
How to cite

Complete issue

More information about this article

Journal's webpage in redalyc.org

Scientific Information System Redalyc

Network of Scientific Journals from Latin America and the Caribbean, Spain and
Portugal

Project academic non-profit, developed under the open access initiative

Revista Cubana de Ciencias Informáticas
ISSN: 1994-1536
ISSN: 2227-1899

Editorial Ediciones Futuro

Acosta Mendoza, Niusvel
A New Multi-graph Transformation Method for Frequent Approximate Subgraph Mining

Revista Cubana de Ciencias Informáticas, vol. 12, no. 3, 2018, July-September, pp. 1-16
Editorial Ediciones Futuro

Available in: https://www.redalyc.org/articulo.oa?id=378365832001

https://www.redalyc.org/comocitar.oa?id=378365832001
https://www.redalyc.org/fasciculo.oa?id=3783&numero=65832
https://www.redalyc.org/articulo.oa?id=378365832001
https://www.redalyc.org/revista.oa?id=3783
https://www.redalyc.org
https://www.redalyc.org/revista.oa?id=3783
https://www.redalyc.org/articulo.oa?id=378365832001

Artículo Original

A New Multi-graph Transformation Method for Frequent

Approximate Subgraph Mining

Un nuevo método basado en transformaciones de multigrafos

para la minería de subgrafos frecuentes aproximados

Niusvel Acosta Mendoza 1*

1 Centro de Aplicaciones de Tecnología de Avanzada (CENATAV). .

nacosta@cenatav.co.cu

*Autor para la correspondencia: nacosta@cenatav.co.cu

ABSTRACT

Frequent approximate subgraph (FAS) mining has been successfully applied in

several science domains, because in many applications, approximate approaches

have achieved better results than exact approaches. However, there are real

applications based on multi-graphs where traditional FAS miners cannot be applied

because they were not designed to deal with this type of graph. Only one method

based on graph transformation, which allows the use of traditional simple-graph

FAS miners on multi-graph problems was reported, but it has high computational

cost. This paper aims at accelerating the mining process, thus a more efficient

mailto:nacosta@cenatav.co.cu
mailto:jmperea@unex.es

method is proposed for transforming multi-graphs into simple graphs and vice

versa without losing topological or semantic information, that allows using

traditional FAS mining algorithms and returning the mined patterns to the multi-

graph space. Finally, we analyze the performance of the proposed method over

synthetic multi-graph collections and additionally we show the effectiveness of the

proposal in image classification tasks where images are represented as multi-

graphs.

Key words: approximate mining, frequent approximate subgraphs, graph-based

classification, multi-graph mining.

RESUMEN

La minería de subgrafos frecuentes aproximados ha sido satisfactoriamente

aplicada en varios dominios de la ciencia, debido a que los enfoques aproximados

han alcanzado mejores resultados que los exactos en muchas aplicaciones. Sin

embargo, existen aplicaciones basadas en multi-grafos donde los algoritmos

tradicionales de minería no pueden ser aplicados porque no están diseñados para

trabajar con este tipo de grafos. Solo se ha reportado un método basado en

transformaciones de grafos que permite aplicar los algoritmos tradicionales para la

minería de subgrafos frecuentes aproximados en problemas representados como

multi-grafos, pero tiene la limitante de un alto costo computacional. En este

trabajo, con el objetivo de acelerar el proceso de minería, se propone un método

más eficiente para transformar los multi-grafos en grafos simples y vice versa.

Este proceso se realiza sin perder información topológica o semántica, lo cual

permite el uso de los algoritmos tradicionales de minería de grafos y los patrones

minados se pueden retornar al contexto de multi-grafos. Finalmente se analiza el

comportamiento del método propuesto sobre colecciones de multi-grafos sintéticas

y adicionalmente se muestra la utilidad de la propuesta en tareas de clasificación

de imágenes, donde dichas imágenes son representadas como multi-grafos.

Palabras clave: clasificación basada en grafos, minería aproximada, minería de

multi-grafos, subgrafos frecuentes aproximados.

Recibido: 24/11/2017

Aceptado: 06/06/2018

INTRODUCTION

Frequent approximate subgraph (FAS) mining has become an outstanding

technique in data mining with several applications such as: genetic networks and

biochemical structures analysis, image classification, and circuits, cites, social

networks and links analysis, among others (Flores-Garrido et al., 2015; Jia et al.,

2011; Morales-González et al., 2014). In this research, FAS mining algorithms

achieve better results than the ones reported by exact frequent subgraph mining

algorithms. This is because the inexact matching between patterns is common in

the data of a real-life application (Cook and Holder, 1994; González et al., 2001;

Ketkar, 2005). However, the exact mining algorithms compute frequent patterns

based on isomorphism (Yan and Huan, 2002; Zhu et al., 2007; Wang et al., 2016).

All the aforementioned algorithms process only simple graph collections, where a

simple graph is a graph with a single edge between a pair of vertices and without

edges connecting a vertex with itself (loops). However, there are some applications

such as pathfinder on game maps, RNA molecule analysis, dynamic network with

time information, image processing, and event detection from Web sites, among

others (Boneva et al., 2007; Björnsson and Halldórsson, 2006; Cazabet et al.,

2015; Morales-González and García-Reyes, 2013; Terroso-Saez et al., 2015;

Youssef et al., 2015) in which the authors highlight that using multi-graphs allow

them modeling data in a better way than using simple graphs. A multi-graph is a

graph that may contain loops and multiple edges between a pair of vertices. In

these applications, traditional FAS miners cannot be applied because they have

not been designed to work on multi-graphs. In all of these applications, using multi-

graphs and finding interesting patterns from multi-graphs would allow to get

information potentially useful to solve problems that are more complex.

As mentioned before, several researchers have focused their efforts on developing

algorithms for mining FASs in simple graph collections and, and it has only been

found one work which reports a solution, based on graph transformations, for using

this FAS miners on multi-graph collections (Acosta-Mendoza et al., 2015).

However, this method highly increases the size of each graph in the collection and

therefore the runtime of the FAS mining process. For this reason, with the aim of

speeding up the mining process, an alternative method is proposed, based on

graph transformation, for mining a subset of FASs from a multi-graph collection.

The proposal of this paper guarantees returning the mined FASs to the multi-graph

space faster than the method reported in the state-of-the-art.

COMPUTATIONAL METHODOLOGY

As we focus on working over a collection of undirected labeled multi-graphs, the

first concepts to be defined are labeled graph, simple graph and multi-graph. It is

important to highlight that several of the concepts presented in this section were

obtained from (Acosta-Mendoza et al., 2012; Morales-González et al., 2014).

Definition 1 (Labeled graph): Let Lv and Le be two label sets for vertices and

edges, respectively, a labeled graph G is a 5-tuple where: Vg is a

set of vertices; Eg is a set of edges; is a function that returns the pair

of vertices of Vg which are connected by a given edge, where

is a labeling function for assigning labels to

vertices in Vg and is a labeling function for assigning labels to edges in

Eg.

Multi-edges are different edges connecting the same pair of vertices (i.e. e and e´

are multi-edges if). A loop is

an edge connecting a vertex to itself (i.e., when

) (Acosta-Mendoza et

al., 2015). Then, the concepts of simple graph and multi-graph are defined as

follows:

Definition 2 (Simple-graph and multi-graph (Acosta-Mendoza et al., 2015)): A

graph G is a simple graph if it has no loops and no multi-edges; otherwise, G is a

multi-graph.

Definition 3 (subgraph and supergraph): Given two graphs

and is a subgraph of ,

, In this

case, we use the notation and we say that G2 is a supergraph of G1.

In exact graph mining, graph matching is performed by means of graph

isomorphism. For both, simple graphs and multi-graphs, isomorphism and sub-

isomorphism between two graphs are defined as follow:

Definition 4 (Isomorphism and sub-isomorphism): Given two graphs

and the pair of functions (f,g) is an

isomorphism between these graphs iff : and are bijective

functions, such that: , where

and and

where

If there is an

isomorphism between G1 and G2, then we say that G1 and G2 are isomorphic.

Besides, if G1 is isomorphic to a subgraph of G2, then there is a sub-isomorphism

between G1 and G2 ; in this case, we say that G1 and G2 are sub-isomorphic.

In almost all inexact-based graph mining approaches, the authors firstly define a

function for comparing graphs, according to the application context (Cook and

Holder, 1994; Jia et al., 2011; Acosta-Mendoza et al., 2012; Flores-Garrido et al.,

2015). This function is known as similarity function between two graphs, denoted

by sim(G1,G2). Later, using a specific sim(G1,G2) function, the approximate sub-

isomorphism between two graphs and the maximum inclusion degree for a graph

G1 in another G2 are defined (see the definitions 5 and 6).

Definition 5 (Approximate isomorphism and approximate sub-isomorphism): Let

G1, G2 and G3 be three labeled multi-graphs, let sim(G1,G2) be a similarity

function, and let be a similarity threshold, there is an approximate

isomorphism between G1 and G2 if sim(G1,G2) Also, if there is an

approximate isomorphism between G1 and G2, and G2 is a subgraph of G3, then

there is anapproximate sub-isomorphism between G1 and G3, denotedas

Between two multi-graphs, more than one approximate similarity with different

values can be computed. Thus, in order to have only one similarity value between

two graphs, the following definition is used.

Definition 6 (Maximum inclusion degree): Let G1 and G2 be two labeled multi-

graphs, let sim(G1,G2) be a similarity function; the maximum inclusion degree of

G1 in G2 is defined as:

where maxID(G1,G2) means the maximum value of similarity at comparing G1 with

all of the subgraphs of G2.

With Definition 7, it is possible to compute the approximate support of a subgraph

in a graph collection.

Definition 7 (Approximate support): Let be a multi-graph collection,

let sim(G1,G2) be a similarity function among graphs, let be a similarity threshold,

and let G be a similarity threshold, and let G be a labeled multi-graph. Thus, the

approximate support (denoted by appSupp) of G in D is obtained through Equation

(2):

By using the equation (2), frequent approximate subgraphs can be defined as

follows.

Definition 8 (Frequent approximate subgraph (FAS)): Let D be a multi-graph

collection, let G be a multi-graph and let be a support threshold, G is a frequent

approximate subgraph in D iff

Taking into account the FAS definition, frequent approximate subgraph miningin a

multi-graph collection consists in, given a support threshold, a similarity function

between multi-graphs, and a similarity threshold, computing all the FASs in the

multi-graph collection.

Related work

There are three methods reported in the literature where multi-graphs are

transformed into simple graphs, the simple graphs are analyzed and a subset of

them are returned as result to the context of multi-graphs (Acosta-Mendoza et al.,

2015; Boneva et al., 2007; Whalen and Kenney, 1990). The transformation method

introduced in (Boneva et al., 2007) is applied for solving a problem in production

systems. In (Whalen and Kenney, 1990) a transformation method for finding

maximal link-disjoint paths in a multi-graph is proposed. In (Acosta-Mendoza et al.,

2015), a method that allows applying FAS miner was introduced and applied on

image classification tasks.

All the aforementioned methods use the same basic trick of modifying edges (i.e.

replacing edges by a vertex with two incident edges to the end vertices of the

original edge). This transformation process is applied over all the edges of the

multi-graphs and in this way, a multi-graph G´ is transformed into a simple graph

G.

The transformation approaches reported in (Boneva et al., 2007; Whalen and

Kenney, 1990) have some drawbacks that make them infeasible in the context of

FAS mining. In (Whalen and Kenney, 1990), the method does not transform graphs

with loops; however, loops could be important in some applications and they

should be preserved and treated in a special way for FAS mining in multi-graphs.

Furthermore, in (Whalen and Kenney, 1990), the authors do not provide a reverse

transformation from directed simple graphs to directed multi-graphs. This reverse

process is trivial when the transformation is applied on a directed multi-graph,

where every vertex should be connected with at least two vertices. Nevertheless,

other kind of multi-graphs do not have a deterministic reverse transformation, and

this kind of multi-graphs are also very common in FAS mining applications. On the

other hand, the method proposed in (Boneva et al., 2007) maintains multi-edges

after transforming a multi-graph with loops. Therefore, the application of a

traditional FAS miner over the transformed graphs is infeasible.

The method (allEdges) proposed in (Acosta-Mendoza et al., 2015), for allowing the

application of traditional pattern miners over multi-graph collections, transforms

multi-graphs into simple graphs. First, the multi-graph collection is transformed into

a simple graph collection. For doing that, each loop that connects a vertex v by a

new vertex w and a simple edge is a

simple edge if with the label of the loop, connecting v to

w Later, each non-loop edge (i.e. simple edges or multi-edges) e that connects a

pair of vertices is transformed into a new vertex w´ and two edges

(e1 and e2) both with the label of e, connecting u and v, respectively, to w´.

Once the multi-graph collection is transformed into a simple graph collection, a

traditional pattern miner is applied on the simple graph collection, and then, the

patterns identified by the pattern miner are transformed into multi-graphs. Through

some special labels, it is possible to perform the reverse process without losing

structural or semantic information of the multi-graph collection. In allEdges, the

simple edges and the multi-edges are transformed because the authors consider

that a simple edge must have occurrences in the multi-edges and vice versa.

However, during this transformation process, several vertices and edges are

added. A new vertex for each edge is added and the number of edges is

duplicated, increasing the size of each graph, and therefore, the cost of FAS

mining.

Both proposals reported in (Boneva et al., 2007; Whalen and Kenney, 1990) are

focused on directed multi-graphs. The strategies followed by these methods

require the vertex and edge label sets to be disjoint. Thus, traditional FAS miners

cannot be used if these transformation methods are applied. On the other hand,

the method proposed in (Acosta-Mendoza et al., 2015), although it allows to apply

traditional FAS miners, it builds simple graphs with the double of vertices and

edges than those in the multi-graph collections, which increases the cost of FAS

mining. Therefore, in this paper, we present a new reversible method for

transforming an undirected multi-graph collection into an undirected simple graph

collection considering loops. Finally, complex simple graph collections are obtained

when the method proposed in (Acosta-Mendoza et al., 2015) is applied, because

the number of vertices and edges are duplicated in the transformation process. In

this way, the performance of the miners is negatively affected.

Proposed method

In this section, we propose a solution (called onlyMulti) for mining a FAS subset

from multi-graph collections taking advantage of the FAS miners reported in the

literature. The solution proposed in this section, as we illustrate in Figure 1,

consists in transforming a multi-graph collection into a simple graph collection,

mining a FAS subset from the simple graph collection by applying a FAS miner,

and transforming the FASs into multi-graphs.

The idea illustrated in Figure 1 has also been followed by the method (allEdges)

reported in (Acosta-Mendoza et al., 2015), but for mining all FASs from multi-graph

collections, while onlyMulti is an alternative for mining a reduced number of FASs.

The proposed alternative for transforming multi-graph collections into simple graph

collections consists in only transforming loops and multi-edges while simple edges

are kept without changes. In this way, less edges and vertices are added during

the transformation process, and the FAS miner is applied over simple graph

collections smaller graphs than those obtained by the allEdges method proposed in

(Acosta-Mendoza et al., 2015). After the FAS miner is applied, the mined FASs are

returned to the multi-graphs through the same reversing process used in allEdges.

Thus, the process for transforming a multi-graph into a simple graph of allEdges

and onlyMulti are different.

Fig.1 - Workflow for FAS mining by applying the proposed graph transformation method.

Following the proposed alternative, the process for transforming a multi-graph G´

into a simple graph G consists in replacing each loop and each multi-edge by new

vertices and simple edges likewise in allEdges; however, unlike in allEdges, the

simple edges are kept without changes. In this way, a simple edge does not have

occurrences in multi-edges and vice versa and this is an important characteristic of

the solution proposed to be taken into account when it is applied. Each loop,

connecting a vertex v of G´, is replaced by a simple edge with the label of the loop;

connecting v to a new vertex with a special label (k) Later, each multi-edge e in G´,

with , is replaced by two simple edges (e1 and e2) both

with the label of e; connecting u and v, respectively, to a new vertex with a special

label (p). This process is shown in Figure 2 where each loop in G´ is transformed

into a new vertex and a simple edge in G, and each multi-edge in G´ is transformed

into a new vertex and two simple edges in G, obtaining the simple graph G from

the multi-graph G´ The special label p, in the same way as k, cannot be used as

label in the multi-graph collection and during the mining process, any other label,

except by itself, cannot replace it. In this way, a non-loop edge will only match with

other non-loop edge with the same label as well as a multi-edge will only match

with other multi-edge with the same label.

Once discussed how a loop and a multi-edge is transformed into simple edges, we

can introduce the algorithm (M2Simple) for transforming a multi-graph into a simple

graph. This algorithm traverses the edges in the input multi-graph searching the

loops and multi-edges. The identified loops and multi-edges are replaced by simple

edges following the ideas above discussed. Applying this transformation process

over each graph in a given multi-graph collection, we can transform it into a simple

graph collection. The computational complexity of this process is O(qd), where q is

the average number of edges in the multi-graphs of the collection, and d is the

number of multi-graphs in the collection. This complexity is obtained considering

that, for each multi-graph, all its edges should be visited.

Fig.2 - Example of the transformation of a multi-graph (G0) with three multi-edges and two

loops into a simple graph (G)

Given a multi-graph collection, through the process above described, a

transformed simple graph collection is obtained. Then, a conventional FAS miner

can be applied, and the same process introduced in (AcostaMendoza et al., 2015)

can be used for transforming the returnable FASs into multi-graphs. Notice that, for

obtaining the FASs from the multi-graph collection, this reverse transformation

process is required.

For transforming a FAS G (a simple graph) into a multi-graph G´, each edge

that has a vertex v with label k is transformed into a loop

keeping the label of e. Each pair of edges e1 and e2 with

that have a common vertex w with label p are

replaced by an edge e´ with keeping the label of e1 and e2, which

have the same label.

Following the aforementioned idea, by traversing the edges of a FAS G and

replacing those edges that contain vertices with label or by multi-edges or loops,

respectively, we can transform a simple graph into a multigraph. Notice that only

vertices with label or are removed from the simple graph, together with the simple

edges connecting those vertices. However, as discussed in (Acosta-Mendoza et

al., 2015), not all the mined FASs should be transformed into multi-graphs because

some of them do not represent subgraphs in the original multi-graphs. Then, with

the aim of identifying the FASs from the original multi-graph collection, some

conditions that the mined simple graph FASs must fulfill for being susceptible to be

transformed into a multi-graph (i.e. to be a returnable FAS) were introduced in

(Acosta-Mendoza et al., 2015). In Definition 9, the aforementioned conditions are

presented.

Definition 9 (Returnable graph) Let k and p be the special labels used for

representing loops and multi-edges, respectively. A simple graph G is returnable

toa multi-graph if it fulfills the following conditions:

RESULTS Y DISCUSSIONS

With the purpose of studying the performance of the proposed method as well as

its effectiveness, in this section, two experiments are presented. First, the

performance of the proposed method over synthetic and real collections is

evaluated. Later, the usefulness of the FASs computed by our proposed

transformation method from real images for image classification is shown. All

experiments were carried out on a personal computer with an Intel(R) Core(TM) i7-

3820 CPU @ 3.60 GHz with 64 GB of RAM. The algorithms S2Multi and M2Simple

were implemented in ANSI-C.

In the following experiments, several synthetic multi-graph collections are used for

evaluating the performance of the proposed method. These synthetic collections

were generated using the PyGen graph emulation library.

In addition, two real image collections were used: COIL (Nene et al., 2008) and

ETH (Leibe and Schiele, 2003), which contain images of real objects taken from

different viewpoints. In these cases, each image is represented as a multi-graph

following the approaches described in (Morales-González and García-Reyes,

2013) and (Morales-González and García-Reyes, 2010), respectively. In COIL, we

use the same 25 objects used by Morales-González and García-Reyes (Morales-

González and García-Reyes, 2013). This collection is split into 198 (11%) images

for training and 1602 (89%) for testing, as in (Morales-González and García-

Reyes, 2013). This collection has 144 as average graph size, 19 as average of

multi-edges per graphs and 25 classes. In ETH, we use the same 6 categories

employed in (Morales-González and García-Reyes, 2010) (apples, cars, cows,

cups, horses and tomatoes). This collection is split into 615 (25%) images for

training and 1845 (75%) for testing, as in (Morales-González and García-Reyes,

2010). This collection has 179 as average graph size, 25 as average of multi-

edges per graphs and 6 classes.

Performance evaluation over synthetic collections

Three kinds of synthetic multi-graph collections were used for evaluating the

performance of both algorithms. In this case, we use multi-graph collections

generated varying only one parameter at a time. First, we fix |D| = 1000 and |E| =

200, varying |V | from 200 to 1000, with increments of 200. Next, we fix |V | = 200,

maintaining |D| = 1000 and varying |E| from 200 to 1000, with increments of 200.

Finally, we vary |D| from 1000 to 5000, with increments of 1000, keeping |V | = |E|

= 200. Then, we assign a descriptive name for each synthetic collection, for

example, D1kV1kE200 means that the collection has |D| = 1000, |V | = 1000 and

|E| = 200.

In Table 1, the performance results, in terms of runtime, and the average of

vertices and edges obtained by the transformation algorithms (M2Simple and

S2Multi) are shown. It is important to highlight that we denoted by M2Simple’ the

algorithm for transforming multi-graphs into simple graph proposed in (Acosta-

Mendoza et al., 2015). In this table, the runtime for mining the frequent

approximate subgraphs (FASs) from the transformed simple graph collections is

also shown. These results were achieved by transforming each multi-graph

collection into a simple graph collection using M2Simple or M2Simple’. The

average of vertices and edges for the simple graph collections obtained are shown,

as well as the runtime required for computing the FASs from these transformed

simple graph collections. Finally, each pattern obtained from the simple graph

collection was transformed into a multi-graph using S2Multi.

Table 1 is split into three sub-tables according to the collection type. In these sub-

tables, the first column shows the collection. The other two consecutive blocks,

with five columns each one, show the results obtained by applying the

transformation method specified on top. The first three columns of each block show

the runtime in seconds of M2Simple, the FASs mining process, and S2Multi

applied over the mined FASs. The other two columns specify the average number

of the vertices and edges of each collection after the transformation from multi-

graphs into simple graphs.

According to the results shown in Table 1, the runtime of the transformation

process grows with the increment of |D|, |V | and |E|, however, when the amount of

edges increases, this process grows faster than by increasing the number of

vertices and the number of graphs. The number of graphs in the collection is an

important variable to take into account, because it affects the performance of

M2Simple (M2Simple’) and S2Multi when it grows. Furthermore, S2Multi receives

many more vertices and edges than M2Simple (M2Simple’) for the same multi-

graph collection, since M2Simple (M2Simple’) creates an additional vertex and an

additional edge for each transformed edge or loop. In this sense, as M2Simpleóf

the method proposed in (Acosta-Mendoza et al., 2015) adds more vertices and

edges in these collections than M2Simple of onlyMulti, then allEdges required

more time over the same collections than onlyMulti, for both, mining patterns and

returning the patterns to multi-graphs. Finally, as it can be seen in Table 1,

onlyMulti allows mining patterns in less time than the method reported in (Acosta-

Mendoza et al., 2015).

Table 1 - Performance of the method proposed in this paper and the method proposed in

(Acosta-Mendoza et al., 2015), interms of runtime, over different synthetic multi-graph

collections. The symbol “*” means that the runtime required for the process was more than

48 hours, and the symbol “-” specifies that the transformation cannot be performed

because patterns were not mined.

Performance evaluation over real-world collections

In Table 2, the performance of onlyMulti over the two real image collections (COIL

and ETH) is shown, represented as multi-graphs. In this experiment, the

performance of M2Simple over the whole multi-graph collection was evaluated

while the performance of S2Multi was evaluated over the simple graph subsets

generated after applying VEAM to the results of M2Simple, by testing different

values for the support threshold.

Table 2 - Performance of the proposed method, in terms of runtime and number of

identified patterns, over two real image collections.

The first column of Table 2 shows the collection name. The second column

contains the support threshold value (δ) used by VEAM to get a subset of patterns

when it is applied to the result of M2Simple. The third column shows the runtime of

M2Simple when it is applied over the whole collection specified in column one. The

time spent by VEAM is shown in the fourth column, while the amount of patterns

computed by VEAM appears in the fifth column. The sixth column contains the

runtime of S2Multi for transforming the mined patterns (simple graphs) to multi-

graphs. In the last column, we show the amount of returnable patterns. As it can be

seen in this Table, the number of returnable patterns identified by VEAM grows as

the support threshold decreases. However, it is important to highlight that the

runtime of the proposed transformation algorithms is too small regarding the

runtime required by VEAM for mining FASs.

Classification results

For showing the usefulness of the patterns identified by using onlyMulti, the results

obtained by it in the context of image classification using COIL and ETH collections

are shown A new classifier in not being proposed, so the design of a specialized

classifier for images represented as multi-graphs is out of the scope of this paper.

In this experiment, the idea of the proposed method for the FAS mining in

multigraph collections is followed, where all the FASs computed by the proposed

method are used for building an attribute vector for each image. In the same way

as (Acosta-Mendoza et al., 2012), the vectors are described through the bag-of-

word technique using the patters computed after applying the proposed

transformation algorithm M2Simple. Finally, once we have the vector

representation of the images, a conventional classifier is applied. As in previous

experiments, the FAS mining algorithm used for this experiment was VEAM, but

fixing to 0,66 the similarity threshold, as recommended in (Acosta-Mendoza et al.,

2012).

One of the most recent works reported in literature based on FAS for image

classification is the one reported in (Morales-González et al., 2014). Thus, the

onlyMulti image classification results are contrasted against those obtained by this

method. Since in (Morales-González et al., 2014), the best image classification

results were achieved with SVM classifier, we used this classifier for this

experiment. The SVM classifier was taken from Weka v3.6.6 (Hall et al., 2009) with

the default parameters.

Table 3 - 0Classification results (%) using the SVM classifier over multi-graph collections

representing images, which are represented as vectors by means of the FASs computed

using several support (δ) values.

The classification results (accuracy and F-measure results) are shown in Table 3.

This table is split into two subtables showing the results obtained over COIL and

ETH, respectively. The first column of each table shows the support threshold

values used in each experiment. In this case, we use δ = 0,2, 0,3, 0,4 and 0,5 for

COIL and δ = 0,5, 0,6, 0,7 and 0,8 for ETH because, in both collections, if greater

or smaller values of δ are used, useful patterns could not be identified. The second

and third columns show the classification results (accuracy or F-measure), using all

FASs computed by VEAM.

In (Morales-González and García-Reyes, 2013), an image classification method,

not based on FASs, which uses the same image collections (COIL and ETH)

represented as multi-graphs in a similar way as in the current paper, was

introduced. Comparing onlyMulti against the method reported in (Morales-

González and García-Reyes, 2013), the proposal, using a simple pattern based

classifier, obtained better results over the COIL collection, since in (Morales-

González and García-Reyes, 2013) an accuracy of 91,60 was reported while

onlyMulti scored 94,13. In the case of the ETH collection, we did not improve upon

the results reported in (Morales-González and García-Reyes, 2013) where the

authors reported an accuracy of 88,0; while the onlyMulti best result was 67,48. In

spite of these results, this experiment shows the usefulness of onlyMulti, which

allows transforming a multi-graph collection into a simple graph collection for

applying traditional FAS miners. Although onlyMulti can be applied in different

contexts where data are represented as multi-graphs in order to find out interesting

patterns which could be useful for solving different problems.

CONCLUSIONS

In this paper, a new method (onlyMulti) for frequent approximate subgraph (FAS)

mining in multi-graph collections by transforming multi-graphs into simple graphs

and vice versa is proposed. OnlyMulti, as a first step, transforms a multi-graph

collection into a simple graph collection, then over this collection a FASs mining

algorithm is applied and onlyMulti transforms the patterns found to multi-graphs.

From the experiments reported in this paper, we can conclude that onlyMulti is able

to mine FASs from multi-graph collections in a shorter time, producing smaller

simple graphs than the only alternative option reported in literature. This is very

important in order to reduce the cost of the FAS mining step. Based on the

experiments we can conclude that the time required for mining multi-graphs using

onlyMulti is smaller than applying the closest state-of-the-art transformation

method. In addition, the usefulness of the FASs computed over multi-graph

collections by applying onlyMulti in an image classification problem was shown,

where in some cases the results obtained by the patterns computed by using the

proposed method outperform the results obtained by state-of-the-art classifiers

non-based on FASs.

Acknowledgment

This work was partly supported by the National Council of Science and Technology

of Mexico (CONACyT) through the scholarship grant 287045.

REFERENCES

N. Acosta-Mendoza, A. Gago-Alonso, and J.E. Medina-Pagola. Frequent

approximate subgraphs as features for graph-based image classification.

Knowledge-Based Systems, 27:381-392, 2012.

N. Acosta-Mendoza J.A. Carrasco-Ochoa, J.F. Martínez-Trinidad, A. Gago-Alonso,

and J.E. Medina-Pagola. , A New Method Based on Graph Transformation for

FAS Mining in Multi-graph Collections. Acepted. In Pattern Recognition, pages 13-

22. Springer, 2015.

Y. Björnsson and K. Halldórsson. Improved Heuristics for Optimal Pathfinding on

Game Maps. In American Association for Artificial Intelligence, page 9, 2006.

I. Boneva, F. Hermann, H. Kastenberg, and A. Rensink. Simulating Multigraph

Transformations Using Simple Graphs. Electronic Comunications of the EASST, 6,

2007.

R. Cazabet, H. Takeda, and M. Hamasaki. Characterizing the nature of interactions

for cooperative creation in online social networks. Social Network Analysis and

Mining, 5(1):1-17, 2015.

D.J. Cook and L.B. Holder. Substructure discovery using minimum description

length and background knowledge. Journal of Artificial Intelligence Research,

1:231-255, 1994.

M. Flores-Garrido, J.A. Carrasco-Ochoa, and J.Fco. Martínez-Trinidad. AGraP: an

algorithm for mining frequent patterns in a single graph using inexact matching.

Knowledge and Information Systems, 42(2): 1-22, 2015. doi: 10.1007/s10115-014-

0747-x.

J.A. González, L.B. Holder, and D.J. Cook. Graph-Based Concept Learning. In

Proceedings of the Fourteenth International Florida Artificial Intelligence Research

Society Conference, pp. 377-381, Key West, Florida, USA, 2001. AAAI Press.

M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I.H. Witten. The

WEKA Data Mining Software: An Update. Special Interest Group on Knowledge

Discovery and Data Mining (SIGKDD) Explorations, 11:10-18, 2009.

Y. Jia, J. Zhang, and J. Huan. An efficient graph-mining method for complicated

and noisy data with real-world applications. Knowledge Information Systems,

28(2):423-447, 2011.

N.S. Ketkar. Subdue: compression-based frequent pattern discovery in graph data.

In OSDM’05: Proceedings of the 1st international workshop on open source data

mining, pp. 71-76. ACM Press, 2005.

B. Leibe and B. Schiele. Analyzing Appearance and Contour Based Methods for

Object Categorization. In IEEE Conference on Computer Vision and Pattern

Recognition (CVPR’03), pages 409-415. Madison, WI, USA, June 16-22 2003.

A. Morales-González and E. B. García-Reyes. Assessing the Role of Spatial

Relations for the Object Recognition Task. In The 15th Iberoamerican Congress on

Pattern Recognition (CIARP’10), volume 6419 of Lecture Notes in Computer

Science, pages 549-556. Springer, Heidelberg, 2010.

A. Morales-González and E. B. García-Reyes. Simple object recognition based on

spatial relations and visual features represented using irregular pyramids.

Multimedia tools and applications, 63(3):875-897, 2013.

A. Morales-González, N. Acosta-Mendoza, A. Gago-Alonso, E.B. García-Reyes,

and J.E. Medina-Pagola. A new proposal for graph-based image classification

using frequent approximate subgraphs. Pattern Recognition, 47(1):169-177, 2014.

ISSN 0031-3203.

S. Nene, S. Nayar, and H. Murase. Columbia Object Image Library (COIL-100).

Structural, Syntactic, and Statistical Pattern Recognition, Joint IAPR International

Workshop, SSPR & SPR 2008, 2008.

F. Terroso-Saez, M. Valdés-Vela, and A.F.. Skarmeta-Gómez. Online Urban

Mobility Detection Based on Velocity Features. In Proceeding of The 17th

International Conference of Big Data Analytics and Knowledge Discovery, volume

LNCS 9263, pages 351-362. Valencia, Spain, 2015.

K. Wang, X. Xie, H. Jin, P. Yuan, F. Lu, and X. Ke. Frequent Subgraph Mining in

Graph Databases Based on MapReduce. In G. Wang, Y. Han, and G. Martínez,

editors, Advances in Services Computing - 10th Asia-Pacific Services Computing

Conference, APSCC 2016, Zhangjiajie, China, November 16-18, 2016,

Proceedings, pp. 464-476, Cham, 2016. Springer International Publishing.

J.S. Whalen and J. Kenney. Finding maximal link disjoint paths in a multigraph.

Global Telecommunications Conference and Exhibition. ’Communications:

Connecting the Future’, 1:470-474, 1990.

X. Yan and J. Huan. gSpan: Graph-Based Substructure Pattern Mining. In

International Conference on Data Mining, Japan, 2002. Maebashi.

R. Youssef, A. Kacem, S. Sevestre-Ghalila, and C. Chappard. Graph Structuring of

Skeleton Object for Its HighLevel Exploitation. Image Analysis and Recognition,

LNCS 9164:419-426, 2015.

F. Zhu, X. Yan, J. Han, and P.S. Yu. gPrune: A Constraint Pushing Framework for

Graph Pattern Mining. In Advances in Knowledge Discovery and Data Mining, 11th

Pacific-Asia Conference, PAKDD 2007, Nanjing, China, May 22-25, Proceedings,

volume 4426 of LNCS, pp. 388-400. Springer, 2007.

