

ISSN: 1994-1536 ISSN: 2227-1899

Editorial Ediciones Futuro

Hernández Dominguez, Antonio; Baluja García, Walter Principales mecanismos para el enfrentamiento al phishing en las redes de datos Revista Cubana de Ciencias Informáticas, vol. 15, Esp., 2021, Octubre-Diciembre, pp. 413-441 Editorial Ediciones Futuro

Disponible en: https://www.redalyc.org/articulo.oa?id=378370462024

Número completo

Más información del artículo

Página de la revista en redalyc.org

abierto

Sistema de Información Científica Redalyc

Red de Revistas Científicas de América Latina y el Caribe, España y Portugal Proyecto académico sin fines de lucro, desarrollado bajo la iniciativa de acceso

Vol. 15, No. Especial UCIENCIA I, Septiembre, 2021

ISSN: 2227-1899 | RNPS: 2301

http://rcci.uci.cu Pág. 413-441

Tipo de artículo: Artículo de revisión

Temática: Seguridad informática

Recibido: 30/06/2021| Aceptado: 01/10/2021

Principales mecanismos para el enfrentamiento al phishing en las redes de datos

Main mechanisms for dealing with phishing in data networks

Antonio Hernández Dominguez 1* https://orcid.org/0000-0001-8391-3064

Walter Baluja García ² https://orcid.org/0000-0003-3499-4843

¹ Universidad de las Ciencias Informáticas (UCI). Carretera a San Antonio de los Baños, Km 2 ½, reparto

Torrens, municipio Boyeros, La Habana, Cuba. CP: 19370. ahdominguez@uci.cu

² Ministerio de la Educación Superior. Calle 23 e/ F y G No 565, municipio Vedado, La Habana, Cuba. CP:

10400. walterb@uci.cu

*Autor para la correspondencia. (ahdominguez@uci.cu)

RESUMEN

En los últimos años se han utilizado diversos mecanismos para detectar ataques de phishing. El papel

desempeñado por las técnicas de aprendizaje automático ha sido significativo, principalmente por los

niveles de eficacia obtenidos en la detección de estos ataques. Independientemente del servicio en el que se

desarrollen, siempre es posible extraer un conjunto de rasgos que permitan identificar cuándo hay o no

phishing. Las características pueden extraerse de **diversas** fuentes como las URL, el contenido compartido a

través de un sitio web, una red social o simplemente un mensaje de correo electrónico, el motor de

búsqueda, el certificado digital, el tráfico de red, entre otros. La precisión de la solución Anti Phishing

Editorial "Ediciones Futuro" Universidad de las Ciencias Informáticas. La Habana, Cuba

Vol. 15, No. Especial UCIENCIA I, Septiembre, 2021

ISSN: 2227-1899 | RNPS: 2301

http://rcci.uci.cu

Pág. 413-441

depende del conjunto de rasgos, los datos de entrenamiento y el algoritmo de autoaprendizaje. Este artículo

presenta un análisis actualizado de los métodos de aprendizaje automático y las herramientas informáticas

utilizadas para detectar ataques de phishing en redes.

Palabras clave: Phishing; detección de Phishing; Aprendizaje Automático; herramientas informáticas.

ABSTRACT

In recent years, various mechanisms have been used to detect phishing attacks. The role played by machine

learning techniques has been significant, mainly because of the levels of effectiveness obtained in detecting

these attacks. Regardless of the service in which they are developed, it is always possible to extract a set of

features to identify when phishing is or is not taking place. The features can be extracted from various

sources such as URLs, content shared through a website, a social network or simply an email message,

search engine, digital certificate, network traffic, among others. The accuracy of the Ant Phishing solution

depends on the feature set, training data and self-learning algorithm. This paper presents an updated analysis

of machine learning methods and computational tools used to detect phishing attacks in networks.

Keywords: Phishing; Phishing Detection; Machine Learning; computational tools.

Introducción

En la actualidad, con el desarrollo vertiginoso de las Tecnologías de la Información y Comunicación (TIC), se ha

manifestado una tendencia hacia el crecimiento del desarrollo de aplicaciones, que en dependencia del tipo de negocio

al que estén asociadas, se inclinan o no al procesamiento de grandes volúmenes de datos. Paralelo al desarrollo y

penetración de las TIC crece la necesidad de la seguridad de la información que es generada, almacenada,

intercambiada y procesada. Las tendencias mundiales revelan un crecimiento exponencial de acciones malignas

encaminadas a poner en riesgo la seguridad de la información. Un ciberataque consiste en cualquier acción tomada

para socavar las funciones de una red informática con fines políticos o de seguridad nacional (Salinas Macías, 2015).

Editorial "Ediciones Futuro" Universidad de las Ciencias Informáticas. La Habana, Cuba

Vol. 15, No. Especial UCIENCIA I, Septiembre, 2021

ISSN: 2227-1899 | RNPS: 2301

http://rcci.uci.cu

Pág. 413-441

El Informe de Amenaza de Seguridad de Internet, emitido por la corporación multinacional estadounidense Symantec

(Symantec, 2019), arroja que, en los últimos años, las tácticas más sencillas y los delincuentes informáticos más

innovadores consiguieron resultados sin precedentes en el panorama de las amenazas mundiales. Los ataques que se

realizan utilizando las técnicas de ingeniería social (Hadnagy, 2011), estimulan un ambiente con cierta manipulación

psicológica, con el fin de lograr mediante el engaño a usuarios o empleados, que estos entreguen sus credencias de

acceso u otros datos confidenciales. Frecuentemente, se hace uso del correo electrónico u otro medio de comunicación

que invoca la urgencia, el miedo o emociones similares en la víctima, lo que lleva a esta a revelar rápidamente

información sensible, hacer clic en un enlace malicioso o abrir un archivo malicioso.

Los ataques de phishing son uno de los más comunes entre los de ingeniería social (Sumner and Yuan, 2019). Estos

emplean subterfugios técnicos y de ingeniería social para robar los datos de identidad personal y las credenciales de

las cuentas financieras de los consumidores (APWG, 2020). Este tipo de ataque suele lanzarse principalmente a

través de mensajes de correo electrónico, que parecen ser enviados desde una fuente acreditada, con la intención de

persuadir al usuario de que abra un archivo adjunto malicioso o siga una dirección URL fraudulenta. Una variante de

phishing dirigido, denominada "spear phishing", se basa en la investigación previa de las víctimas para que la estafa

parezca más auténtica (Allodi et al., 2019), lo que la convierte en uno de los tipos de ataque más exitosos contra los

usuarios de las redes de datos. Debido a que el factor humano juega un papel determinante, el phishing, en los últimos

años, se ha enfocado hacia las redes sociales (Yassein et al., 2019) y también hacia la mensajería de texto o SMS

(smishing) (Balim and Gunal, 2019). Otras variantes de este ataque incluyen, el fraude de correo electrónico dirigido a

ejecutivos (whaling) (Park and Rayz, 2018), el phishing a través de la redirección de los usuarios a un sitio falso

(pharming) (Gajera et al., 2019), el phishing a través del servicio de voz (vishing) (Moul, 2019) y el phishing basado

en el Localizador de Recursos Uniforme (URL maliciosas), contenidas en códigos de respuesta rápida o QR

(*QRishing*) (Chorghe and Shekokar, 2016).

Durante el 2020, los Ataques de Comprometimiento de Correo Electrónico Empresarial (BEC), variante de spear

phishing, fueron cada vez más costosos para las víctimas en todo el mundo. La solicitud media de transferencia

bancaria en los ataques BEC aumentó de 48.000 dólares (USD) en el tercer trimestre a 75.000 dólares en el cuarto

(APWG, 2020). El número de ataques de phishing observados por el Grupo de Trabajo Anti-Phishing (APWG) y sus

miembros creció hasta 2020, duplicándose en el transcurso del año (APWG, 2020) (ver Fig. 1).

Editorial "Ediciones Futuro" Universidad de las Ciencias Informáticas. La Habana, Cuba

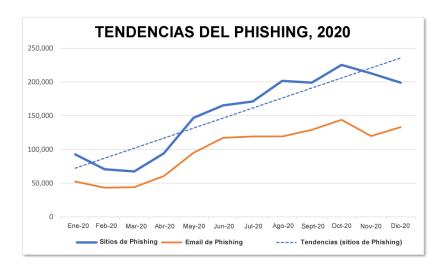


Fig. 1 – Tendencias de los ataques de phishing (sitios, correo electrónico) durante el 2020.

Fuente: APGW (APWG, 2020).

Otro aspecto a destacar es que los ataques de *vishing* se han detectado principalmente en el sector financiero, así como la suplantación de identidad en las redes sociales, ha aumentado considerablemente desde el 2016, debido a la utilidad que tienen los perfiles de usuario para los *phishers* (Sfakianakis et al., 2019). Dada la vigencia e impacto de estos ataques, se han realizado numerosas investigaciones sobre los enfoques de detección. Los trabajos de revisión precedentes (Adil et al., 2020; Althobaiti et al., 2019; Chorghe and Shekokar, 2016; Qabajeh et al., 2018; Shaikh et al., 2016; Yassein, Aljawarneh and Wahsheh, 2019; Zuraiq and Alkasassbeh, 2019) se han centrado en el estudio y clasificación de las técnicas de detección más significativas en cada servicio. Sin embargo, esta investigación proporcionará un análisis integral, amplio y actualizado de los métodos y herramientas informáticas existentes que han demostrado ser más efectivos en los últimos años.

Métodos o Metodología Computacional

A nivel internacional se han utilizado diversos métodos para la detección de los ataques de phishing. Según se aprecia en la Figura 2, el estudio de trabajos precedentes permite agrupar estas soluciones en dos grandes grupos: convencionales y automatizados (Hernández Dominguez and Baluja García, 2021).

Vol. 15, No. Especial UCIENCIA I, Septiembre, 2021 ISSN: 2227-1899 | RNPS: 2301

http://rcci.uci.cu Pág. 413-441

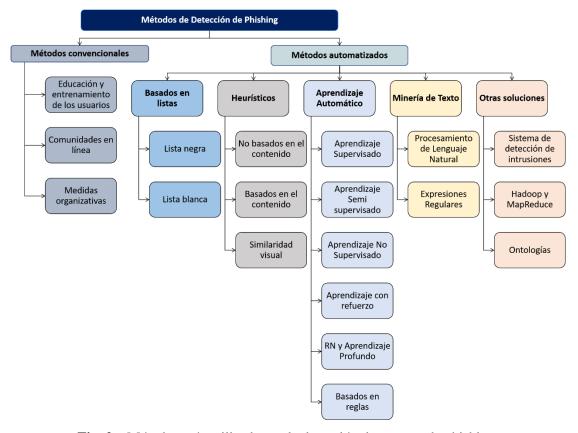


Fig. 2 – Métodos más utilizados en la detección de ataques de phishing.

Fuente: (Hernández Dominguez and Baluja García, 2021).

Métodos convencionales

Según la literatura existen soluciones encaminadas a la formación de los usuarios, para detectar este tipo de ataques, utilizando para ello un entorno de entrenamiento integrado (Dixon et al., 2019) con situaciones reales. Otras soluciones son basadas en la experiencia del usuario, lo que ha permitido la creación de comunidades en línea como Anti-Phishing (APWG^a, *PhishTank*^b, *Millersmiles*^c, *Symantec*^d, entre otros), las cuales tienen como función general monitorizar y denunciar las actividades de phishing recientes a los diferentes grupos de interés (Baadel et al., 2018).

Vol. 15, No. Especial UCIENCIA I, Septiembre, 2021

ISSN: 2227-1899 | RNPS: 2301

http://rcci.uci.cu Pág. 413-441

Soluciones para la educación y entrenamiento de los usuarios

A continuación, se describen brevemente las herramientas Anti Phishing (Aassal and Verma, 2019) para la

formación de usuarios:

1. SecurityIO-PhishSim: Plataforma basada en la web, desarrollada por el Instituto Infosec con el fin

de formar en materia de Anti Phishing y concienciar a los usuarios en materia de seguridad. Entre las

múltiples funcionalidades se encuentran la creación de correos electrónicos de phishing

personalizados o el uso de plantillas ya disponibles, la simulación de ataques, las funciones de

seguimiento y la posibilidad de enviar distintos tipos de correos electrónicos a diferentes usuarios

como parte de un mismo ataque.

2. Gophish: Plataforma de código abierto desarrollada por Jordan Wright, en noviembre de 2013. Está

diseñada para permitir a los probadores de penetración simular ataques de phishing de forma rápida

y eficiente. Ofrece múltiples rasgos, como la importación del formato de correo electrónico y la

clonación de sitios web, para utilizarlos como plantillas en una simulación determinada.

3. Software de phishing LUCY: Herramienta basada en la web que permite concienciar a los

empleados sobre el phishing. A través de la plataforma en línea, los usuarios tienen acceso a un

panel de control personal donde pueden hacer un seguimiento de todas las simulaciones realizadas, o

crear otras nuevas, en vista de utilizarlas para futuros programas de entrenamiento. Además, se

pueden configurar listas de destinatarios para utilizarlas en ataques de phishing. LUCY ofrece

múltiples plantillas de correo electrónico, cada una de las cuales puede utilizarse en varios idiomas.

4. KingPhisher: Solución de código abierto desarrollada por SecureStare. King Phisher es una

herramienta para probar y promover la sensibilización de los usuarios mediante la simulación de

ataques de phishing. Cuenta con una arquitectura sencilla y flexible, que permite un control total

sobre los correos electrónicos y el contenido del servidor. King Phisher puede ser utilizada para

ejecutar las simulaciones que van desde la formación y concienciación simple hasta los escenarios

más complicados en los que se sirven contenidos al usuario para recopilar credenciales.

5. SpeedPhish Framework: Herramienta en Python desarrollada por Adam Compton. Esta herramienta

puede ser utilizada para entrenar a los usuarios acerca de los principales conceptos relacionados con

phishing. Esta herramienta sólo está disponible en sistemas Linux. Uno de los rasgos útiles de esta

Editorial "Ediciones Futuro"
Universidad de las Ciencias Informáticas, La Habana, Cuba

Vol. 15, No. Especial UCIENCIA I, Septiembre, 2021

ISSN: 2227-1899 | RNPS: 2301

http://rcci.uci.cu Pág. 413-441

herramienta es la función de reconocimiento que permite buscar en motores de búsqueda objetivos

potenciales. También contiene desplegado un servidor web integrado basado en la biblioteca Twisted

Python, mediante el cual se ofrecen funciones de clonación de sitios web.

6. *Phishing Frenzy*: Aplicación de código abierto para que un probador de penetración simule correos

electrónicos de phishing. Desarrollada en 2013 por Brandon McCann, facilita la gestión de ataques

de phishing de phishing. Entre sus funcionalidades destacan la disponibilidad de plantillas, la

clonación de sitios web, la gestión de credenciales, emisión de estadísticas asociadas a un ataque y la

exportación de los resultados en formatos XML o PDF.

7. Wombat Security - ThreatSim: Plataforma web para desarrollar ataques de phishing integrada con

varios módulos de formación, adquirida por la empresa Wombat Security Technologies, hoy día

Proofpoint Security Awareness Training, el 14 de octubre de 2015. Es una herramienta totalmente

comercial que ofrece más de 130 plantillas actualizadas casi semanalmente, en más de 25 idiomas.

Tiene soporte para distintos tipos de ataques de phishing. También ofrece múltiples funciones,

incluyendo la clonación de sitios web y la edición de código HTML para el caso de las plantillas de

correo electrónico y sitios web.

Métodos automatizados para la detección de phishing

1. **Métodos basados en listas:** Una práctica común es la utilización de bases de datos (lista negra y

lista blanca), los cuales reflejan una efectividad de detección de ataques de phishing en el intervalo

de un 47% a un 83%, como promedio (Dong et al., 2015). Algunos ejemplos son: MXToolBox

Blacklist Check (Bikov et al., 2019), Barracuda Blacklist (Chin et al., 2018), Spamhaus Whitelist,

las listas negras de PhishTank, Microsoft, Google (Dong, Kapadia, Blythe and Camp, 2015), entre

otros. Estas soluciones pueden ser utilizadas en diversos servicios telemáticos.

2. Métodos heurísticos: Existen varias estrategias heurísticas contra el phishing que han sido debatidas

en la literatura. Los enfoques se dividen comúnmente en tres tipos (Silva et al., 2020): el enfoque no

basado en contenido (Jayan and Dija, 2015), el enfoque basado en contenido (Nathezhtha et al.,

2019) y el enfoque basado en similitud visual (Huang et al., 2019), siendo este último el más

Editorial "Ediciones Futuro" Universidad de las Ciencias Informáticas. La Habana, Cuba

Vol. 15, No. Especial UCIENCIA I, Septiembre, 2021

ISSN: 2227-1899 | RNPS: 2301

http://rcci.uci.cu Pág. 413-441

utilizado. Para la extracción de los rasgos utilizados durante la clasificación, en el caso de la

similitud visual, se utiliza generalmente la técnica de Reconocimiento Óptico de Caracteres (OCR)

(Wang and Duncan, 2019).

3. Métodos de Aprendizaje Automático (ML): Teniendo en cuenta que el phishing es un problema

típico de clasificación (Qabajeh, Thabtah and Chiclana, 2018), las técnicas de ML y la Minería de

Datos (DM) resultan apropiadas para obtener conocimiento. Algunos de los métodos de la

Inteligencia Artificial (IA) más referenciados en la literatura (Mishra and Soni, 2019), para la

detección de phishing, son: los Árboles de Decisión (DT), los Métodos de Conjunto (Bosques

Aleatorios (RF)), los Modelos Probabilísticos (Clasificador Bayesiano Ingenuo (NB) y Redes

Bayesianas), la Máquina de Soporte Vectorial (SVM), la Lógica Difusa, las Redes Neuronales (NN)

y los algoritmos de Aprendizaje Profundo (DL). De cada uno de los métodos de Aprendizaje

Automático se derivan diversos enfoques que son aplicados en los sistemas Anti-Phishing, por lo

que uno de los factores analizados siempre es el nivel de efectividad que estos tienen.

4. Minería de Texto (TM) y Procesamiento del Lenguaje Natural (NLP): Utilizando estos métodos

es posible identificar los intentos de phishing, a través del análisis de patrones sospechosos que

incluyen, entre otros, el contenido de correos electrónicos, sitios web, URL, mensajes instantáneos,

entre otros. Se han aplicado cuatro tipos de técnicas de TM y NLP en la detección de phishing: la

Frecuencia de Término - Frecuencia Inversa de Documento (TF-IDF) (Dou et al., 2017), las

Expresiones Regulares (RE) (Abahussain and Harrath, 2019), el Modelado de Temas usando

Análisis Semántico Latente (LSA) (Jain and Gupta, 2016) y el Modelo de Memoria Distribuida de

Vectores de Párrafo (PV-DM) (Douzi et al., 2017).

5. Otras Soluciones: Se identificaron varias técnicas emergentes contra el phishing, incluidas

ontologías (Park and Rayz, 2018) y los Sistemas de Detección de Intrusos (Lam and Kettani, 2019).

Además, en la literatura revisada (Vieira et al., 2019) se propone Hadoop y se utilizan las principales

ventajas que proporciona la técnica de MapReduce para el procesamiento de los datos y la selección

de rasgos que serán utilizados en la detección de phishing.

Editorial "Ediciones Futuro" Universidad de las Ciencias Informáticas. La Habana, Cuba

Vol. 15, No. Especial UCIENCIA I, Septiembre, 2021

ISSN: 2227-1899 | RNPS: 2301

http://rcci.uci.cu

Pág. 413-441

Rasgos más utilizados en la detección de phishing

A continuación, se resumen los rasgos más utilizados por los métodos automatizados de detección de

phishing. En el caso de la web, se extraen mediante el análisis de las imágenes, los textos, y de los enlaces

de los textos, de los documentos HTML y CSS del sitio web. Además, en este contexto también se tienen en

cuenta los rasgos de JavaScript, los objetos ActiveX y los formularios, de ahí que se puedan agrupar de la

siguiente manera:

Rasgos basados en la URL

1. Léxicos: Las URL presentan numerosos rasgos léxicos que se utilizan en la detección de phishing,

que incluyen: dirección IP y número de puerto contenidos en la URL, longitud, cantidad de

parámetros, frecuencia de palabras claves, existencia de caracteres especiales ('/', '=', '@', '&' y ' ')

frecuencia de palabras en la lista negra, relación entre dígitos y caracteres, uso del Protocolo Seguro

de Transferencia de Hipertexto (HTTPS), cantidad de puntos (Korkmaz et al., 2020), complejidad de

Kolmogorov (Cuzzocrea et al., 2018), Ngrams de caracteres (Vazhavil et al., 2018), entropía de URL

(Aung and Yamana, 2019).

2. servicios de terceros: Rasgos obtenidos a partir de los servicios WHOIS (Fang et al., 2015) y Alexa

Rank (Shirazi et al., 2018) (información de registro de nombre de dominio, edad del dominio,

información geográfica y la similitud de nombre de dominio en función de la distancia de

Levenshtein (Nathezhtha, Sangeetha and Vaidehi, 2019)), rasgos del dominio de nivel superior

(TLD) (Tyagi et al., 2018), y el manejador de formularios del servidor (SFH) (Korkmaz, Sahingoz

and Diri, 2020).

Rasgos basados en el contenido

1. HTML: cantidad de etiquetas, atributos de etiqueta HTML, Frecuencia de Término (TF-IDF),

cantidad de elementos fuera de lugar, cantidad de elementos pequeños/ocultos, cantidad de

elementos sospechosos, cantidad de enlaces internos/externos, enlaces nulos en el sitio y pie de

página, existencia de más de una etiqueta de HEAD/BODY, marcos invisibles, cantidad de tipo de

archivo específico, cantidad de iframes, árbol del Modelo de Objeto de Documento (DOM)

Editorial "Ediciones Futuro" Universidad de las Ciencias Informáticas. La Habana, Cuba

Vol. 15, No. Especial UCIENCIA I, Septiembre, 2021

ISSN: 2227-1899 | RNPS: 2301

http://rcci.uci.cu

Pág. 413-441

(Sonowal and Kuppusamy, 2016), función ActiveX (Satam et al., 2016), clic derecho deshabilitado,

administrador de formularios del servidor, e identidad de formulario de inicio de sesión (Korkmaz,

Sahingoz and Diri, 2020).

2. **JavaScript:** cantidad de cadenas sospechosas, cantidad de cadenas de caracteres largos (>40, >51),

rutinas de decodificación, detección de shellcode (Moustafa et al., 2018), cantidad de cadenas de

iframe (Tahir et al., 2016), cantidad de objetos sospechosos, cantidad de scripts y cantidad de

funciones (eval, setInterval, OnMouseOver) (Zhu et al., 2018).

3. Similitud visual del sitio web: Texto, imágenes y similitud general (captura de pantalla), color

dominante y su coordenada centroide (Futai et al., 2016), logo (Park et al., 2017) y el ícono de

página (favicon) (Hasan et al., 2019).

4. URL acortadas: Frecuencia de caracteres especiales ('/', '=', '@', '&' y ' '), ofuscación de la

dirección IP, codificación de la URL, suplantación de la ruta, no coincidencia en el origen y destino

de la URL, dirección IP del nombre de dominio, ofuscación de nombre de dominio, frecuencia de

punto de entrada de la URL, cantidad de nombres de dominio y direcciones IP (Patil et al., 2017).

5. motor de búsqueda: Se obtienen a partir de consultas de las componentes de la URL (URL

completa, nombre de dominio, y otros) en los motores de búsqueda. (Althobaiti, Rummani and

Vaniea, 2019).

6. basados en redireccionamiento: cantidad de dominios diferentes, direcciones IP en la cadena de

redirecciones, cantidad de redirecciones (Althobaiti, Rummani and Vaniea, 2019).

Rasgos basados en certificados

1. certificado TLS/SSL (seguridad en la capa de transporte/capa de sockets seguros): nivel de

validación, la ubicación del emisor, si es de pago o gratuito, las fechas de inicio y finalización del

certificado (Althobaiti, Rummani and Vaniea, 2019).

Por otro lado, los diferentes campos del mensaje del correo electrónico (Lam and Kettani, 2019) son

utilizados como rasgos para detectar los ataques de phishing que habitualmente afectan este servicio.

Existen variantes que incluyen el análisis de rasgos genéricos obtenidos a partir del encabezado y del propio

Editorial "Ediciones Futuro"

Vol. 15, No. Especial UCIENCIA I, Septiembre, 2021

ISSN: 2227-1899 | RNPS: 2301

http://rcci.uci.cu

Pág. 413-441

contenido del mensaje. Resulta muy útil el resumen que se encuentra en (Han and Shen, 2016), en el que se

agrupan los rasgos en cuatro categorías: de origen, de texto, de adjunto y de destinatario, pero solo es

efectivo para el caso específico de los ataques de spear phishing.

Teniendo en cuenta esta clasificación y las presentadas en la literatura (Iyer et al., 2017) se identificaron los

siguientes rasgos:

1. **genéricos:** tamaño, identificador del mensaje, fecha de envío del mensaje, cantidad de partes del

cuerpo del mensaje (Han and Shen, 2016).

2. remitente: dominio, dirección IP, Número de Sistema Autónomo (ASN), país, organización (Iyer,

Atrey, Varshney and Misra, 2017).

3. destinatario: dominio y organización (Verma and Aassal, 2017).

4. contenido

5. **asunto:** longitud, cantidad de palabras, cantidad de caracteres, palabras en lista negra (Rathod and

Pattewar, 2015).

6. texto: longitud promedio de las palabras, longitud el texto del mensaje, cantidad de palabras

funcionales, expresiones regulares, cantidad de palabras complejas y simples, cantidad de caracteres,

métricas de estilo, índices de legibilidad (Egozi and Verma, 2018), análisis de redes semánticas

(Bhakta and Harris, 2015), urgencia, recompensa, lenguaje de amenazas en el contenido, saludo,

firma, despedida en el mensaje, presencia de "De:" y "Para:" en el contenido del correo electrónico,

cantidad de dominios vinculados, palabras del mensaje en la lista negra, cantidad de eventos

onClick() en el contenido del correo electrónico (Zhang et al., 2017), Indexación Semántica Latente

(Chin, Xiong and Hu, 2018), y las métricas (índice de niebla, índice inverso de niebla, índice

SMOG, Índice de *Flesch-Kincaid* (FKRI)), utilizadas por Han (Han and Shen, 2016).

7. Rasgos de archivos adjuntos: tamaño, tipo de archivo (Han and Shen, 2016).

En el caso de las redes sociales, según (Yassein, Aljawarneh and Wahsheh, 2019) los principales rasgos

utilizados para detectar phishing se obtienen del contenido, la información de la red social y la reputación de

los enlaces. Los rasgos identificados para el caso de los ataques basados en URL se pueden aplicar aquí,

Editorial "Ediciones Futuro"

puesto que un texto compartido por un usuario puede contener direcciones electrónicas, según plantea (Al-Janabi et al., 2017). De igual manera, este autor plantea el uso de los siguientes rasgos específicos del perfil del usuario:

- 1. antigüedad de la cuenta
- 2. cantidad de seguidores
- 3. cantidad de perfiles seguidos
- 4. cantidad de elementos favoritos del usuario
- 5. imagen predeterminada del perfil
- 6. longitud del nombre de usuario
- 7. habilitación de la geolocalización de la cuenta
- 8. cantidad de contenido compartido.

Según (Amrutkar et al., 2017) los principales rasgos utilizados para detectar este tipo de phishing en la mensajería corta e instantánea son el contenido y la URL que pueda formar parte del contenido del mensaje enviado. En la Figura 3 se muestra un resumen de los principales rasgos según el servicio que se utilizan. Se puede observar como varios rasgos pueden ser utilizados en más de un servicio, lo que pudiera representar un elemento de relevancia a tener en cuenta en el desarrollo de soluciones integradas.

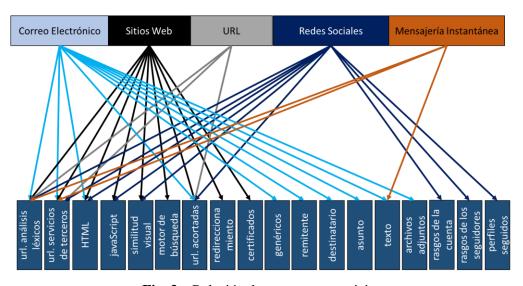


Fig. 3 – Relación de rasgos por servicios.

http://rcci.uci.cu Pág. 413-441

Herramientas que implementan la detección automatizada de phishing

Según la literatura se han encontrado varias herramientas informáticas para la detección de phishing, las mismas se clasifican en: herramientas puras de detección de phishing y aquellas dedicadas a la formación y concienciación de los usuarios. Con respecto al primer caso, en la Tabla 1 se muestra la efectividad de cinco herramientas antivirus que presentan módulos para la detección de phishing.

Tabla 1 – Detección de Phishing a través de herramientas antivirus.

Antivirus	Avast	Kaspersky	AVG	Norton Antivirus	ESET
Phishing Correos electrónicos Detectado	92.3%	87.7%	91.8%	37.4%	7.3%
Phishing Correos electrónicos no Detectado	7.7%	12.3%	8.2%	62.6%	92%7
Enlaces detectados en Navegador	80%	81.08%	60%	98%	98%

Fuente: (Aassal and Verma, 2019).

Cabe mencionar además las siguientes herramientas que pueden ser utilizadas para este fin:

- Netcraft: Constituye una barra de herramientas que utiliza varios métodos para determinar la autenticidad de un sitio web. Detecta, fundamentalmente, los sitios con direcciones URL que contienen caracteres sin significado. Proporciona la ubicación donde se encuentra alojado el sitio web. Además, realiza advertencias emergentes a los usuarios sobre los sitios sospechosos de phishing (Devi and Kumar, 2020).
- 2. AntiPhishing: Complemento del navegador Mozilla Firefox cuyo objetivo es proteger a los usuarios inexpertos contra los ataques de phishing basados en sitios web. Esta barra de herramientas registra regularmente la información sensible del usuario y evita que esta información se transmita hacia un sitio web que no se considere "de confianza". Comprueba si el sitio web tiene una conexión segura con certificado SSL o no (Sharma et al., 2017).

Vol. 15, No. Especial UCIENCIA I, Septiembre, 2021

ISSN: 2227-1899 | RNPS: 2301

http://rcci.uci.cu Pág. 413-441

3. Barra de información URLcheck: Esta herramienta comprueba direcciones URL, así como los

dominios y las direcciones IP asociadas. Permite generar informes personalizados a partir de las

URL que contienen caracteres alfanuméricos o especiales (Sharma, Meenakshi and Bhatia,

2017). La detección se realiza sobre la base de si la URL va ha sido clasificada en otras

plataformas AntiPhishing como *PhishTank*, APWG, entre otros.

4. BitDefender: Utiliza la combinación de métodos heurísticos y listas negras. La herramienta

presenta tres modos de alerta: verde, rojo y amarillo, con los cuales el usuario puede identificar

en tiempo real los intentos de phishing. Esta permite bloquear los sitios web de phishing

detectados anteriormente. También detecta si un sitio web tiene rastreadores y su ubicación

(Sonowal et al., 2017).

5. Spoofguard: Solución AntiPhishing desarrollada en la Universidad de Stanford. La barra de

herramientas contiene varias reglas para identificar los sitios web de phishing. Inicialmente

realiza un chequeo del nombre de dominio. Luego, se inspecciona la URL para detectar los

números de puertos que no son estándares. SpoofGuard establece, a través de mecanismos

heurísticos, advertencias a los usuarios de que el sitio es un sitio de phishing (Boneh et al.,

2021).

Editorial "Ediciones Futuro" Universidad de las Ciencias Informáticas. La Habana, Cuba

Vol. 15, No. Especial UCIENCIA I, Septiembre, 2021

ISSN: 2227-1899 | RNPS: 2301

http://rcci.uci.cu Pág. 413-441

6. *PhishDetector*: Es una extensión de Google Chrome para detectar sitios bancarios fraudulentos.

Es un sistema basado en reglas que analiza el contenido de la página web para identificar los

ataques de phishing. La barra de herramientas detecta las estafas bancarias en línea y con un

valor bajo de falsos negativos. Para proteger al usuario del acceso a sitios web bancarios

fraudulentos es muy recomendable instalar esta extensión en el navegador. Detecta un sitio de

phishing en función de la revisión del contenido de la página web (Sharma, Meenakshi and

Bhatia, 2017).

7. SafePreview: Extensión para el navegador Google Chrome que permite la comprobación de

seguridad de sitios web, manteniendo el control de los enlaces sospechosos con servicios

antivirus como Norton Safe Web, McAfee WOT, entre otros. Permite comprobar directamente un

enlace recibido en un correo electrónico. La herramienta ofrece la posibilidad de añadir y

eliminar sitios web de confianza para un sistema concreto (R et al., 2019).

8. Of-the-Hook: Complemento del navegador que permite detectar en tiempo real sitios web de

phishing. La implementación se basa únicamente en la información extraída del navegador web,

por lo tanto, se preserva la privacidad de los usuarios (Marchal et al., 2017). Mediante la

combinación de una lista negra, un método de aprendizaje automático y 210 rasgos, este modelo

puede detectar varios ataques de phishing (Zhu et al., 2019).

9. Optimal Feature Selection (OFS-NN): Modelo eficaz de detección de sitios web de phishing

basado en el método de selección óptima de rasgos y en la teoría de las redes neuronales.

Mediante los rasgos sensibles seleccionados y un gran número de análisis experimentales, se

entrena la estructura óptima de la red neuronal y se construye el clasificador final. Este modelo

es capaz de detectar con precisión muchos tipos de ataques de phishing. Gracias a las potentes

capacidades de aprendizaje y ajuste de la red neuronal, OFS-NN muestra un mejor rendimiento

que muchos sistemas existentes en la detección de sitios web de phishing (Marchal, Armano,

Gröndahl, Saari, Singh and Asokan, 2017).

10. S-Detector: Modelo Anti Phishing que utiliza una combinación de técnicas basadas en el

contenido y en la URL para detectar y bloquear los mensajes de *smishing*. Se divide en cuatro

componentes: monitor de SMS, detector de SMS, analizador de SMS y base de datos. El

Editorial "Ediciones Futuro" Universidad de las Ciencias Informáticas. La Habana, Cuba rcci@uci.cu

Vol. 15, No. Especial UCIENCIA I, Septiembre, 2021

ISSN: 2227-1899 | RNPS: 2301

http://rcci.uci.cu Pág. 413-441

contenido de los SMS se analiza comprobando la presencia de URL y palabras clave de smishing

en el mensaje de texto. Las palabras clave de los SMS se analizan y clasifican mediante un

clasificador bayesiano ingenuo (Mishra and Soni, 2019).

11. SmiDCA: Presenta un modelo de detección de smishing que utiliza una combinación de

métodos heurísticos, extracción de rasgos basados en el contenido y algoritmos de aprendizaje

automático para diferenciar los mensajes de phishing de los legítimos (Sonowal and Kuppusamy,

2018)

Resultados y discusión

En cuanto a las herramientas utilizadas para el entrenamiento de los usuarios, todas las analizadas tienen

documentación disponible y dan al usuario cierta libertad en cuanto a la creación de plantillas para simular

ataques de Phishing. PhishSim, por ejemplo, tiene una opción de edición limitada, ya que no es posible

eliminar el pie de página del correo electrónico que se genera y que indica, que este forma parte de un

entrenamiento y no constituye una amenaza real. Mientras que Gophish da libertad absoluta a la creación de

correos electrónicos, pero no ofrece plantillas predeterminadas. Casi todas las herramientas permiten a los

usuarios elegir un servidor SMTP específico para retransmitir los correos electrónicos. Esta funcionalidad

puede ser peligrosa, ya que les permite a los usuarios elegir cualquier plantilla abierta y crear un mensaje de

phishing, que luego puede ser utilizado por los phisher para enviar ataques reales, especialmente si el

usuario tiene la mencionada libertad de edición de plantillas.

Métodos automatizados con mayor efectividad en la detección de phishing

La efectividad de estos métodos (algoritmos, modelos, marcos de trabajo, entre otros), se comparó en

términos de EXACTITUD de la detección (relación entre las predicciones correctas y las predicciones

totales (Tyagi, Shad, Sharma, Gaur and Kaur, 2018)). Tras la revisión de la literatura se ha determinado que

los Árboles de Decisión y la Máquina de Soporte Vectorial son los métodos que ofrecen mayor efectividad

y que se han utilizados para detectar phishing en todos los servicios analizados. Como se puede apreciar en

Editorial "Ediciones Futuro" Universidad de las Ciencias Informáticas. La Habana, Cuba

ISSN: 2227-1899 | RNPS: 2301

http://rcci.uci.cu Pág. 413-441

la Tabla 2 y en la Figura 4, las Redes Neuronales Convolucionales, el Clasificador Bayesiano Ingenuo y los Bosques Aleatorios también destacan por su frecuencia de uso y efectividad.

Tabla 2 - Comparación de la efectividad máxima en las propuestas de detección de phishing, según la literatura, por tipo de servicio

Método Web		URL	Email	Redes Sociales	SMS/IM	
propuesto						
DT	99,87	99,14	99,69	99,10	70,60	
Boosting	97,49	99,60	99,84	No	No	
NB	99,55	99,80	98,85	95,00	No	
LR	98,19	99,56	99,69	97,00%	No	
RF	98,86	99,50	99,99	95,40%	99,47	
SVM	99,55	96,78	99,69	99,00%	78,1	
k-NN	99,10	99,29	99,79	92,00%	98,61	
CNN	99,00	99,63	99,42	83,30	No	
RCNN	93,28	98,99	99,85	No	No	

Métodos de Aprendizaje Automático; DT = árboles de decisión, NB = Clasificador Bayesiano Ingenuo, LR = Regresión Logística; RF = Bosques Aleatorios, SVM = Máquina de Soporte Vectorial, k-NN = Métodos de los k vecinos más cercanos, CNN = Redes Neuronales Convolucionales, RCNN = Redes Neuronales Convolucionales Recurrentes

Fuente: Elaboración Propia.

En la literatura se encontraron pocas soluciones integradas las que, como parte de su funcionamiento, permitan detectar Phishing en más de un servicio, con el objetivo de optimizar los niveles de efectividad. Al diseñar soluciones integradas, los métodos de Aprendizaje Automático deben constituir un mecanismo esencial, debido a los niveles de eficacia que se logran cuando se aplican a problemas más específicos. Las redes neuronales artificiales están entre las más precisas. Del mismo modo, cuando se combinan algunos métodos de Aprendizaje Automático, los valores de exactitud se incrementan aún más. Por tanto, como parte del diseño de nuevas propuestas híbridas se deben seleccionar aquellas combinaciones de métodos que ofrezcan mejores resultados. Por otra parte, los rasgos más comunes utilizados para detectar el phishing se basan en el contenido, especialmente en el cuerpo de los mensajes y las URL.

ISSN: 2227-1899 | RNPS: 2301

http://rcci.uci.cu Pág. 413-441

Fig. 4 – Métodos más efectivos en la detección de ataques de phishing.

En cuanto a las herramientas para la detección, en la Tabla 3 se muestra una comparación de la efectividad de cada herramienta según la experimentación realizada en la literatura por (Sharma, Meenakshi and Bhatia, 2017), (Mishra and Soni, 2019) y (Vijayalakshmi et al., 2020). Las propuestas de Firefox, *BitDefender*, así como *Of-the-Hook*, *SmiDCA* y *Optimal Feature Selection* resultan las que más destacan con valores superiores al 90%. Por otra parte, se puede observar, como los métodos heurísticos y los basados en listas negras resultan ser ampliamente utilizados en la actualidad por las herramientas analizadas, aunque estos no sean precisamente los que mayor efectividad ofrezcan. Las siete primeras herramientas presentan un esquema comercial basado en el navegador o plataforma para la cual fueron desarrolladas. En el caso de los sitios web predomina la implementación de herramientas AntiPhishing de tipo complemento o extensión del navegador. Para el caso de la mensajería instantánea a partir del 2017 comienzan a surgir modelos híbridos que a futuro se incluirán en nuevas herramientas informáticas para la detección de phishing.

Tabla 3 – Comparación de las herramientas para la detección automatizada de phishing.

Herramienta Anti Phishing	Método de Detección	Servicio	Efectividad
Netcraft (Devi and Kumar, 2020)	1. Técnica de <i>sniffing</i>	Sitios web	73.90%
	2. Lista negra		

ISSN: 2227-1899 | RNPS: 2301

http://rcci.uci.cu Pág. 413-441

	3.	Métodos heurísticos		
AntiPhishing Firefox (Sharma, Meenakshi and	1.	Lista negra	Sitios web	96.75%
Bhatia, 2017)				
URLcheck (Sharma, Meenakshi and Bhatia, 2017)	1.	Lista negra	URL	88.15%
BitDefender (Sonowal, Kuppusamy and Kumar,	1.	Lista negra	Sitios web	94.85%
2017)	2.	Métodos heurísticos		
Spoofguard (Boneh, Mitchell, Ledesma, Chou and	1.	Lista negra	URL	84.35%
Teraguchi, 2021)	2.	Métodos heurísticos		
PhishDetector (Sharma, Meenakshi and Bhatia,	1.	Sistema basado en reglas	Sitios web	59.15%
2017)	2.	Máquina de Soporte Vectorial		
SafePreview (R, Vijayaraghavan and Thomas,	1.	Lista blanca	URL	65.20%
2019)	2.	Lista negra	Correo	
	3.	Métodos heurísticos	electrónico	
Of-the-Hook (Marchal, Armano, Gröndahl, Saari,	1.	Lista negra	Sitios web	97.50%
Singh and Asokan, 2017)	2.	Métodos heurísticos		
	3.	Aprendizaje Automático: Boosting		
Optimal Feature Selection (OFS-NN) (Zhu, Chen,	1.	Métodos heurísticos	Sitios web	99.30%
Ye, Li and Liu, 2019)	2.	Aprendizaje Automático: Redes Neuronales		
S-Detector (Mishra and Soni, 2019)	1.	Aprendizaje Automático: Clasificador	SMS/IM	No se
		Bayesiano ingenuo		especifica
SmiDCA (Sonowal and Kuppusamy, 2018)	1.	Aprendizaje Automático: Bosques aleatorios,	SMS/IM	96.40%
		árboles de decisión, boosting, máquina de		
		soporte vectorial		

Fuente: Elaboración Propia.

Conclusiones

En este artículo se presenta una revisión de los principales métodos, modelos y herramientas informáticas para la detección y la educación de los usuarios en cuanto al phishing en redes de datos. Aunque la educación de los usuarios, ya sea utilizando o no herramientas informáticas, puede influir positivamente en los esfuerzos globales para detectar estos ataques, este enfoque exige altos costos. Dado que las técnicas de phishing continúan evolucionando, no todas las organizaciones tienen los recursos necesarios para invertir en este enfoque. Esto hace que los usuarios comunes sean vulnerables, incluso si poseen conocimientos

Vol. 15, No. Especial UCIENCIA I, Septiembre, 2021

ISSN: 2227-1899 | RNPS: 2301

http://rcci.uci.cu

Pág. 413-441

básicos sobre phishing (Qabajeh, Thabtah and Chiclana, 2018). Además, esta solución requiere

conocimientos básicos de seguridad informática entre los usuarios formados (Alkhalil et al., 2021).

Los métodos de Aprendizaje Automático (Bosques Aleatorios, Árboles de Decisión y la Máquina de

Soporte Vectorial) resaltan por su efectividad y frecuencia de utilización en las propuestas científicas

existentes. Las herramientas de detección analizadas utilizan en su mayoría la combinación de varios

métodos, entre ellos las listas negras, los métodos heurísticos y en casos limitados las técnicas de

aprendizaje automático, de ahí que estas en su mayoría no han implementado aún los métodos más exitosos

de la literatura científica.

Las técnicas de Aprendizaje Profundo no se han explotado lo suficiente en las herramientas para la

detección de phishing, por lo que constituyen un método novedoso a explorar en investigaciones y

desarrollos futuros. Por otra parte, no existen soluciones que permitan detectar el phishing en diversos

escenarios/servicios, ni en la literatura ni entre las herramientas, resaltando la necesidad de trabajar en el

desarrollo de un método que permita obtener una solución integral para ser utilizada en escenarios con

diversos servicios telemáticos, desde un enfoque sistémico y de gestión, que permita mejorar la detección de

los ataques de phishing en las redes de datos.

Referencias

Aassal, A. E. And R. Verma. Spears Against Shields: Are Defenders Winning The Phishing War? En:

Proceedings Of The Acm International Workshop On Security And Privacy Analytics. Richardson, Texas,

Usa: Acm, 2019, P. 15-24.

Abahussain, O. And Y. Harrath. Detection Of Malicious Emails Through Regular Expressions And

Databases. En: Proceedings Of The 2019 International Conference On Innovation And Intelligence For

Informatics, Computing, And Technologies (3ict). 2019, P. 1-5.

Editorial "Ediciones Futuro" Universidad de las Ciencias Informáticas. La Habana, Cuba

Vol. 15, No. Especial UCIENCIA I, Septiembre, 2021

ISSN: 2227-1899 | RNPS: 2301

http://rcci.uci.cu Pág. 413-441

Adil, M., R. Khan And M. A. N. U. Ghani. Preventive Techniques Of Phishing Attacks In Networks. En: Proceedings Of The 2020 3rd International Conference On Advancements In Computational Sciences

(Icacs). 2020, P. 1-8.

Al-Janabi, M., E. D. Quincey And P. Andras. Using Supervised Machine Learning Algorithms To Detect Suspicious Urls In Online Social Networks. En: Proceedings Of The 2017 Ieee/Acm International Conference On Advances In Social Networks Analysis And Mining 2017. Sydney, Australia: Acm, 2017, P.

1104-1111.

Alkhalil, Z., C. Hewage, L. Nawaf And I. Khan Phishing Attacks: A Recent Comprehensive Study And A New Anatomy, 2021, 3(6). Disponible En: https://Doi.Org/10.3389/Fcomp.2021.563060

Allodi, L., T. Chotza, E. Panina And N. Zannone On The Need For New Antphishing Measures Against Spear Phishing Attacks. Ieee Security & Privacy, 2019. Disponible En: Https://Doi.Org/10.1109/Msec.2019.2940952

Althobaiti, K., G. Rummani And K. Vaniea. A Review Of Human- And Computer-Facing Url Phishing Features. En: Proceedings Of The 2019 Ieee European Symposium On Security And Privacy Workshops (Euros&Pw). 2019, P. 182-191. Disponible En: https://Doi.Org/10.1109/Tmc.2016.2575828

Amrutkar, C., Y. S. Kim And P. Traynor Detecting Mobile Malicious Webpages In Real Time. Ieee Transactions On Mobile Computing, 2017, 16(8), 2184-2197.

Apwg. Phishing Activity Trends Report - 4th Quarter 2020. Usa. San Francisco: A.P.W. Group, 2020. Disponible En: https://Docs.Apwg.Org/Reports/Apwg_Trends_Report_Q4_2020.Pdf

Aung, E. S. And H. Yamana. Url-Based Phishing Detection Using The Entropy Of Non-Alphanumeric Characters. En: Proceedings Of The 21st International Conference On Information Integration And Web-Based Applications & Services. Munich, Germany: Association For Computing Machinery, 2019, P. 385–392.

Baadel, S., F. Thabtah And A. Majeed. Avoiding The Phishing Bait: The Need For Conventional Countermeasures For Mobile Users. En: Proceedings Of The 2018 Ieee 9th Annual Information Technology, Electronics And Mobile Communication Conference (Iemcon). 2018, P. 421-425.

http://rcci.uci.cu Pág. 413-441

Balim, C. And E. S. Gunal. Automatic Detection Of Smishing Attacks By Machine Learning Methods. En:

Proceedings Of The 2019 1st International Informatics And Software Engineering Conference (Ubmyk).

2019, P. 1-3.

Bhakta, R. And I. G. Harris. Semantic Analysis Of Dialogs To Detect Social Engineering Attacks. En:

Proceedings Of The 2015 Ieee 9th International Conference On Semantic Computing (Ieee Icsc 2015).

2015, P. 424-427.

Bikov, T. D., T. B. Iliev, G. Y. Mihaylov And I. S. Stoyanov. Phishing In Depth – Modern Methods Of

Detection And Risk Mitigation. En: Proceedings Of The 2019 42nd International Convention On

Information And Communication Technology, Electronics And Microelectronics (Mipro). 2019, P. 447-

450.

Boneh, D., J. Mitchell, R. Ledesma, N. Chou, Et Al. Portal Web Oficial De Spoofguard, 2021. Disponible

En: Https://Crypto.Stanford.Edu/Spoofguard/

Chin, T., K. Xiong And C. Hu Phishlimiter: A Phishing Detection And Mitigation Approach Using

Software-Defined Networking. Ieee Access, Jun. 2018 2018, 6, 42516-42531. Disponible En:

Https://Doi.Org/10.1109/Access.2018.2837889

Chorghe, S. P. And N. Shekokar. A Survey On Anti-Phishing Techniques In Mobile Phones. En:

Proceedings Of The 2016 International Conference On Inventive Computation Technologies (Icict). 2016,

Vol. 2, P. 1-5.

Cuzzocrea, A., F. Martinelli And F. Mercaldo. Applying Machine Learning Techniques To Detect And

Analyze Web Phishing Attacks. En: Proceedings Of The 20th International Conference On Information

Integration And Web-Based Applications & Services. Yogyakarta, Indonesia: Acm, 2018, P. 355-359.

Devi, R. S. And M. M. Kumar. Testing For Security Weakness Of Web Applications Using Ethical

Hacking. En: Proceedings Of The 2020 4th International Conference On Trends In Electronics And

Informatics (Icoei)(48184). 2020, P. 354-361.

Dixon, M., N. A. G. Arachchilage And J. Nicholson. Engaging Users With Educational Games: The Case

Of Phishing. En: Proceedings Of The Extended Abstracts Of The 2019 Chi Conference On Human Factors

In Computing Systems. Glasgow, Scotland Uk: Acm, 2019, P. 1-6.

Editorial "Ediciones Futuro" Universidad de las Ciencias Informáticas. La Habana, Cuba

Dong, Z., A. Kapadia, J. Blythe And L. J. Camp. Beyond The Lock Icon: Real-Time Detection Of Phishing

Websites Using Public Key Certificates. En: Proceedings Of The 2015 Apwg Symposium On Electronic

Crime Research (Ecrime). 2015, P. 1-12.

Dou, Z., I. Khalil, A. Khreishah, A. Al-Fuqaha, Et Al. Systematization Of Knowledge (Sok): A Systematic

Review Of Software-Based Web Phishing Detection. Ieee Communications Surveys & Tutorials, 2017,

19(4), 2797-2819. Disponible En: <u>Https://Doi.Org/10.1109/Comst.2017.2752087</u>

Douzi, S., M. Amar And B. E. Ouahidi. Advanced Phishing Filter Using Autoencoder And Denoising

Autoencoder. En: Proceedings Of The International Conference On Big Data And Internet Of Thing.

London, United Kingdom: Acm, 2017, P. 125-129.

Egozi, G. And R. Verma. Phishing Email Detection Using Robust Nlp Techniques. En: Proceedings Of The

2018 Ieee International Conference On Data Mining Workshops (Icdmw). 2018, P. 7-12.

Fang, L., W. Bailing, H. Junheng, S. Yushan, Et Al. A Proactive Discovery And Filtering Solution On

Phishing Websites. En: Proceedings Of The 2015 Ieee International Conference On Big Data (Big Data).

2015, P. 2348-2355.

Futai, Z., G. Yuxiang, P. Bei, P. Li, Et Al. Web Phishing Detection Based On Graph Mining. En:

Proceedings Of The 2016 2nd Ieee International Conference On Computer And Communications (Iccc).

2016, P. 1061-1066.

Gajera, K., M. Jangid, P. Mehta And J. Mittal. A Novel Approach To Detect Phishing Attack Using

Artificial Neural Networks Combined With Pharming Detection. En: Proceedings Of The 2019 3rd

International Conference On Electronics, Communication And Aerospace Technology (Iceca). 2019, P.

196-200.

Hadnagy, C. Ingeniería Social: El Arte Del Hacking Personal. Ediciones Anaya Multimedia, 2011. Isbn

8441529655.

Han, Y. And Y. Shen. Accurate Spear Phishing Campaign Attribution And Early Detection. En:

Proceedings Of The 31st Annual Acm Symposium On Applied Computing. Pisa, Italy: Acm, 2016, P. 2079-

2086.

Editorial "Ediciones Futuro" Universidad de las Ciencias Informáticas. La Habana, Cuba Hasan, K. M. Z., M. Z. Hasan And N. Zahan. Automated Prediction Of Phishing Websites Using Deep Convolutional Neural Network. En: Proceedings Of The 2019 International Conference On Computer,

Communication, Chemical, Materials And Electronic Engineering (Ic4me2). 2019, P. 1-4.

Hernández Dominguez, A. And W. Baluja García. Updated Analysis Of Detection Methods For Phishing

Attacks. En: Proceedings Of The P.K. Singh, G. Veselov, V. Vyatkin, A. Pljonkin, J.M. Dodero And Y.

Kumar. Futuristic Trends In Network And Communication Technologies. Singapore: Springer Singapore,

2021, P. 56-67.

Huang, Y., Q. Yang, J. Qin And W. Wen. Phishing Url Detection Via Cnn And Attention-Based

Hierarchical Rnn. En: Proceedings Of The 2019 18th Ieee International Conference On Trust, Security And

Privacy In Computing And Communications/13th Ieee International Conference On Big Data Science And

Engineering (Trustcom/Bigdatase). 2019, P. 112-119.

Iyer, R. P., P. K. Atrey, G. Varshney And M. Misra. Email Spoofing Detection Using Volatile Memory

Forensics. En: Proceedings Of The 2017 Ieee Conference On Communications And Network Security

(Cns). 2017, P. 619-625.

Jain, A. K. And B. B. Gupta. Comparative Analysis Of Features Based Machine Learning Approaches For

Phishing Detection. En: Proceedings Of The 2016 3rd International Conference On Computing For

Sustainable Global Development (Indiacom), 2016, P. 2125-2130.

Jayan, A. And S. Dija. Detection Of Spoofed Mails. En: Proceedings Of The 2015 Ieee International

Conference On Computational Intelligence And Computing Research (Iccic). 2015, P. 1-4.

Korkmaz, M., O. K. Sahingoz And B. Diri. Feature Selections For The Classification Of Webpages To

Detect Phishing Attacks: A Survey. En: Proceedings Of The 2020 International Congress On Human-

Computer Interaction, Optimization And Robotic Applications (Hora). 2020, P. 1-9.

Lam, T. And H. Kettani. Phattapp: A Phishing Attack Detection Application. En: Proceedings Of The 2019

3rd International Conference On Information System And Data Mining. Houston, Tx, Usa: Acm, 2019, P.

154-158.

Marchal, S., G. Armano, T. Gröndahl, K. Saari, Et Al. Off-The-Hook: An Efficient And Usable Client-Side

Phishing Prevention Application. Ieee Transactions On Computers, 2017, 66(10), 1717-1733. Disponible

En: Https://Doi.Org/10.1109/Tc.2017.2703808

Editorial "Ediciones Futuro" Universidad de las Ciencias Informáticas. La Habana, Cuba

Pág. 413-441

Mishra, S. And D. Soni. Sms Phishing And Mitigation Approaches. En: Proceedings Of The 2019 Twelfth International Conference On Contemporary Computing (Ic3). 2019, P. 1-5.

Moul, K. A. Avoid Phishing Traps. En: Proceedings Of The 2019 Acm Sigues Annual Conference. New Orleans, La, Usa: Acm, 2019, P. 199-208.

Moustafa, N., G. Misra And J. Slay Generalized Outlier Gaussian Mixture Technique Based On Automated Association Features For Simulating And Detecting Web Application Attacks. Intelligent Phishing Website Detection Random Forest Classifier. 2018. 1-1. Using Disponible En: Https://Doi.Org/10.1109/Tsusc.2018.2808430

Nathezhtha, T., D. Sangeetha And V. Vaidehi. Wc-Pad: Web Crawling Based Phishing Attack Detection. En: Proceedings Of The 2019 International Carnahan Conference On Security Technology (Iccst). 2019, P. 1-6.

Park, A. J., R. N. Quadari And H. H. Tsang. Phishing Website Detection Framework Through Web Scraping And Data Mining. En: Proceedings Of The 2017 8th Ieee Annual Information Technology, Electronics And Mobile Communication Conference (Iemcon). 2017, P. 680-684.

Park, G. And J. Rayz. Ontological Detection Of Phishing Emails. En: Proceedings Of The 2018 Ieee International Conference On Systems, Man, And Cybernetics (Smc). 2018, P. 2858-2863.

Patil, P., R. Rane And M. Bhalekar. Detecting Spam And Phishing Mails Using Sym And Obfuscation Url Detection Algorithm. En: Proceedings Of The 2017 International Conference On Inventive Systems And Control (Icisc). 2017, P. 1-4.

Qabajeh, I., F. Thabtah And F. Chiclana A Recent Review Of Conventional Vs. Automated Cybersecurity Anti-Phishing Techniques. Computer Science Review, 2018/08/01/ 2018, 29, 44-55. Disponible En: Https://Doi.Org/10.1016/J.Cosrev.2018.05.003

R, S., A. P. Vijayaraghavan And T. Thomas. On Effectiveness Of Source Code And Ssl Based Features For Phishing Website Detection. En: Proceedings Of The 2019 1st International Conference On Advanced Technologies In Intelligent Control, Environment, Computing & Communication Engineering (Icatiece). 2019, P. 172-175.

Rathod, S. B. And T. M. Pattewar. A Comparative Performance Evaluation Of Content Based Spam And

Malicious Url Detection In E-Mail. En: Proceedings Of The 2015 Ieee International Conference On

Computer Graphics, Vision And Information Security (Cgvis). 2015, P. 49-54.

Salinas Macías, J. A. El Uso De La Fuerza En El Ciberespacio. Perspectiva Jurídica. Facultad De Derecho.

Universidad Panamericana. México, 2015, 3(5), 229.

Satam, P., D. Kelly And S. Hariri. Anomaly Behavior Analysis Of Website Vulnerability And Security. En:

Proceedings Of The 2016 Ieee/Acs 13th International Conference Of Computer Systems And Applications

(Aiccsa). 2016, P. 1-7.

Sfakianakis, A., C. Douligeris, L. Marinos, M. Lourenço, Et Al. Enisa Threat Landscape Report 2018: 15

Top Cyberthreats And Trends 2019, 10, 622757.

Shaikh, A. N., A. M. Shabut And M. A. Hossain. A Literature Review On Phishing Crime, Prevention

Review And Investigation Of Gaps. En: Proceedings Of The 2016 10th International Conference On

Software, Knowledge, Information Management & Applications (Skima). 2016, P. 9-15.

Sharma, H., E. Meenakshi And S. K. Bhatia. A Comparative Analysis And Awareness Survey Of Phishing

Detection Tools. En: Proceedings Of The 2017 2nd Ieee International Conference On Recent Trends In

Electronics, Information & Communication Technology (Rteict). 2017, P. 1437-1442.

Shirazi, H., B. Bezawada And I. Ray. Know Thy Domain Name: Unbiased Phishing Detection Using

Domain Name Based Features. En: Proceedings Of The 23nd Acm On Symposium On Access Control

Models And Technologies. Indianapolis, Indiana, Usa: Acm, 2018, P. 69-75.

Silva, C. M. R. D., E. L. Feitosa And V. C. Garcia Heuristic-Based Strategy For Phishing Prediction: A

Survey Of Url-Based Approach. Computers & Security, 2020, 88, Disponible En:

Https://Doi.Org/10.1016/J.Cose.2019.101613.

Sonowal, G. And K. S. Kuppusamy. Masphid: A Model To Assist Screen Reader Users For Detecting

Phishing Sites Using Aural And Visual Similarity Measures. En: Proceedings Of The International

Conference On Informatics And Analytics. Pondicherry, India: Acm, 2016, P. 1-6.

Sonowal, G. And K. S. Kuppusamy Smidca: An Anti-Smishing Model With Machine Learning Approach.

The Computer Journal, 2018, 61(8), 1143-1157. Disponible En: Https://Doi.Org/10.1093/Comjnl/Bxy039

Editorial "Ediciones Futuro" Universidad de las Ciencias Informáticas. La Habana, Cuba

Sonowal, G., K. S. Kuppusamy And A. Kumar. Usability Evaluation Of Active Anti-Phishing Browser Extensions For Persons With Visual Impairments. En: Proceedings Of The 2017 4th International Conference On Advanced Computing And Communication Systems (Icaccs). 2017, P. 1-6.

Sumner, A. And X. Yuan. Mitigating Phishing Attacks: An Overview. En: Proceedings Of The 2019 Acm Southeast Conference. Kennesaw, Ga, Usa: Acm, 2019, P. 72-77.

Symantec. Internet Security Threat Report 2019. 2019, Vol. 24. Disponible En: Https://Docs.Broadcom.Com/Doc/Istr-24-2019-En.

Tahir, M. A. U. H., S. Asghar, A. Zafar And S. Gillani. A Hybrid Model To Detect Phishing-Sites Using Supervised Learning Algorithms. En: Proceedings Of The 2016 International Conference On Computational Science And Computational Intelligence (Csci). 2016, P. 1126-1133.

Tyagi, I., J. Shad, S. Sharma, S. Gaur, Et Al. A Novel Machine Learning Approach To Detect Phishing Websites. En: Proceedings Of The 2018 5th International Conference On Signal Processing And Integrated Networks (Spin). 2018, P. 425-430.

Vazhayil, A., R. Vinayakumar And K. Soman. Comparative Study Of The Detection Of Malicious Urls Using Shallow And Deep Networks. En: Proceedings Of The 2018 9th International Conference On Computing, Communication And Networking Technologies (Icccnt). 2018, P. 1-6.

Verma, R. And A. E. Aassal. Comprehensive Method For Detecting Phishing Emailsusing Correlation-Based Analysis And User Participation. En: Proceedings Of The Seventh Acm On Conference On Data And Application Security And Privacy. Scottsdale, Arizona, Usa: Acm, 2017, P. 155-157.

Vieira, K., F. L. Koch, J. B. M. Sobral, C. B. Westphall, Et Al. Autonomic Intrusion Detection And Response Using Big Data. Ieee Systems Journal, 2019, 1-8. Disponible En: Https://Doi.Org/10.1109/Access.2019.2920655

Vijayalakshmi, M., S. M. Shalinie, M. H. Yang And R. M. U Web Phishing Detection Techniques: A Survey On The State-Of-The-Art, Taxonomy And Future Directions. Iet Networks, 2020, 9(5), 235-246. Disponible En: https://Doi.Org/10.1109/Access.2019.2920655

Wang, Y. And I. Duncan. A Novel Method To Prevent Phishing By Using Ocr Technology. En: Proceedings Of The 2019 International Conference On Cyber Security And Protection Of Digital Services (Cyber Security). 2019, P. 1-5.

Pág. 413-441

Yassein, M. B., S. Aljawarneh And Y. A. Wahsheh. Survey Of Online Social Networks Threats And

Solutions. En: Proceedings Of The 2019 Ieee Jordan International Joint Conference On Electrical

Engineering And Information Technology (Jeeit). 2019, P. 375-380.

Zhang, Z., Q. He And B. Wang. A Novel Multi-Layer Heuristic Model For Anti-Phishing. En: Proceedings

Of The 6th International Conference On Information Engineering. Dalian Liaoning, China: Acm, 2017, P.

1-6.

Zhu, E., Y. Chen, C. Ye, X. Li, Et Al. Ofs-Nn: An Effective Phishing Websites Detection Model Based On

Optimal Feature Selection And Neural Network. Ieee Access, 2019, 7, 73271-73284.

Zhu, E., C. Ye, D. Liu, F. Liu, Et Al. An Effective Neural Network Phishing Detection Model Based On

Optimal Feature Selection. En: Proceedings Of The 2018 Ieee Intl Conf On Parallel & Distributed

Processing With Applications, Ubiquitous Computing & Communications, Big Data & Cloud Computing,

Social Computing & Networking, Sustainable Computing & Communications. 2018, P. 781-787.

Zuraiq, A. A. And M. Alkasassbeh. Review: Phishing Detection Approaches. En: Proceedings Of The 2019

2nd International Conference On New Trends In Computing Sciences (Ictcs). 2019, P. 1-6.

Conflicto de interés

No existe conflicto de interés de este trabajo con ninguna organización académica y/o comercial y autorizan

la distribución y uso del artículo.

Contribuciones de los autores

1. Conceptualización: Walter Baluja García

2. Curación de datos: Antonio Hernández Dominguez

3. Análisis formal: Antonio Hernández Dominguez

4. Investigación: Antonio Hernández Dominguez

5. Metodología: Antonio Hernández Dominguez

6. Administración del proyecto: Walter Baluja García

7. Recursos: Antonio Hernández Dominguez

8. Supervisión: Walter Baluja García

Editorial "Ediciones Futuro" Universidad de las Ciencias Informáticas. La Habana, Cuba

Vol. 15, No. Especial UCIENCIA I, Septiembre, 2021

ISSN: 2227-1899 | RNPS: 2301

http://rcci.uci.cu Pág. 413-441

- 9. Visualización: Antonio Hernández Dominguez
- 10. Redacción borrador original: Antonio Hernández Dominguez
- 11. Redacción revisión y edición: Walter Baluja García

Financiación

No se obtuvo financiamiento por parte de ninguna institución académica y/o comercial para realizar este trabajo de investigación.

a https://apwg.org/

b https://www.phishtank.com/

c http://www.millersmiles.co.uk/

^d https://securitycloud.symantec.com/