida para preconcentrar muestras ambientales y determinar diferentes contaminantes.

CONCLUSIONES Y NUEVAS LÍNEAS DE INVESTIGACIÓN

La extracción en fase sólida combinada con los polímeros de impronta molecular es una técnica analítica que permite la detección y cuantificación de analitos a muy baja concentración en matrices complejas, proporcionando ventajas frente a los métodos convencionales de tratamiento de muestra para matrices complejas. Por ello, la investigación y desarrollo de materiales que contribuyan a los procesos de extracción de muestras de una forma automática, rápida y selectiva se ha incrementado en los últimos años.

La presencia de contaminantes ambientales a concentraciones en el orden de µg/kg requiere la síntesis de materiales altamente selectivos para la extracción en fase sólida, que permita la concentración y limpieza de la muestra ambiental. Gracias a sus propiedades de reconocimiento molecular, los MIP permiten la preconcentración de las muestras ambientales y facilitan su detección y determinación cuantitativa mediante el empleo de diversas técnicas de análisis para una gran variedad de contaminantes ambientales, entre los que se encuentran fármacos, plaguicidas, herbicidas, colorantes, metales y diferentes compuestos orgánicos, efectuando el análisis cuantitativo de forma rápida y selectiva.

El empleo comercial de los MIP para el análisis de muestras reales es aún un desafío; sin embargo, las tendencias de las futuras investigaciones están dirigidas no sólo a mejorar la selectividad y sensibilidad de los métodos de detección de los contaminantes ambientales, sino a realizar una extracción selectiva del analito y remover las sustancias no deseadas de la matriz, aplicando los MIP como una herramienta robusta y de bajo costo para la determinación rápida y selectiva de estos compuestos en muestras reales.

REFERENCIAS

Aly My Hamza M. (2013). A review: Studies on uranium removal using different techniques. Overview. J. Disper. Sci. Technol. 34 (2), 182-213.

DOI: 10.1080/01932691.2012.657954

Baggiani C. y Giovannoli C. (2005). Molecular imprinted solid-phase extraction for cleanup of chlorinated phenoxyacids from aqueous samples. En: Pesticide protocols. Methods in biotechnology (Vidal J. y Frenich A., Eds.). Humana Press, Totowa, NJ, Estados Unidos, 421-433.

Behbahani M., Taghizadeh M., Bagheri A., Hosseini H., Salarian M. y Tootoonchi A. (2012). A nanostructured ion-imprinted polymer for the selective extraction and preconcentration of ultra-trace quantities of nickel ions. Microchim. Acta 178 (3), 429-437.

DOI: 10.1007/s00604-012-0846-x

Chen H., Zhang Y., Gao B., Xu Y., Zhao Q., Hou J., Yan J., Li G., Wang H., Ding L., Ding J. y Zhao C. (2013). Fast determination of sulfonamides and their acetylated metabolites from environmental water based on magnetic molecularly imprinted polymers. Environ. Sci. Pollut. Res. 20 (12), 8567-8578.

DOI: 10.1007/s11356-013-1795-6

Díaz-Álvarez M., Smith S., Spivak D. y Martín-Esteban A. (2016). Preparation of molecularly imprinted polymeric fibers using a single bifunctional monomer for the solid-phase microextraction of parabens from environmental solid samples. J. Sep. Sci. 39 (3), 552-558.

DOI: 10.1002/jssc.201500967

Foguel M., Pedro N., Wong A., Khan S., Zanoni M. y Sotomayor M. (2017). Synthesis and evaluation of a molecularly imprinted polymer for selective adsorption and quantification of Acid Green 16 textile dye in water. Talanta 170, 244-251.

DOI: 10.1016/j.talanta.2017.04.013

Gilart N., Borrull F., Fontanals N. y Marcé R. (2014). Selective materials for solid-phase extraction in environmental analysis. Trends Environ. Anal. 1, e8-e18. DOI: 10.1016/j.teac.2013.11.02

Godlewska-Zylkiewicz B, Lesniewska B. y Wilczewska A. (2013). Evaluation of ion imprinted polymers for the solid phase extraction and electrothermal atomic absorption spectrometric determination of palladium in environmental samples. Int. J. Environ. An. Ch. 93 (5), 483-498.

DOI: 10.1080/03067319.2012.656096

Hande P., Samui A. y Kulkarni P. (2015). Highly selective monitoring of metals by using ion-imprinted polymers. Environ. Sci. Pollut. Res. Int. 22 (10), 7275-7404.

DOI: 10.1007/s11356-014-3937-x

- Huang Y. y Zhou Q. (2012). Research progress of solid phase extraction adsorbent. Metallurgical Analysis 32 (12), 22-28.
- Komiyama M., Takeuchi T., Mukawa T. y Asanuma H. (2003) Molecular imprinting: from fundamentals to applications. Wiley-Vch, Weinheim, Alemania, 147 pp. DOI: 10.1002/352760202X
- Krupadam R., Korde B., Ashokkumar M. y Kolev S. (2014). Novel molecularly imprinted polymeric microspheres for preconcentration and preservation of polycyclic aromatic hydrocarbons from environmental samples. Anal. Bioanal. Chem. 406 (22), 5313-5321. DOI: 10.1007/s00216-014-7952-z
- Kubo T. (2012). Development of application techniques based on molecular imprinting for molecular selective pretreatments. Bunseki Kagaku 61 (5), 371-381. DOI: 10.2116/bunsekikagaku.61.371
- Lanza F., Hall A.J., Sellergren B., Bereczki A., Horvai G., Bayoudh S., Cormack P.A.G. y Sherrington D.C. (2001). Development of a semiautomated procedure for the synthesis and evaluation of molecularly imprinted polymers applied to the search for functional monomers for phenytoin and nifedipine. Anal. Chim. Acta 435, 91-106.
 - DOI: 10.1016/S0003-2670(01)00905-9
- Li H., Li X. y Gong G. (2009). Removal of 17 β-estradiol pollutants from contaminated water by molecularly imprinted polymers. Memorias. 2009 International Conference on Energy and Environment Technology, Guilin, Guangxi, China, 16-18 de octubre, 3, 683-686.
- Martín-Esteban A. (2016). Recent molecularly imprinted polymer-based sample preparation techniques in environmental analysis. Trends Environ. Anal. 9, 8-14. DOI: 10.1016/j.teac.2016.01.001
- Martínez-Sena T., Armenta S., de la Guardia M. y Esteve-Turrillas F. (2016). Determination of non-steroidal anti-inflammatory drugs in water and urine using selective molecular imprinted polymer extraction and liquid chromatography. J. Pharm. Biomed. Anal. 131, 48-53. DOI: 10.1016/j.jpba.2016.08.006
- Montero R. y Martínez M. (2014). Composición físicoquímica de aguas ácidas procedentes de dos minas de carbón: Lobatera, Estado Táchira, Venezuela. Rev. Fac. Ing. Universidad Central de Venezuela. 29 (4), 55-66.
- Núñez L., Turiel E., Martín-Esteban A. y Tadeo J. (2008). Molecularly imprinted polymer for selective extraction of endocrine disrupters nonylphenol and its ethoxylated derivates from environmental solids. J. Sep. Sci. 31 (13), 2492-2499. DOI: 10.1002/jssc.200800146
- Pacheco-Silva E., Rodrigues de Souza J. y Dutra Caldas E. (2014). Resíduos de medicamentos veterinários em leite e ovos. Quim. Nova 37 (1), 111-122. DOI: 10.1590/S0100-40422014000100020

- Peng J., Liu D., Shi T., Tian H., Hui X. y He H. (2017). Molecularly imprinted polymers based stir bar sorptive extraction for determination of cefaclor and cefalexin in environmental water. Anal. Bioanal. Chem. 409 (17), 4157-4166.
 - DOI: 10.1007/s00216-017-0365-z
- Piletsky S. y Turner A. (2002). Electrochemical sensors based on molecularly imprinted polymers. Electroanalysis 14 (5), 317-23.
 - DOI: 10.1002/1521-4109(2002v03)14:5<317::AID-ELAN317>3.0.CO;2-5
- Quizhpe A., Encalada L., Sacoto A., Andrade D., Muñoz G., Calvo D., Lara M., Guevara A., Abadía L., Murray M. y Sivaraman S. (2014). Uso apropiado de antibióticos y resistencia bacteriana. ReAct. Latinoamérica, Cuenca, Ecuador [en línea]. https://www.reactgroup.org/wp-content/uploads/2016/10/Uso-Apropriado-de-Antibioticos-y-Resistencia-Bacteriana.pdf 20/3/2017
- Rachkov A. y Minoura N. (2001). Towards molecularly imprinted polymers selective to peptides and proteins. The epitope approach. Biochim. Biophys. Acta 1544 (1-2), 255-266. DOI: 10.1016/S0167-4838(00)00226-0
- Roushani M., Abbasi S. y Khani H. (2015). Synthesis and application of ion-imprinted polymer nanoparticles for the extraction and preconcentration of copper ions in environmental water samples. Environ. Monit. Assess. 187 (4), 219. DOI: 10.1007/s10661-015-4468-8
- Sawant A., Sordillo L. y Jayarao B. (2005). A survey on antibiotic usage in dairy herds in Pennsylvania. J. Dairy Sci. 88, 2991-2999.
 - DOI: 10.3168/jds.S0022-0302 (05)72979-9
- Sellergen B. (2001). Moleculary imprinted polymers: Man-made mimics of antibodies and their aplication in analytical chemistry. 1a ed. Elsevier, Ámsterdam, Holanda, 557 pp.
- Soledad-Rodríguez B., Fernández-Hernando P., Garcinuño-Martínez R. y Durand-Alegría J. (2017). Effective determination of ampicillin in cow milk using a molecularly imprinted polymer as sorbent for sample preconcentration. Food Chem. 224 (1), 432-438. DOI: 10.1016/j.foodchem.2016.11.097
- Van Nostrum C. (2005). Molecular imprinting: A new tool for drug innovation. Drug Discov. Today Technol. 2 (1), 119-124.
 - DOI: 10.1016/j.ddtec.2005.05.004
- Wan Ibrahim W., Abd Ali L., Sulaiman A., Sanagi M. y Aboul-Enein H. (2014). Application of solid-phase extraction for trace elements in environmental and biological samples: A review. Crit. Rev. Anal. Chem. 44 (3), 233-254. DOI: 10.1080/10408347.2013.855607
- Yan H. y Row K. (2006). Characteristic and synthetic approach of molecularly imprinted polymer. Int J. Mol. Sci. 7, 155-178 DOI: 10.3390/i7050155

Zhou M., Hu F., He H., Shu S. y Wang M. (2015). Determination of phosphorothioate pesticides in environmental water by molecularly imprinted matrix solid-phase dispersion coupled with gas chromatography and a nitrogen phosphorus detector. Instrum. Sci. Technol. 43 (6), 669-680. DOI: 10.1080/10739149.2015.1043636 Zwald A., Ruegg P., Kaneene J., Warnick L., Wells S., Fossler C. y Halbert L. (2004). Management practices and reported antimicrobial usage on conventional and organic dairy farms. J. Dairy Sci. 87,191-201.

DOI: 10.3168/jds.S0022-0302 (04)73158-6