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ABSTRACT

Contaminated soils can become exposure routes of elements toxic to human beings.
The health risk of a toxic element by ingestion depends on its bioavailability in the
gastrointestinal system, measured in vivo or in vitro. This study aimed to use a novel,
versatile reactor (gastrointestinal simulation reactor system to determine bioaccessibil-
ity -GSRSB-) to measure lead and arsenic bioaccessibility in the gastric and intestinal
phases by applying a modified physiologically based extraction test (PBET). Three
composite samples of polluted soils with As (0.50 - 3.25%) and Pb (0.02 - 0.10%) and
the certified reference material NIST 2710 were analyzed with this GSRSB-PBET
method and the NOM-147 Mexican standard method, which uses an end-over-end
shaker. All results were compared to one another. The NIST 2710 results were contrasted
with those reported in vivo and in vitro by 14 laboratories. The (GSRSB-PBET) gastric
phase ranges were 35.9-55.1 % (As) and 59.6-96.1 % (Pb), while (NOM-147)
gastric phases were 35.8-60.4 % (As) and 61.0-70.7 % (Pb). The (GSRSB-PBET)
intestinal phase ranges were 39.5-46.9 % (As) and 19.9-31.5 % (Pb). The As and Pb
compounds and the stirring technique seem to influence bioaccessibility. On the other
hand, the comparison of NIST 2710 results with those reported in vitro and in vivo
indicated that As and Pb gastric bioaccessibility obtained with GSRSB-PBET falls
into the in vivo results range, while NOM-147 results are higher and fall outside the in
vivo range, possibly overestimating the risk. Thus, the proposed method is adequate
for modifying the current Mexican Standard Method (NOM-147), which only allows
the calculation of Pb gastric bioavailability in vitro.

Palabras clave: bioaccesibilidad de As, bioaccesibilidad de Pb, equipo novedoso de bioaccesibilidad, método
NOM-147, comparacion in vivo-in vitro, biodisponibilidad in vitro.
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RESUMEN

Los suelos contaminados pueden ser fuentes de exposicion de elementos toxicos para
los seres humanos. El riesgo a la salud de un elemento téxico por ingestion depende
de su biodisponibilidad gastrointestinal, medida in vivo o in vitro. El objetivo de este
estudio fue evaluar un reactor novedoso y versatil (GSRSB) para medir la bioacce-
sibilidad de plomo y arsénico en las fases gastrica e intestinal aplicando un método
de extraccidon de base fisiologica (PBET, por sus siglas en inglés) modificado. Se
analizaron tres muestras compuestas de suelos contaminados con As (0.50 - 3.25%) y
Pb (0.02 - 0.10%) y el material de referencia certificado NIST 2710 usando el método
GSRSB-PBET y el método estandar mexicano NOM-147, utilizando un agitador
axial. Los resultados del NIST 2710 se contrastaron con los informados in vivo e in
vitro por 14 laboratorios. Los resultados en la fase gastrica (GSRSB-PBET) fueron
35.9-55.1% (As) y 59.6-96.1% (Pb), en fase intestinal (GSRSB-PBET) 39.5-46.9%
(As) y 19.9-31.5% (Pb); mientras que la fase gastrica (NOM-147) fueron 35.8-60.4%
(As)y 61.0-70.7% (Pb). Los compuestos de As y Pb y la técnica de agitacion parecen
influir en la bioaccesibilidad. La comparacion de los resultados del NIST 2710 con
los reportados in vitro e in vivo indicé que la bioaccesibilidad géstrica de As y Pb
obtenida con GSRSB-PBET esta en el intervalo de los resultados in vivo, mientras
que los resultados obtenidos con la NOM-147 son mayores y fuera del intervalo in
vivo, posiblemente sobrestimando el riesgo. El método propuesto es adecuado para
modificar el actual método estandar mexicano (NOM-147) que sdlo determina la
biodisponibilidad gastrica del Pb in vitro.

INTRODUCTION

The primary anthropogenic activities responsible
for higher levels of potentially toxic elements (PTE)
in the environment are energy production and mining-
metallurgy (Panayotova 2016, Sposito 2008, Masindi
and Muedi 2018). The biogeochemical cycles of sev-
eral elements, including arsenic (As) and lead (Pb),
have been disturbed (Masindi and Muedi 2018), and
populations can be exposed to polluted soil and water.
Depending on the dose and chemical species, As and
Pb ingested may harm human health (Kumpiene et
al. 2017). Other factors influence toxicity, mainly the
route of exposure, solubility, particle size, environ-
mental matrix type, and the presence of certain sub-
stances that reduce or improve their absorption. The
Pb acetate is one of the most bioavailable compounds
because it is very soluble (Freeman et al. 1994) but
most of the Pb in soils is forming compounds with
low solubility (Rooney 2002). In the gastrointestinal
tract, iron, zinc, and calcium decrease Pb absorption,
possibly competing for absorption receptors in the
intestine. Biogeochemical transformations control
As bioavailability, toxicity, and its environmental
fate. As can be oxidated by diverse compounds
or reduced by organic compounds, forming more
toxic inorganic species. Direct reduction of Fe (II)
by microorganisms can lead to As sequestration by
sorption (Borch et al. 2010). These processes have a

big influence on the As bioavailability in vivo and,
consequently, on in vitro determinations.

Several toxic arsenic species may form in the
intestine because of the reaction between arsenic and
food compounds. (Conrad and Barton 1978, Mushak
1991, Diamond et al. 1998, Calatayud and Llopis
2015, Ollson et al. 2017)

The damages caused by arsenic are classified as
carcinogenic, mutagenic, or genotoxic, producing
immunological, reproductive, developmental, neu-
rological, renal, hepatic, hematological, gastroin-
testinal, cardiovascular, pulmonary, respiratory, and
dermal harm (Mandal and Suzuki 2002, Sattar et al.
2016). Pb is classified as “probably carcinogenic to
humans” (Group 2A), according to IARC (20006).
It has mainly neurocognitive and behavioral effects
(Chiodo et al. 2004, Mason et al. 2014) and decreases
children’s intellectual quotient (Schnaas et al. 2006,
Mitra et al. 2017). However, because of various fac-
tors, most above mentioned, only part of the ingested
element is absorbed through the gastrointestinal tract.
This absorbed fraction is named bioavailable (Zhu et
al. 2015). It can be measured as an absolute amount
or a relative amount (Ruby et al. 1996, 1999, Juhasz
et al. 2009, USEPA 2012, Koch et al. 2013).

Bioavailability is determined using animal models
(in vivo), which is expensive, time-consuming (days
or months), and raises ethical considerations. As an
alternative to bioavailability tests, bioaccessibility
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tests mimic the human gastrointestinal processes
(in vitro) being less costly and faster; these are also
named in vitro bioavailability methods (Ruby et al.
1999, Juhasz et al. 2014, Liu et al. 2017).

Regulatory frameworks related to the remediation
of polluted soils follow a risk assessment approach,
and bioaccessibility is an adjustment factor in the
calculations (USAEC, 2003). Mexican environ-
mental regulation NOM-147-SEMARNAT/SSA1-
2004 follows the same approach. Nevertheless, this
regulation only allows the calculation of soil cleanup
target levels based on gastric bioaccessibility of Pb
measured through the simple bioaccessibility extrac-
tion test (SBET) (Dabin et al. 2012, Koch et al. 2013)
using an end-over-end shaker.

In the Environmental Biogeochemistry Labora-
tory of the School of Chemistry of the National Au-
tonomous University of Mexico (UNAM), PTE bio-
accessibility is measured frequently. A novel agitation
system called gastrointestinal simulation reactor
system to determine bioaccessibility (GSRSB) was
designed and built to facilitate this determination. It
allows continuous control of the pH and improves gas
flow stability, simplifying the reagents’ addition and
aliquots sampling during phase change. Characteris-
tics of the vessels of the agitation equipment avoids
sedimentation and soil erosion (Quiroz-Vivanco
2018). This study aimed to use the GSRSB with
the physiologically based extraction test (PBET) to
measure Pb and As gastric and intestinal bioacces-
sibility in polluted soils, to show the performance
of this novel equipment, and to have data to propose
this method (GSRSB-PBET) as an alternative to the
current NOM-147 standard method. As and Pb bioac-
cessibilities of three composite soil samples and the
certified reference material from the National Insti-
tute of Standards and Technology (NIST) Montana
High number 2710 (NIST 2710) were measured by
GSRSB-PBET and NOM-147 methods to reach this
goal, both methods results were compared. Addition-
ally, only NIST 2710 results were compared with
those reported in vivo and in vitro by 14 laboratories,
applying 17 methods (Koch et al. 2013).

METHODS AND MATERIALS

Sampling

The soil samples were collected at a site in Central
Mexico, where Pb and Cu smelters and an As>O3
production facility were operating for more than 90
years (Gutiérrez-Ruiz et al. 2003, Villalobos 2010,
Martinez-Jardines 2018). The area has a BSk climate

according to the Koppen-Geiger classification, with
an annual temperature of 16.8 °C and an annual
rainfall of 341 mm (CLIMATE-DATA, 2021). The
soils are acidic (Martinez-Jardines 2018). Accord-
ing to Gutiérrez-Ruiz (2003) and Martinez-Jardines
(2018), the soils were polluted with slag containing
Si, Fe, Ca, K, Pb, Cu and much lower quantities of
Mn, As, Ni, Ba and Cd, mainly as oxides but also
as sulfides. Other important wastes that polluted the
site and were characterized are converter flue dust,
smelting furnace flue dust, calcine, and black arsenic.

Sample preparation

The polluted site was in a remediation process,
and from the complete set of soil samples collected
(N = 800), nine were selected based on their arsenic
content, using a non-probability judgment sampling
method (Frey 2018). The coordinates of the sites
chosen are presented in table I. The nine samples
(S1-S9) and wastes (converter flue dust, smelting
furnaces flue dust, calcine, and black arsenic) were
dried (40 °C), ground, sieved (mesh #10 < 2 mm),
and homogenized by quartering (Hesse 1971). Por-
tions of 100 g were re-milled (ball grinder Fritsch),
sieved (mesh #200 < 74 um) (same particle size
of NIST 2710 certified material) and preserved at
room temperature (15-20 °C) in hermetically sealed
plastic containers. The three composite samples were
prepared (C1, C2, and C3), mixing 100 g of three
individual soils (Table I) selected by geographic
proximity and As concentration: C1 (S1, S2, S3); C2
(S4, S5, S6) and C3 (S7, S8, S9).

Analytical determinations

All chemicals used were analytical reagent grade
(AR grade). Deionized water was used to prepare all
solutions for the leaching tests and all analytical pro-
cedures. All determinations were done in triplicate,
and their relative standard deviations (RSD) calcu-
lated (values in tables). All the extracts were pre-
served in the dark at 4 °C. Elements were quantified
using ICP-OES (Agilent Technologies model 5100),
applying method 6010C (USEPA 2000). Digestions
were done using an Ethos Easy microwave digestion
system (Millestone Inc.) using Teflon PFA beakers
applying US-EPA method 3051A (USEPA 2007b).

General composition and geoavailability

The pH in soils and wastes was measured fol-
lowing ISO-10390:2005 with a model Orion Star
A211 Thermo Scientific potentiometer. Total con-
centrations of As, Pb, Fe, Ca, Cd, Cu, Zn, and Mn
were measured with a portable model DP-6000-CC
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Thermo Scientific X-ray fluorescence Olympus ana-
lyzer using the 6200 method (USEPA 2007, Zamora-
Martinez et al. 2008). Total sulfur was determined in
amodel S-832 Leco analyzer (Bremner and Tabatabai
1971). All composite soils were analyzed by SEM-
EDS in a Hitachi TM 1000 tabletop scanning electron
microscope with an energy dispersive spectroscopy
module, and by X-ray diffraction (XRD) with a
Shimadzu XRD-6000 equipped with a Cu tube and
a graphite monochromator. Blanks and certified
reference materials were used for quality control for
individual and composite soil analysis: pH (NIST-
traceable buffer solutions), XRF (NIST 2711a), sulfur
content (Oreas 45b) and ICP-OES determinations
(HPS, QCS-26). Geoavailable concentrations in
soils and wastes were determined with the D3987-06
method (ASTM 2006).

Soils bioaccessibility

Two methods have been used to measure the bio-
accessibility of soils: NOM-147, which only includes
the gastric phase and was applied as indicated by
Mexican regulation (SEMARNAT 2007) using gly-
cine at pH = 1.50 + 0.05 (HCI) and an end-over-end
shaker (37 + 2 °C). This method is analogous to the
SBET, RBALP and SBRC (Dabin et al. 2012). The
other method used was the PBET (Ruby et al. 1996),
which determines gastric and intestinal phases. The
reagents used include pepsin, citrate, malate, lactic
acid, and acetic acid in the gastric phase and bile
salts and pancreatin in the intestinal phase. Reagent
quantities, ratios (solid/liquid), and residence times
were applied as indicated by Ruby et al. (1996). A
modification was made in the gastric phase, adjusting
the pH to 1.50 + 0.05 with HCI (11 M) as was reported
to increased in vitro and in vivo correlations (Drex-
ler and Brattin 2007, Juhasz et al. 2014). After the

gastric phase concluded, pH was gradually increased
to 7.00+0.10 with a NaHCOj3 saturated solution and
subsequently, pancreatin and bile salts were added.

Intestinal extracts were digested (HNO3-micro-
wave-assisted, method 3051A) (USEPA 2007b)
using an Ethos Easy (Milestone) to destroy organic
compounds that interfere with PTE quantification by
ICP-OES (USEPA 2000). Argon was used as a stir-
ring gas in the novel reactor (GSRSB). As mentioned
above, it was exclusively designed in our laboratory.
It is used to improve the control pH and gas flow sta-
bility, simplifying the reagents’ addition and taking of
aliquots during the phase change. It has conical bot-
tom glass reactors placed in a heating bath (37+1 °C).
The vessels contain a thin tube through which the
argon enters and stirs the suspension (1 L/min)
(Fig. 1). The conical design is used to prevent the
sedimentation and erosion of soil particles. The pH
electrodes are placed inside each reactor, allowing
measurements without stopping the agitation process.
A small orifice is used to take aliquots or add reagents
during the gastric-to-intestinal phase change and to
introduce pH electrodes (Garcia-Rodriguez 2017,
Quiroz-Vivanco 2018). The NOM-147 end-over-
end shaker (Fig. 1) controls the temperature with an
immersion recirculation heater. Nevertheless, it does
not allow one to measure pH, take aliquots, or add
reagents when the shaker is in motion.

In this study, the absolute bioaccessibility was
calculated as the ratio between the element concen-
tration (mg/kg) in the solution for each method or
extraction phase, respect to the element concentration
in the soil (mg/kg) in percentage. To calculate the
relative bioaccessibility, the bioaccessibility results
were corrected with the mean of three spike results
for each method (mean%bioaccess/ meanyspike recovery)
according to Koch et al. (2013).

Fig. 1. Equipment used to measure oral bioaccessibility: (1A) End-over-end shaker NOM-147 method (gastric
phase) and (1B) GSRSB-PBET method (gastric and intestinal phases).
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RESULTS

General composition and geoavailability

The pH, total element concentration and geoavail-
ability (soluble fraction in meteoric water at pH =5.5
+ 0.3) of As, Pb, Fe, Ca, Cd, Cu, Zn and Mn were
quantified in individual samples (data not shown) and
in composite samples (Table I). In the nine individual
soils, the range of pH was 3.7-8.0, while in groups
S1, S2, S3=4.73-6.10, S4, S5, S6 =3.7-5.16 and S7,
S8, S9 = 7.8-8.0. The range of total As for S1-S9 =
0.43-4.15 %, for S1, S2, S3=2.05-4.15 %, for S4, S5,
S6 = 0.62-1.59 % and for S7, S8, S9 = 0.43-0.49 %.
The range of total Pb for S1-S9 = 0.02-0.16 %, for S1,
S2,S3=0.04-0.16, for S4, S5, S6 = 0.02-0.14 and for
S7, S8, S9=0.02-0.03 %.

The formation of hydrolysable sulfates from the
oxidation of sulfide could explain the acidity of most
of'the samples (Ward et al. 2004, Romero et al. 2008).
Samples S7 to S9 had a weak positive reaction to
acid due carbonates, explaining their basic pH. The
As geoavailability of S1-S9 = 418-2048 (mg/kg),
S1, S2, S3 =1381-2048 (mg/kg), S4, S5, S6
= 418-920 (mg/kg), and S7, S8, S9 = 682-
1017 (mg/kg) (Garcia-Rodriguez 2017). Pb
geoavailability was lower than the detection
limit (DL = 0.6 mg/kg). Total and geoavail-
able As are correlated (r = 0 .95), but not with
the pH (As total vs pH (r =—0.62) and As geoavail-
able vs pH (r=-0.33)). The total As range in wastes
is 1.5-61.2 %, and geoavailable As varied from 878
to 28 430 (mg/kg). The full Pb range in wastes is
2.5-31.5 %, and geoavailable Pb varied from 5 to
133 (mg/kg) (Table I). Total Fe concentrations
in all composite samples are similar and high
(Table I). Total concentrations varied for the other
elements present. Sample C1 has the highest total
As, Cd and Mn. C2 has the highest concentrations
of Pb, Fe, Cu, Zn and S, while C3 has the lowest of
those metals except for Ca, which has the highest
value (Table I).

The composite samples were analyzed through X-
Ray Diffraction (XRD). The crystalline compounds
identified were quartz, plagioclase, and As,O3. Weak
signals were observed for augite (Ca, Na) (Mg, Fe,
Al Ti) (Si, Al)2Os, pharmacolite CaH(AsO4)2H>0,
clinomimetite Pbs(AsO4)3

Cl, shultenite PbHAsOj4, and anglesite PbSOa.
Other compounds were expected because of previous
findings in the soils of this area. Cu and Zn sulfates
(Martinez-Jardines 2018) were not detected, prob-
ably due to low crystallinity or low concentration
(Whitfield and Mitchell, 2008).

The SEM-EDS analysis of six particles from
each of the composites (Fig. 2) showed analogous
concentrations of the major elements (Al, Si, and Fe),
whereas minor elements were variable.

The total concentrations of Ca and Fe were high,
but with low geoavailability (Table I).

Soils bioaccessibility

All bioaccessibility data is presented in table II.
The range of As bioaccessibility (%) in the gastric
phase (GSRSB-PBET) is 35.9-55.1 %, and for NIST
2710 is 46.3 %. The range of soil values using the
NOM-147 method is higher = 35.8-60.4 %, and for
NIST 2710 is 61.3 %. The percentage of As bioac-
cessibility in the intestinal phase by GSRSB-PBET
is 39.5-46.9 %, and for NIST 2710 is 22.9 %. The
Pb range in the gastric phase is 59.6-96.1 % from
GSRSB-PBET, and the value for NIST 2710 s 72.0 %.
The NOM-147 results range is 61.0-70.7 %, and
for NIST 2710 is 90.8 %. In the intestinal phase,
the range by GSRSB-PBET is 19.9-31.5 %, and for
NIST is 36.6 %.

Pb, Cu and Zn exhibit higher bioaccessibility
than geoavailability (Tables I, II), showing that the
solubility of these soil pollutants is low in meteoric
water but increases under gastric conditions (HCIL,
pH = 1.5). The bioaccessibility of Ca, Cu, Zn and
Pb increases with higher total concentration. Geo-
availability is not related to bioaccessibility, except
for As and Zn (gastric phase, NOM-147, Table II).
The bioaccessibility values of As, Pb Ca, Cu, and Zn
in the gastric phase (Table II) are higher than their
geoavailability.

The bioaccessibility of Pb measured during the in-
testinal phase (PBET) is always lower than in the gastric
phase using both methods. Nevertheless, As behavior is
the opposite except in C3, the only basic sample.

One-way ANOVA tests for As and Pb bioacces-
sibilities in the gastric phase among both methods
(NOM-147 and GSRSB-PBET) were applied to
compare whether the samples means were signifi-
cantly different or not (using the F distribution).

For As we concluded that both gastric methods
are statistically different, comparing bioaccessibi-
lities for samples C1-C-3 (Fcalcutated 4.71 > Feritical
3.89, two-way ANOVA), and for reference material
NIST 2710 (Fcalculated 45.08 > Feiitical 7.71, one way
ANOVA). For Pb we also concluded that methods
are statistically different, evaluating ANOVA for
samples C1-C-3 (Fcalculated 26.36 > Fritical 3.89, two-
way ANOVA), and NIST 2710 (Fcaiculated 34.88 >
Feritical 7.71, 1 factor ANOVA. All tests were done at
95 % of confidence.
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Fig. 2. Average composition of particles of the composites. C1 and C2 micrographs are shown.

Comparison between NIST 2710 bioaccessibility
data and the in vitro and in vivo values reported by
Koch et al. (2013)

The magnitude of the As and Pb gastric bioacces-
sibility percentages of NIST 2710 calculated through
the GSRSB-PBET method fall into the range for in vi-
tro and in vivo results for the same standard (Table I11
and Fig. 3). It is important to mention that the result
obtained is like those reported for in vitro by Koch
etal. (2013) for the analogous method RMC-PBET.
For the comparison of NIST 2710 results, we car-
ried out statistical tests (one-way ANOVA) for As
and Pb bioaccessibilities among the gastric phase
(GSRSB-PBET method) and in vivo data reported
(swine). We obtained that for As Fcalculated 2.07 <
Feriticat 7.71, and for Pb Fealcutated 4.14 < Feriticat 7.71 5
concluding that there is no significant statistically
difference between GSRSB-PBET method and in
vivo swine results.

The values obtained with the NOM-147 method
are higher than the others and fall out of the in vivo
range (Table III and Fig. 3). The in vitro mean value

reported by Koch et al. (2013) is 59 % for Pb. A
higher Pb bioaccessibility percentage in the gastric
phase was obtained using the NOM-147 method (90.8
%), Pb value measured with the RBALP method by
Koch et al. (2013), it is the same as the NOM-147
method. We carried out statistical tests (one-way
ANOVA) for both elements between the gastric phase
(NOM-147 method) with swine As: Fcalcutated 20.47
> Feritical 7.71 5 and Pb: Feaicutated 17.87 > Feriticat 7.71 5
and for As with mice Fcalculated 95.20 > Feritical 7.71,
concluding that NOM-147 method is statistically
different with respect to in vivo results.

The Pb bioaccessibility percentage in the intes-
tinal phase (GSRSB-PBET) was 45.8 %. It is lower
than the swine range values (73-79 %) (Table III,
Fig. 3). Statistical one way ANOVA tests for both ele-
ments between the intestinal phase (GSRSB-PBET
method) with swine (As: Fcalculated 166.35 > Feritical
7.71, Pb: Fealculated 289.24 > Feriticat 7.71) and for As
with mice (Fealcutated 119.43 > Feritical 7.71), indicate
that intestinal phases are statistical different for in
vivo results.
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Fig. 3. As and Pb bioaccessibility results for the NIST 2710 and in vivo ranges reported by Koch et al. (2013).
Note. The percentages of Relative bioavailability in swine (INERIS) and mice (Bradham et al. 2011) were taken
from Koch et al. (2013). Relative bioaccessibility was calculated as reported by Juhasz et al. (2009). Intestinal

phase = (gastric+intestinal).

Indeed, statistical tests of the results obtained in
vitro between As and Pb with those measured in vivo
reported to the same standard by Koch et al. (2013),
indicates that only the results of the gastric phase of
GSRSB-PBET have not statistically differences with
the in vivo results, and fall in the range as can be seen
in figure 3. As and Pb bioaccessibilities measured in
the NIST 2710 (gastric phase) are more precise (less
dispersion of results, reported as % Relative standard
deviation) with the GSRSB-PBET method than the
NOM-147 (Table III).

Absolute and relative percentages for both ele-
ments are similar (Table III) because there is no
significant statistically difference evaluating by a
one-way ANOVA. Absolute and relative percentages
for both elements are similar (Table III) because
there is no significant statistical difference evaluat-
ing a one-way ANOVA. The comparison results

concerning a Fcritical =7.71 for As bioaccesibilities
in vivo and the gastric phases from GSRSB-PBET,
and NOM-147; and the intestinal phase GSRSB-
PBET method gave Fcalculated 0.03, 1.05, and 0.16,
respectively. Also, Pb ANOVA comparisons for in
vivo and the gastric phases from GSRSB-PBET
method, NOM-147 method, and the intestinal phase
for GSRSB-PBET gave Fcalculated 1.69, 1.60 6.19,
respectively. In all cases concluding that results are
not statistically different from in vivo results. All
the statistical ANOVA tests were done with 95 %
confidence.

DISCUSSION

In general, the main elements As, Pb, Fe, Ca, Cd,
Cu, Zn, Mn, and S (Table I) and the compounds
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identified by XRD in soils match with the com-
position reported by Guti¢rrez-Ruiz et al. (2003),
Romero et al. (2008), Villalobos et al. (2010) and
Martinez-Jardines (2018), for the same site. Ca and
Pb arsenates (phamacolite and clinomimetite) were
identified. They are secondary minerals that slowly
form in soils of semi-arid regions. Anglesite (PbSO4),
arsenolite (Asy03), and clay with Fe, Ca, and Mg
were also identified. CaCO3 was detected indirectly
in C3 through the reaction of carbonates with HCI.
Nevertheless, other compounds reported in this ter-
rain’s soil samples were not identified, possibly due to
low concentrations or crystallinity. Most compounds
found in analyzed soils in the study site included
traces of arsenopyrite (Pokrovski et al. 2002), PbS,
CaS04.2H,0, goethite (FeOOH), magnetite (Fe304),
chalcopyrite (CuFeS,), and pyrite (FeS»).

Furnace and converter dust and black arsenic must
be the primary sources of As and Pb in the soil for two
reasons: they are very rich in these elements, and cal-
cine could contribute to Pb concentration (Table I).
Overall, composites composition is similar to that of
Cu slag (Nazer et al. 2016). The low geoavailability
of Ca and Fe with high total concentration, possibly
can be explained considering that these elements
are in the slag. Moreover, variability of the total
and geoavailable concentrations of minor elements
(Table I and Fig. 2) shows a possible mixture of slag
with converter flue dust, smelting furnace flue dust,
sulfates, and carbonates. The diverse geoavailability
of all elements except Fe (that was always low) can
be attributed to the varied composition of the residues
and byproducts that polluted the soil as converter
flue dust, smelting furnace flue dust, calcine, and
black arsenic (Table I). The CaCO3 in sample C3
explains the pH > 7. Pb, Cu, and Zn sulfates explain
the pH < 7 of samples C1 and C2, as well as their
low solubility in meteoric water (geoavailability)
and high bioaccessibility in the gastric phase. These
observations coincide with the data reported in other
studies (Walraven et al. 2015, Gonzélez-Grijalva et
al. 2019). Despite this, not all of these metals must be
sulfates. A portion of low concentrations may come
from the acid lixiviation of slag in the gastric phase.
Ca content in carbonate and plagioclase minerals
could explain low geoavailability in meteoric water
and high bioaccessibility under acidic conditions.

Arsenic geoavailability varies from 480 to 2855
mg/kg. Sample C3, with the lowest total As concen-
tration and high geoavailability, emphasizes the great
importance of the compound’s behavior. The soils
contain As (III) in addition to As (V) compounds,
which have been identified in this and other studies

(Martinez-Jardines 2018). They can coexist because
of dry weather conditions on site, and because re-
duction from arsenate to arsenite is slow (ATSDR
2007). The geoavailable As fraction must be mainly
related with arsenolite, since the As (V) compounds
have limited solubility in meteoric water. Although a
number of arsenates could be adsorbed in amorphous
Fe compounds (Goldber 2002, Donahoe et al. 2005,
Hernandez et al. 2016), it is not likely in this case. Fe
in these soils seems to mainly be in the slag, because
the geoavailable and bioaccessible fractions are quite
low (Tables I, II). Furthermore, supposing the ex-
istence of amorphous oxides, Fe should be released
during gastric extraction by chelation with organic
ligands (Sidhu et al. 1981). Nevertheless, gastric Fe
bioaccessibility was very low.

Pb geoavailability at pH = 5.5 was negligible but
not its bioaccessibility, suggesting that Pb is mainly
identified in low water-soluble sulfates, arsenates,
carbonates and slag, but not under acidic conditions. It
could also be identified in sulfides (Gonzélez-Grijalva
et al. 2019). All the compounds reported above can
be partially solubilized under the acid condition of
the gastric phase, even the slag (Aoki et al. 1984). Pb
adsorption in birnessite or other Mn oxides that cover
clays should be considered, since Mn compounds pres-
ent hydroxyl groups favoring adsorption (Yin et al.
2011) at pH =4.5-5.5 (Lenoble et al. 2002), although
it is unlikely under gastric conditions. Gonzalez-
Grijalva et al. (2019) reported a Pb range from 40.8
to 50.8 %, lower than those obtained in this study.
Considering that particle homogenization, tempera-
ture, and extraction times were the same, a possible
factor related to data variability and soil composition
could be the agitation system. The end-over-end shaker
used in the NOM-147 method causes particle colli-
sion, reduction in particle size, and can increase soil
reactivity (Quiroz-Vivanco 2018). The GSRSB uses
a gas system that avoids biases in the expected results
related to mechanical agitation. However, evidence of
agitation’s influence is limited due to the insufficient
number of analyzed samples.

Indeed, compound characteristics seem to be the
most relevant factor explaining the variability. Even
As lixiviated from slag can form soluble compounds
under gastric conditions, depending on each reac-
tion’s kinetics. Arsenic can exist as H3AsO3 and
H3AsOq, or possibly as arsenates adsorbed in clays
due to slow reduction. Clays do not dissolve in HCI
(Simon and Anderson 1990), but can be partially
altered, producing amorphous solids with a posi-
tive charge (Smedley and Kinniburg 2002). Acidic
conditions increase the sorption capacity of clays,
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forming complexes with anions as arsenates at low
pH (Simon and Anderson 1990, Magalhaes 2002,
Zhang and Selim 2005, Elsheikh et al. 2018). The
soluble As (III) from arsenolite cannot be absorbed
because the H3AsO3 is neutral and only acquires a
negative charge at very high pH (Wang and Mul-
ligan 2006).

Pb could be soluble or coordinated with organic
ligands in the gastric solution. The NOM-147 method
uses glycine, which forms Pb (NHCH2COOH);
(Zhang et al. 2011), a soluble compound that mobilizes
Pb from bones (Alcaraz-Contreras et al. 2011). The
PBET method uses citrates, acetates, and other organic
chelates. All of these can form soluble compounds
with metals, releasing arsenates (Ruby et al. 1993).
For example, citrates are useful to recover Pb from
batteries (Villa-Vargas 2017, Villa et al. 2018), and
acetates leach Pb from calcines (Garcia-Villa 2016).

The observed differences between gastric and
intestinal bioaccessibility have been related to par-
ticle size, mineral solubility, sorption complexes,
soil characteristics, and new compounds (Ruby et
al. 1999, Walraven et al. 2015). In this case, in soils
with acid pH and low Ca content, a higher As bioac-
cessibility in the intestinal phase than in the gastric
phase was observed. One possible explanation is the
adsorption of arsenates on clays under gastric con-
ditions, being released in the intestinal phase when
the pH increases to neutrality with NaHCO3 and the
clays lose their charge. Although Singh et al. (2011)
reported that some abiotic or biotic oxidoreduction
reactions could happen with the added reagents
changing the solubility of As, Garcia-Rodriguez
(2017) reported that adding only Na,HCO3 also
recovered lower As in the gastric phase than in the
intestinal, reinforcing our hypothesis.

Pb in the intestinal phase was lower than in the
gastric phase, as has been reported by Yan et al. (2016).
This is possibly because the Pb released from organic
complexes precipitate at the intestinal pH (Ruby et al.
1993, 1999, Li et al. 2014). However, Pb (II) can be
bio-transformed, modifying its solubility and toxicity
(Calatayud and Llopis 2015, Cangelosi et al. 2017).

An increase of Pb bioaccessibility in the intestinal
phase can enhance its toxicity. According to Kan
et al. (2017), the Pb carbonates’ transformation to
soluble organic Pb-complexes at neutral pH explain
the increase of Pb bioaccessibility.

The bioaccessibility data for NIST 2710 in the
gastric phase with the GSRSB- PBET method was
more precise than with NOM-147, but this tendency
is not clearly observed in the composite samples as
mentioned above (Table II). Nevertheless, all the

As and Pb values fall into the in vivo range reported
by Koch et al. (2013) (Fig. 3), indicating that the
reagents —and possibly the novel reactor system that
reduces soil particle erosion and provides easier pH
control— improve results.

In addition to those reported by several laborato-
ries (Koch et al. 2013), all the data obtained in this
study in the intestinal phase were lower than the in
vivo range. It is worth mentioning that, according to
Dabin et al. (2012), the in vitro methods with results
similar to “in vivo” have longer agitation times or
use more violent shakers. Therefore, it is possible
that the intestinal phase results obtained with the
GSRSB-PBET method can be improved by increas-
ing agitation time.

CONCLUSIONS AND RECOMMENDATIONS

The PBET method using the novel reactor system
(GSRSB) provides easier pH control, and gastric
phase data are more precise (% RSD) than the stan-
dard Mexican NOM-147 method.

The NIST 2710 results using the GSRSB-PBET
method with the novel reactor show no statistical
difference with respect to the in vivo measurements
in the gastric phase.

The NOM-147 method measuring As and Pb
bioaccessibility in the gastric phase does not simulate
in vivo values and seems to overestimate the associ-
ated risk. Therefore, GSRSB-PBET method could
be considered a precise alternative to measure As
and Pb bioaccessibility in polluted soils modifying
NOM-147 method and including the bioaccessibility
measurement of other elements, mainly As.

The bioaccessibility of Pb measured during the
intestinal phase (PBET) is always lower than in the
gastric phase using both methods. Nevertheless, As
behavior is the opposite except in C3, the only basic
sample. It is recommended to include both phases
and not only the gastric. It can also be possible to use
the highest bioaccessibility value from both phases
or perform in vivo bioavailability measurements.

Nevertheless, variability in soil results within
the same metallurgical complex poses a challenge:
to identify a general method with which to measure
bioaccessibility in all types of contaminated soils,
simulating in vivo data. Thus, it is essential to perform
a complementary study to measure the bioaccessibility
of a higher number of previously characterized soils.
It must include at least the two studied methods and
the two agitation systems with different agitation times
and in vivo bioavailability determination.
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