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Articulo Original
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ABSTRACT

Frequent approximate subgraph (FAS) mining has been successfully applied in
several science domains, because in many applications, approximate approaches
have achieved better results than exact approaches. However, there are real
applications based on multi-graphs where traditional FAS miners cannot be applied
because they were not designed to deal with this type of graph. Only one method
based on graph transformation, which allows the use of traditional simple-graph
FAS miners on multi-graph problems was reported, but it has high computational

cost. This paper aims at accelerating the mining process, thus a more efficient
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method is proposed for transforming multi-graphs into simple graphs and vice
versa without losing topological or semantic information, that allows using
traditional FAS mining algorithms and returning the mined patterns to the multi-
graph space. Finally, we analyze the performance of the proposed method over
synthetic multi-graph collections and additionally we show the effectiveness of the
proposal in image classification tasks where images are represented as multi-
graphs.

Key words: approximate mining, frequent approximate subgraphs, graph-based

classification, multi-graph mining.

RESUMEN

La mineria de subgrafos frecuentes aproximados ha sido satisfactoriamente
aplicada en varios dominios de la ciencia, debido a que los enfoques aproximados
han alcanzado mejores resultados que los exactos en muchas aplicaciones. Sin
embargo, existen aplicaciones basadas en multi-grafos donde los algoritmos
tradicionales de mineria no pueden ser aplicados porque no estan disefiados para
trabajar con este tipo de grafos. Solo se ha reportado un método basado en
transformaciones de grafos que permite aplicar los algoritmos tradicionales para la
mineria de subgrafos frecuentes aproximados en problemas representados como
multi-grafos, pero tiene la limitante de un alto costo computacional. En este
trabajo, con el objetivo de acelerar el proceso de mineria, se propone un método
mas eficiente para transformar los multi-grafos en grafos simples y vice versa.
Este proceso se realiza sin perder informacion topolégica o semantica, lo cual
permite el uso de los algoritmos tradicionales de mineria de grafos y los patrones
minados se pueden retornar al contexto de multi-grafos. Finalmente se analiza el
comportamiento del método propuesto sobre colecciones de multi-grafos sintéticas
y adicionalmente se muestra la utilidad de la propuesta en tareas de clasificacion

de imagenes, donde dichas imagenes son representadas como multi-grafos.
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INTRODUCTION

Frequent approximate subgraph (FAS) mining has become an outstanding
technique in data mining with several applications such as: genetic networks and
biochemical structures analysis, image classification, and circuits, cites, social
networks and links analysis, among others (Flores-Garrido et al., 2015; Jia et al.,

2011; Morales-Gonzélez et al., 2014). In this research, FAS mining algorithms

achieve better results than the ones reported by exact frequent subgraph mining

algorithms. This is because the inexact matching between patterns is common in

the data of a real-life application (Cook and Holder, 1994; Gonzélez et al., 2001;
Ketkar, 2005). However, the exact mining algorithms compute frequent patterns
based on isomorphism (Yan and Huan, 2002; Zhu et al., 2007; Wang et al., 2016).

All the aforementioned algorithms process only simple graph collections, where a
simple graph is a graph with a single edge between a pair of vertices and without
edges connecting a vertex with itself (loops). However, there are some applications
such as pathfinder on game maps, RNA molecule analysis, dynamic network with
time information, image processing, and event detection from Web sites, among

others (Boneva et al., 2007; Bjornsson and Halldérsson, 2006; Cazabet et al.,




2015; Morales-Gonzalez and Garcia-Reyes, 2013; Terroso-Saez et al., 2015;

Youssef et al., 2015) in which the authors highlight that using multi-graphs allow

them modeling data in a better way than using simple graphs. A multi-graph is a
graph that may contain loops and multiple edges between a pair of vertices. In
these applications, traditional FAS miners cannot be applied because they have
not been designed to work on multi-graphs. In all of these applications, using multi-
graphs and finding interesting patterns from multi-graphs would allow to get

information potentially useful to solve problems that are more complex.

As mentioned before, several researchers have focused their efforts on developing
algorithms for mining FASs in simple graph collections and, and it has only been
found one work which reports a solution, based on graph transformations, for using

this FAS miners on multi-graph collections (Acosta-Mendoza et al., 2015).

However, this method highly increases the size of each graph in the collection and
therefore the runtime of the FAS mining process. For this reason, with the aim of
speeding up the mining process, an alternative method is proposed, based on
graph transformation, for mining a subset of FASs from a multi-graph collection.
The proposal of this paper guarantees returning the mined FASs to the multi-graph
space faster than the method reported in the state-of-the-art.

COMPUTATIONAL METHODOLOGY

As we focus on working over a collection of undirected labeled multi-graphs, the
first concepts to be defined are labeled graph, simple graph and multi-graph. It is
important to highlight that several of the concepts presented in this section were

obtained from (Acosta-Mendoza et al., 2012; Morales-Gonzalez et al., 2014).

Definition 1 (Labeled graph): Let Lv and Le be two label sets for vertices and

edges, respectively, a labeled graph G is a 5-tuple Ve, B, 9c: 16 Je) \where: Vgis a



set of vertices; Eg is a set of edges; ¥¢ * Ec = V¢ is a function that returns the pair
of vertices of Vg which are connected by a given edge, where

Ve = {{u,v}lu,v € V). Is: Vs = Lyjg 5 |abeling function for assigning labels to

vertices in Vg and J¢: Ec = Lzjs a labeling function for assigning labels to edges in
Eg.

Multi-edges are different edges connecting the same pair of vertices (i.e. e and e’
are multl_edges If e+ e’ and (pc(e) = (pc(e') = {u, U} Such that u, v € VG, u =+ U). A |00p |S
an edge connecting a vertex to itself (i.e., when

@c(e) = {u} since @g(e) = {u, v} with v = u: mn a loop |pg(e)| = 1y (Acosta-Mendoza et

al., 2015). Then, the concepts of simple graph and multi-graph are defined as

follows:

Definition 2 (Simple-graph and multi-graph (Acosta-Mendoza et al., 2015)): A

graph G is a simple graph if it has no loops and no multi-edges; otherwise, G is a
multi-graph.

Definition 3 (subgraph and supergraph): Given two graphs Gy = Ve, Ec,» 9, I6, Jc,)

and G: = (VG;‘_' EGQ‘ <th_\‘IG:']G:): Gl IS a Subgraph Of G: lfVG" g VG:' EG‘ g EG: ,

Vu € Vg, Ig, (w) = Ig,(u), Ve € Eg,. Je.(e) =J¢,(e). and Ve € Eg,, ¢c,(e) = @g,(€)-|n this

G

case, we use the notation 1 € @2 and we say that G2 is a supergraph of G1.

In exact graph mining, graph matching is performed by means of graph
isomorphism. For both, simple graphs and multi-graphs, isomorphism and sub-

isomorphism between two graphs are defined as follow:

Definition 4 (Isomorphism and sub-isomorphism): Given two graphs

Gy:= (VG“E"’L’%:‘IG'-']GL)and Gz = (Ve Ecy 06y Ieu ) the pair of functions (f,g) is an

f: I-"rGl = l-"rﬂz and Q:EG‘. - EG—_-

isomorphism between these graphs iff : are bijective

functions, such that: V% € Ve,: f(w) € Vg, and Ig, (u) = Ie,(f(w)); Vey € Eg, . where



‘ch(el) ={u,v}:e; = g(e)) € Ee, and ¥, (e2) = {rf@w), f(v)} a”d]cl(ex) =]c=(33){ and

Ver € B vhere

‘Pcl(el) ={vre;=gle) € EG:: and (PG:(QZ) = {f(v)} andjcl(el) =]G¢_(92)' If there is an
iIsomorphism between G1 and G2, then we say that G1 and G2 are isomorphic.
Besides, if G1 is isomorphic to a subgraph of G2, then there is a sub-isomorphism

between G1 and G2 ; in this case, we say that G1 and G2 are sub-isomorphic.

In almost all inexact-based graph mining approaches, the authors firstly define a
function for comparing graphs, according to the application context (Cook and
Holder, 1994; Jia et al., 2011; Acosta-Mendoza et al., 2012; Flores-Gatrrido et al.,

2015). This function is known as similarity function between two graphs, denoted

by sim(G1,G2). Later, using a specific sim(G1,G2) function, the approximate sub-
isomorphism between two graphs and the maximum inclusion degree for a graph

G1 in another G2 are defined (see the definitions 5 and 6).

Definition 5 (Approximate isomorphism and approximate sub-isomorphism): Let
G1, G2 and G3 be three labeled multi-graphs, let sim(G1,G2) be a similarity

function, and let 7 € [0.1]pe a similarity threshold, there is an approximate

isomorphism between G1 and G2 if sim(G1,G2) = T- Also, if there is an

approximate isomorphism between G1 and G2, and G2 is a subgraph of G3, then

there is anapproximate sub-isomorphism between G1 and G3, denotedas Gy S4 G3-

Between two multi-graphs, more than one approximate similarity with different
values can be computed. Thus, in order to have only one similarity value between

two graphs, the following definition is used.

Definition 6 (Maximum inclusion degree): Let G1 and G2 be two labeled multi-
graphs, let sim(G1,G2) be a similarity function; the maximum inclusion degree of
G1in G2 is defined as:

mazrID(G1,G2) = max sim(G1, G), (1)

(" g ( >; 2



where maxID(G1,G2) means the maximum value of similarity at comparing G1 with

all of the subgraphs of G2.

With Definition 7, it is possible to compute the approximate support of a subgraph

in a graph collection.

Definition 7 (Approximate support): Let 2 = {G1. -, Gin}pe a multi-graph collection,
let sSim(G1,G2) be a similarity function among graphs, let 7be a similarity threshold,
and let G be a similarity threshold, and let G be a labeled multi-graph. Thus, the
approximate support (denoted by appSupp) of G in D is obtained through Equation

(2):

J .« ~ mazxlD(G,G;
appSupp(G. D) = Z(r.ED.(,g__‘(,llDl (G.G)) @)

b

By using the equation (2), frequent approximate subgraphs can be defined as

follows.

Definition 8 (Frequent approximate subgraph (FAS)): Let D be a multi-graph
collection, let G be a multi-graph and let é be a support threshold, G is a frequent

approximate subgraph in D iff appSupp(G,D) = &.

Taking into account the FAS definition, frequent approximate subgraph miningin a
multi-graph collection consists in, given a support threshold, a similarity function
between multi-graphs, and a similarity threshold, computing all the FASs in the

multi-graph collection.
Related work

There are three methods reported in the literature where multi-graphs are
transformed into simple graphs, the simple graphs are analyzed and a subset of
them are returned as result to the context of multi-graphs (Acosta-Mendoza et al.,
2015; Boneva et al., 2007; Whalen and Kenney, 1990). The transformation method




introduced in (Boneva et al., 2007) is applied for solving a problem in production
systems. In (Whalen and Kenney, 1990) a transformation method for finding
maximal link-disjoint paths in a multi-graph is proposed. In (Acosta-Mendoza et al.,
2015), a method that allows applying FAS miner was introduced and applied on

image classification tasks.

All the aforementioned methods use the same basic trick of modifying edges (i.e.
replacing edges by a vertex with two incident edges to the end vertices of the
original edge). This transformation process is applied over all the edges of the
multi-graphs and in this way, a multi-graph G” is transformed into a simple graph
G.

The transformation approaches reported in (Boneva et al., 2007; Whalen and

Kenney, 1990) have some drawbacks that make them infeasible in the context of

FAS mining. In (Whalen and Kenney, 1990), the method does not transform graphs
with loops; however, loops could be important in some applications and they
should be preserved and treated in a special way for FAS mining in multi-graphs.
Furthermore, in (Whalen and Kenney, 1990), the authors do not provide a reverse
transformation from directed simple graphs to directed multi-graphs. This reverse
process is trivial when the transformation is applied on a directed multi-graph,
where every vertex should be connected with at least two vertices. Nevertheless,
other kind of multi-graphs do not have a deterministic reverse transformation, and
this kind of multi-graphs are also very common in FAS mining applications. On the
other hand, the method proposed in (Boneva et al., 2007) maintains multi-edges
after transforming a multi-graph with loops. Therefore, the application of a

traditional FAS miner over the transformed graphs is infeasible.

The method (allEdges) proposed in (Acosta-Mendoza et al., 2015), for allowing the

application of traditional pattern miners over multi-graph collections, transforms
multi-graphs into simple graphs. First, the multi-graph collection is transformed into

a simple graph collection. For doing that, each loop that connects a vertex v by a

new vertex w and a simple edge (a2 edgee; € Eg of a graph G = (Vg, Eg, 96 1c.J6) is a



simple edge if €2 € Ec@c(e1) # @c(€2)) yith the label of the loop, connecting v to

w Later, each non-loop edge (i.e. simple edges or multi-edges) e that connects a

pair of vertices (4 v where u # v)is transformed into a new vertex w” and two edges

(el and e2) both with the label of e, connecting u and v, respectively, to w’.

Once the multi-graph collection is transformed into a simple graph collection, a
traditional pattern miner is applied on the simple graph collection, and then, the
patterns identified by the pattern miner are transformed into multi-graphs. Through
some special labels, it is possible to perform the reverse process without losing
structural or semantic information of the multi-graph collection. In allEdges, the
simple edges and the multi-edges are transformed because the authors consider
that a simple edge must have occurrences in the multi-edges and vice versa.
However, during this transformation process, several vertices and edges are
added. A new vertex for each edge is added and the number of edges is
duplicated, increasing the size of each graph, and therefore, the cost of FAS

mining.

Both proposals reported in (Boneva et al., 2007; Whalen and Kenney, 1990) are

focused on directed multi-graphs. The strategies followed by these methods
require the vertex and edge label sets to be disjoint. Thus, traditional FAS miners
cannot be used if these transformation methods are applied. On the other hand,
the method proposed in (Acosta-Mendoza et al., 2015), although it allows to apply

traditional FAS miners, it builds simple graphs with the double of vertices and
edges than those in the multi-graph collections, which increases the cost of FAS
mining. Therefore, in this paper, we present a new reversible method for
transforming an undirected multi-graph collection into an undirected simple graph
collection considering loops. Finally, complex simple graph collections are obtained
when the method proposed in (Acosta-Mendoza et al., 2015) is applied, because
the number of vertices and edges are duplicated in the transformation process. In

this way, the performance of the miners is negatively affected.

Proposed method



In this section, we propose a solution (called onlyMulti) for mining a FAS subset
from multi-graph collections taking advantage of the FAS miners reported in the
literature. The solution proposed in this section, as we illustrate in Figure 1,
consists in transforming a multi-graph collection into a simple graph collection,
mining a FAS subset from the simple graph collection by applying a FAS miner,

and transforming the FASs into multi-graphs.

The idea illustrated in Figure 1 has also been followed by the method (allEdges)
reported in (Acosta-Mendoza et al., 2015), but for mining all FASs from multi-graph

collections, while onlyMulti is an alternative for mining a reduced number of FASs.

The proposed alternative for transforming multi-graph collections into simple graph
collections consists in only transforming loops and multi-edges while simple edges
are kept without changes. In this way, less edges and vertices are added during
the transformation process, and the FAS miner is applied over simple graph
collections smaller graphs than those obtained by the allEdges method proposed in

(Acosta-Mendoza et al., 2015). After the FAS miner is applied, the mined FASs are

returned to the multi-graphs through the same reversing process used in allEdges.
Thus, the process for transforming a multi-graph into a simple graph of allEdges

and onlyMulti are different.
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Fig.1 - Workflow for FAS mining by applying the proposed graph transformation method.

Following the proposed alternative, the process for transforming a multi-graph G’
into a simple graph G consists in replacing each loop and each multi-edge by new
vertices and simple edges likewise in allEdges; however, unlike in allEdges, the
simple edges are kept without changes. In this way, a simple edge does not have
occurrences in multi-edges and vice versa and this is an important characteristic of
the solution proposed to be taken into account when it is applied. Each loop,
connecting a vertex v of G, is replaced by a simple edge with the label of the loop;

connecting v to a new vertex with a special label (k) Later, each multi-edge e in G’

with @er(e) = {wviandu#v o aniaced by two simple edges (el and e2) both
with the label of e; connecting u and v, respectively, to a new vertex with a special
label (p). This process is shown in Figure 2 where each loop in G” is transformed
into a new vertex and a simple edge in G, and each multi-edge in G” is transformed
into a new vertex and two simple edges in G, obtaining the simple graph G from
the multi-graph G” The special label p, in the same way as k, cannot be used as
label in the multi-graph collection and during the mining process, any other label,

except by itself, cannot replace it. In this way, a non-loop edge will only match with



other non-loop edge with the same label as well as a multi-edge will only match

with other multi-edge with the same label.

Once discussed how a loop and a multi-edge is transformed into simple edges, we
can introduce the algorithm (M2Simple) for transforming a multi-graph into a simple
graph. This algorithm traverses the edges in the input multi-graph searching the
loops and multi-edges. The identified loops and multi-edges are replaced by simple
edges following the ideas above discussed. Applying this transformation process
over each graph in a given multi-graph collection, we can transform it into a simple
graph collection. The computational complexity of this process is O(qd), where g is
the average number of edges in the multi-graphs of the collection, and d is the
number of multi-graphs in the collection. This complexity is obtained considering

that, for each multi-graph, all its edges should be visited.

Fig.2 - Example of the transformation of a multi-graph (G0) with three multi-edges and two

loops into a simple graph (G)

Given a multi-graph collection, through the process above described, a
transformed simple graph collection is obtained. Then, a conventional FAS miner
can be applied, and the same process introduced in (AcostaMendoza et al., 2015)
can be used for transforming the returnable FASs into multi-graphs. Notice that, for
obtaining the FASs from the multi-graph collection, this reverse transformation

process is required.



For transforming a FAS G (a simple graph) into a multi-graph G”, each edge

e € Eg with ¢g(e) = {w, v} that has a vertex v with label k is transformed into a loop
¢c'(e') = (W keeping the label of e. Each pair of edges el and e2 with

¢c(es) = {w,w}and gg(ez) = (v, Wl ot have a common vertex w with label p are

replaced by an edge e” with Poie) = {u.r) keeping the label of el and e2, which

have the same label.

Following the aforementioned idea, by traversing the edges of a FAS G and
replacing those edges that contain vertices with label or by multi-edges or loops,
respectively, we can transform a simple graph into a multigraph. Notice that only
vertices with label or are removed from the simple graph, together with the simple

edges connecting those vertices. However, as discussed in (Acosta-Mendoza et

al., 2015), not all the mined FASs should be transformed into multi-graphs because
some of them do not represent subgraphs in the original multi-graphs. Then, with
the aim of identifying the FASs from the original multi-graph collection, some
conditions that the mined simple graph FASs must fulfill for being susceptible to be
transformed into a multi-graph (i.e. to be a returnable FAS) were introduced in
(Acosta-Mendoza et al., 2015). In Definition 9, the aforementioned conditions are

presented.

Definition 9 (Returnable graph) Let k and p be the special labels used for
representing loops and multi-edges, respectively. A simple graph G is returnable

toa multi-graph if it fulfills the following conditions:

1. Eachvertex v € Ve with Io(v) = p has exactly two incident edges e, and e:, such that Jz(e:) = Js(e:)

2. Eachvertex v € Vewith Io(v) = k has exactly one incident edge.

RESULTS Y DISCUSSIONS



With the purpose of studying the performance of the proposed method as well as
its effectiveness, in this section, two experiments are presented. First, the
performance of the proposed method over synthetic and real collections is
evaluated. Later, the usefulness of the FASs computed by our proposed
transformation method from real images for image classification is shown. All
experiments were carried out on a personal computer with an Intel(R) Core(TM) i7-
3820 CPU @ 3.60 GHz with 64 GB of RAM. The algorithms S2Multi and M2Simple

were implemented in ANSI-C.

In the following experiments, several synthetic multi-graph collections are used for
evaluating the performance of the proposed method. These synthetic collections

were generated using the PyGen graph emulation library.

In addition, two real image collections were used: COIL (Nene et al., 2008) and

ETH (Leibe and Schiele, 2003), which contain images of real objects taken from

different viewpoints. In these cases, each image is represented as a multi-graph

following the approaches described in (Morales-Gonzalez and Garcia-Reyes,

2013) and (Morales-Gonzalez and Garcia-Reyes, 2010), respectively. In COIL, we
use the same 25 objects used by Morales-Gonzéalez and Garcia-Reyes (Morales-
Gonzalez and Garcia-Reyes, 2013). This collection is split into 198 (11%) images
for training and 1602 (89%) for testing, as in (Morales-Gonzéalez and Garcia-
Reyes, 2013). This collection has 144 as average graph size, 19 as average of
multi-edges per graphs and 25 classes. In ETH, we use the same 6 categories
employed in (Morales-Gonzéalez and Garcia-Reyes, 2010) (apples, cars, cows,
cups, horses and tomatoes). This collection is split into 615 (25%) images for
training and 1845 (75%) for testing, as in (Morales-Gonzalez and Garcia-Reyes,
2010). This collection has 179 as average graph size, 25 as average of multi-

edges per graphs and 6 classes.

Performance evaluation over synthetic collections



Three kinds of synthetic multi-graph collections were used for evaluating the
performance of both algorithms. In this case, we use multi-graph collections
generated varying only one parameter at a time. First, we fix |D| = 1000 and |E| =
200, varying |V | from 200 to 1000, with increments of 200. Next, we fix |V | = 200,
maintaining |D| = 1000 and varying |E| from 200 to 1000, with increments of 200.
Finally, we vary |D| from 1000 to 5000, with increments of 1000, keeping |V | = |E|
= 200. Then, we assign a descriptive name for each synthetic collection, for
example, D1kV1kE200 means that the collection has |D| = 1000, |V | = 1000 and
|E| = 200.

In Table 1, the performance results, in terms of runtime, and the average of
vertices and edges obtained by the transformation algorithms (M2Simple and
S2Multi) are shown. It is important to highlight that we denoted by M2Simple’ the
algorithm for transforming multi-graphs into simple graph proposed in (Acosta-
Mendoza et al., 2015). In this table, the runtime for mining the frequent

approximate subgraphs (FASs) from the transformed simple graph collections is
also shown. These results were achieved by transforming each multi-graph
collection into a simple graph collection using M2Simple or M2Simple’. The
average of vertices and edges for the simple graph collections obtained are shown,
as well as the runtime required for computing the FASs from these transformed
simple graph collections. Finally, each pattern obtained from the simple graph

collection was transformed into a multi-graph using S2Multi.

Table 1 is split into three sub-tables according to the collection type. In these sub-
tables, the first column shows the collection. The other two consecutive blocks,
with five columns each one, show the results obtained by applying the
transformation method specified on top. The first three columns of each block show
the runtime in seconds of M2Simple, the FASs mining process, and S2Multi
applied over the mined FASs. The other two columns specify the average number
of the vertices and edges of each collection after the transformation from multi-

graphs into simple graphs.



According to the results shown in Table 1, the runtime of the transformation
process grows with the increment of |D|, [V | and |E|, however, when the amount of
edges increases, this process grows faster than by increasing the number of
vertices and the number of graphs. The number of graphs in the collection is an
important variable to take into account, because it affects the performance of
M2Simple (M2Simple’) and S2Multi when it grows. Furthermore, S2Multi receives
many more vertices and edges than M2Simple (M2Simple’) for the same multi-
graph collection, since M2Simple (M2Simple’) creates an additional vertex and an
additional edge for each transformed edge or loop. In this sense, as M2Simple6f

the method proposed in (Acosta-Mendoza et al., 2015) adds more vertices and

edges in these collections than M2Simple of onlyMulti, then allEdges required
more time over the same collections than onlyMulti, for both, mining patterns and
returning the patterns to multi-graphs. Finally, as it can be seen in Table 1,
onlyMulti allows mining patterns in less time than the method reported in (Acosta-
Mendoza et al., 2015).

Table 1 - Performance of the method proposed in this paper and the method proposed in

(Acosta-Mendoza et al., 2015), interms of runtime, over different synthetic multi-graph

collections. The symbol “*” means that the runtime required for the process was more than
48 hours, and the symbol “-” specifies that the transformation cannot be performed

because patterns were not mined.



(a) Varying |V| from 200 to 1000 with |2] = 1000 and |E| = 200.

Proposed method
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M25Imple VEAM S2hulti V| | E| M2S5imple’ VEAM S2Multi |V | E|
DHEVEME2OD 1.130 L] 0004 218 206 [ 5&0 1995 0012 400 388
DIEVENDELOD 2,560 40710 0,029 240 425 1610 34004 0.177 GO 776
DIkV 200 ERO0 4.580 32259 0004 200 6535 2.340 Talbd 0.250 Eo 1164
DIEV2OOESND T.200 A5 0.207 342 2495 3090 * 100 1552
DIkVEROE LK 10710 03454 1.502 402 1143 3810 » 120 1941

(e) Varying || from
Proposed method

1000 to 3000 wi

th [V| = 200 and |£| = 200,
Method proposed in (Acosta-Men

doza et al., 2015)

Runtime (3) Collection HRuntime (s) Collection
Collection size size

M28imple VEAM  S2Multi V| | &] M2Simple’ VEAM  S2Multi [¥] |E|
DikVaooEzo0 L.130 R .004 .88 1895 0.013
D2EVEMELDD 218D LG8R8 0.006 180 Bh4a 0.013

DFEVEOOEL0D 3270 3156 0.006 218 206 2.630 2102 0.014 400 368
Dk V200EL0D 4.350 G37T 0,045 3650 J4460 0332
D5kVEME2DD 5.T00 G LO17 4.360 31073 1.73%

Performance evaluation over real-world collections

In Table 2, the performance of onlyMulti over the two real image collections (COIL

and ETH) is shown, represented as multi-graphs. In this experiment, the

performance of M2Simple over the whole multi-graph collection was evaluated

while the performance of S2Multi was evaluated over the simple graph subsets

generated after applying VEAM to the results of M2Simple, by testing different

values for the support threshold.

Table 2 - Performance of the proposed method, in terms of runtime and number of

identified patterns, over two real image collections.



No. Identified No. Returnable
Collection Support (5) M2Simple VEAM Patterns S2Multi Patterns

0.3 195 263 0.002s o1
COIL 04 1.17s 300s 867 0.008s 256
03 1143s 4156 0.041s 2163
0.2 15768s 82531 1.027s 62476
08 13328 138 0.001s 20
ETH 0.7 5.05s 5508z 883 0.008s 479
0.6 44208s 4717 0.040s 3824
0.5 153288s 22723 0.234s 13912

The first column of Table 2 shows the collection name. The second column
contains the support threshold value (6) used by VEAM to get a subset of patterns
when it is applied to the result of M2Simple. The third column shows the runtime of
M2Simple when it is applied over the whole collection specified in column one. The
time spent by VEAM is shown in the fourth column, while the amount of patterns
computed by VEAM appears in the fifth column. The sixth column contains the
runtime of S2Multi for transforming the mined patterns (simple graphs) to multi-
graphs. In the last column, we show the amount of returnable patterns. As it can be
seen in this Table, the number of returnable patterns identified by VEAM grows as
the support threshold decreases. However, it is important to highlight that the
runtime of the proposed transformation algorithms is too small regarding the

runtime required by VEAM for mining FASS.

Classification results

For showing the usefulness of the patterns identified by using onlyMulti, the results
obtained by it in the context of image classification using COIL and ETH collections
are shown A new classifier in not being proposed, so the design of a specialized
classifier for images represented as multi-graphs is out of the scope of this paper.
In this experiment, the idea of the proposed method for the FAS mining in
multigraph collections is followed, where all the FASs computed by the proposed
method are used for building an attribute vector for each image. In the same way
as (Acosta-Mendoza et al., 2012), the vectors are described through the bag-of-

word technique using the patters computed after applying the proposed



transformation algorithm M2Simple. Finally, once we have the vector
representation of the images, a conventional classifier is applied. As in previous
experiments, the FAS mining algorithm used for this experiment was VEAM, but
fixing to 0,66 the similarity threshold, as recommended in (Acosta-Mendoza et al.,
2012).

One of the most recent works reported in literature based on FAS for image

classification is the one reported in (Morales-Gonzélez et al., 2014). Thus, the

onlyMulti image classification results are contrasted against those obtained by this
method. Since in (Morales-Gonzalez et al., 2014), the best image classification
results were achieved with SVM classifier, we used this classifier for this
experiment. The SVM classifier was taken from Weka v3.6.6 (Hall et al., 2009) with

the default parameters.

Table 3 - OClassification results (%) using the SVM classifier over multi-graph collections
representing images, which are represented as vectors by means of the FASs computed

using several support (6) values.

COIL ETH
Accuracy F-measure Accuracy  F-measure
4 94.13 94.00 d 67.48 67.50
02 90.32 0.5 65.63 6. 10
0.3 9280 B3.58 0.6 64.93 80.37
04 84.85 0.7 64.39 69.76
0.5 74.72 5870 08

The classification results (accuracy and F-measure results) are shown in Table 3.
This table is split into two subtables showing the results obtained over COIL and
ETH, respectively. The first column of each table shows the support threshold
values used in each experiment. In this case, we use 6 = 0,2, 0,3, 0,4 and 0,5 for
COIL and 6 =0,5, 0,6, 0,7 and 0,8 for ETH because, in both collections, if greater
or smaller values of d are used, useful patterns could not be identified. The second
and third columns show the classification results (accuracy or F-measure), using all
FASs computed by VEAM.



In (Morales-Gonzalez and Garcia-Reyes, 2013), an image classification method,

not based on FASs, which uses the same image collections (COIL and ETH)
represented as multi-graphs in a similar way as in the current paper, was
introduced. Comparing onlyMulti against the method reported in (Morales-
Gonzalez and Garcia-Reyes, 2013), the proposal, using a simple pattern based
classifier, obtained better results over the COIL collection, since in (Morales-
Gonzalez and Garcia-Reyes, 2013) an accuracy of 91,60 was reported while
onlyMulti scored 94,13. In the case of the ETH collection, we did not improve upon
the results reported in (Morales-Gonzalez and Garcia-Reyes, 2013) where the
authors reported an accuracy of 88,0; while the onlyMulti best result was 67,48. In
spite of these results, this experiment shows the usefulness of onlyMulti, which
allows transforming a multi-graph collection into a simple graph collection for
applying traditional FAS miners. Although onlyMulti can be applied in different
contexts where data are represented as multi-graphs in order to find out interesting
patterns which could be useful for solving different problems.

CONCLUSIONS

In this paper, a new method (onlyMulti) for frequent approximate subgraph (FAS)
mining in multi-graph collections by transforming multi-graphs into simple graphs
and vice versa is proposed. OnlyMulti, as a first step, transforms a multi-graph
collection into a simple graph collection, then over this collection a FASs mining
algorithm is applied and onlyMulti transforms the patterns found to multi-graphs.

From the experiments reported in this paper, we can conclude that onlyMulti is able
to mine FASs from multi-graph collections in a shorter time, producing smaller
simple graphs than the only alternative option reported in literature. This is very
important in order to reduce the cost of the FAS mining step. Based on the

experiments we can conclude that the time required for mining multi-graphs using



onlyMulti is smaller than applying the closest state-of-the-art transformation
method. In addition, the usefulness of the FASs computed over multi-graph
collections by applying onlyMulti in an image classification problem was shown,
where in some cases the results obtained by the patterns computed by using the
proposed method outperform the results obtained by state-of-the-art classifiers

non-based on FASSs.
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