BIOTECNOLOGÍA EN EL SECTOR AGROPECUARIO Y AGROINDUSTRIAL

Biotecnología en el Sector Agropecuario y Agroindustrial

ISSN: 1692-3561 ISSN: 1909-9959

biotecnofaca@unicauca.edu.co

Universidad del Cauca

Colombia

MELO LOZANO, HAROLD ANDRES; AFANASJEVA, NATALIA

Efecto de la aplicación de biochar en la actividad microbiana en suelos Biotecnología en el Sector Agropecuario y Agroindustrial, vol. 21, núm. 2, 2023, Julio-Diciembre, pp. 193-209 Universidad del Cauca Colombia

DOI: https://doi.org/10.18684/rbsaa.v21.n2.2023.1610

Disponible en: https://www.redalyc.org/articulo.oa?id=380877291013

Número completo

Más información del artículo

Página de la revista en redalyc.org

Sistema de Información Científica Redalyc Red de revistas científicas de Acceso Abierto diamante Infraestructura abierta no comercial propiedad de la academia

BIOTECNOLOGÍA EN EL SECTOR AGROPECUARIO Y AGROINDUSTRIAL

Vol. 21 No 2 · Julio - Diciembre 2023 · ISSN-1692-3561 · ISSN-e 1909-9959 · DOI: https://doi.org/10.18684

Efecto de la aplicación de biochar en la actividad microbiana en suelos: Revisión*

Effect on microbial activity in soils due to the application of biochar: Review

MELO-LOZANO, HAROLD-ANDRES1; AFANASJEVA, NATALIA2

Historial del artículo

Recibido para evaluación: 20 de Junio 2022 Aprobado para publicación: 21 de Septiembre 2022

- * Proyecto de origen. "Fortalecimiento de las capacidades en CTel para la generación de biomateriales y su aplicación en sistemas de liberación lenta mediante el encapsulado de fertilizantes a partir de los productos y subproductos de la agroindustria de Córdoba y Sucre" (2020-2023). BPIN 202000100027 (C.I. 71291). Financiación: Sistema General de Regalías, Universidad de Córdobaf, Universidad del Valle.
- 1 Universidad del Valle, Facultad de Ciencias Naturales y Exactas, Programa académico de Química, Grupo de Investigación GI-CAT. Tecnólogo Químico, Candidato a profesional en Química. Cali, Colombia. https://orcid.org/0000-0002-8687-6550
- 2 Universidad del Valle, Facultad de Ciencias Naturales y Exactas, Departamento de Química, Grupo de Investigación GI-CAT. Ph.D. Química. Cali, Colombia. https://orcid.org/0000-0002-6184-1458

Correspondencia: harold.melo@correounivalle.edu.co; natalia.afanasjeva@correounivalle.edu.co **Cómo citar este artículo**

MELO-LOZANO, HAROLD-ANDRES; AFANASJEVA, NATALIA. Efecto de la aplicación de biochar en la actividad microbiana en suelos: Revisión. Revista Biotecnología en el Sector Agropecuario y Agroindustrial, v. 21, n. 2, 2023, p. 193-209. Doi: https://doi.org/10.18684/rbsaa.v21.n2.2023.2197

RESUMEN

El biochar (BC) se presenta como una enmienda para suelos a partir del residuo de pirólisis de biomasa, que promueve el incremento de las comunidades bacterianas y micorrícicas benéficas y de nutrientes elementales para la fertilidad vegetal; por sus características, aporta carbono recalcitrante, genera cambios fisicoquímicos positivos como el incremento del pH, el aumento de la retención de agua en suelo y en la capacidad de intercambio catiónico. La mayoría de los artículos sobre BC se enfocan en evaluar los resultados de variables fisicoquímicas del suelo, sin embargo, son escasos los estudios que expliquen cómo y porqué el BC incrementa las comunidades microbianas benéficas para el crecimiento vegetal, razón por la cual es necesario analizarlos selectivamente para definir las causas y los efectos de la interacción entre el BC y los microorganismos del suelo. Esta revisión examina publicaciones de los últimos 12 años de investigación sobre el BC en diferentes bases de datos (ScienceDirect, Scopus, Springerlink, SciELO, Google Scholar), enfocándose en los años (2020-2022), con el fin de elucidar los mecanismos subyacentes que permiten la interacción entre BC-comunidades microbianas del suelo y sus beneficios como enmienda agrícola. La hipótesis aceptada es que la alta porosidad del BC que puede servir como "microhábitat" permite las condiciones ideales de espacio, temperatura, humedad y alimento para alterar los niveles de rizobacterias y hongos micorrícicos involucrados en la solubilización de nutrientes como N, P y K aumentando los niveles exo-enzimáticos de deshidrogenasa, β-glucosidasa, ureasa entre otras, mejorando la fertilidad del suelo y el crecimiento de plantas.

PALABRAS CLAVE:

Biocarbón; Biodisponibilidad; Crecimiento vegetal; Comunidad microbiana; Enmienda del suelo; Enzimas; Micorrizas; Porosidad; Simbiosis; Rizobacterias

ABSTRACT

Biochar (BC) is presented as an amendment based on biomass pyrolysis residue that promotes an increase in the amount of beneficial bacterial and mycorrhizal communities and the quantity of elemental nutrients for plant fertility; in addition, by its characteristics, it provides recalcitrant carbon, generates physicochemical changes, such as an increase in pH, increase in water retention in soil and cation exchange capacity. Most studies about BC focus on evaluating the results in physicochemical variables into soils, however, few studies show and explain reasons because BC increases beneficial bacterial and mycorrhizal communities to plant growth, for this reason is necessary to selectively analysis to define the mechanisms between BC and microorganisms. This review examines publications of the last 12 years of research on BC in different databases (ScienceDirect, Scopus, Springerlink, SciELO, Google Scholar), focusing on the years (2020-2022), to elucidate the underlying mechanisms that let the interaction between BC-soil microbial communities and its benefits as an agricultural amendment. An accepted hypothesis is the high porosity into BC that serves as a "microhabitat" since it allows ideal conditions of space, temperature, humidity, air, and food growing levels of rhizobacteria and mycorrhizal fungus involved in the solubilization of

KEY WORDS:

Biochar; Bioavailability; Enzymes; Mycorrhizae; Microbial community; Plant growth; Soil amendment; Porosity; Symbiosis; Rhizobacteria. nutrients such as N, P and K increasing the exo-enzymatic activity of dehydrogenase, β -glucosidase, urease between others improving soil fertility and plant growth.

INTRODUCCIÓN

El uso del material residual carbonoso sólido obtenido a partir del proceso térmico de descomposición de la biomasa en ausencia de oxígeno, conocido como biochar, biocarbón, bio-coque o BC se presenta en las investigaciones de las últimas décadas como una opción importante en respuesta a distintas problemáticas que afronta la humanidad actualmente, como son el cambio climático debido a la acumulación en la atmósfera de gases de efecto invernadero (GEI), el detrimento del suelo agrícola y la subsecuente disminución del rendimiento de los cultivos, sumado a la necesidad de mayor producción agrícola dado el incremento de la población (Anand et al., 2022). Además, el uso generalizado de fertilizantes y pesticidas sintéticos ha generado la existencia de suelos con un ambiente microbiótico inadecuado para el sano crecimiento de las plantas (Wang et al., 2022). La fertilización es un pilar principal de la agroindustria de interés constante y la fertilización excesiva ha provocado que la calidad en retención de nutrientes y agua en el suelo haya disminuido, lo cual incide en el debilitamiento inmunológico de las plantas (Yadav et al., 2019).

El BC permite mitigar las anteriores problemáticas, pues su aplicación como enmienda en el suelo agrícola disminuye la emisión de GEI, a la vez que restaura la calidad del suelo, en términos tanto fisicoquímicos como biológicos. Una calidad del suelo óptima abarca factores, tales como un pH entre 5,5 y 7,0, suficiente cantidad de materia orgánica humificada, buen drenaje, aireación y retención de humedad, ausencia de sustancias tóxicas, disponibilidad constante de macro y micronutrientes esenciales, tales como N, P, K, Ca, Mg, S, Fe, Zn, Mn, B, Cu, Mo, Cl y la existencia de microorganismos especializados que apoyan el crecimiento de las plantas (Hermans *et al.*, 2020; Li, Y *et al.*, 2020; Anand *et al.*, 2022; Kocsis *et al.*, 2022).

La fertilización química comprende factores como el aumento del pH del suelo, mediante el proceso de encalado y biodisponibilidad de macronutrientes (N, P, K) mediante adición al suelo de fertilizantes sinteticos (Antor $et\,al.$, 2022). Los fertilizantes nitrogenados de uso más común son urea (NH $_2$) $_2$ CO, nitrato de amonio NH $_4$ NO $_3$ y sulfato de amonio (NH $_4$) $_2$ SO $_4$ (Bhattacharyya $et\,al.$, 2022; Rombel $et\,al.$, 2022). La fertilización biológica implica el uso de Rizobacterias Promotoras del Crecimiento de las Plantas (PGPR) y hongos micorrícicos que se encargan de la transformación de los nutrientes esenciales para las plantas (Wu $et\,al.$, 2022). Dichas bacterias y hongos liberan exo-enzimas digestivas en el suelo en su mecanismo metabólico de descomposición y transformación de carbohidratos (De Mastro $et\,al.$, 2022). Se puede determinar si el BC promueve el crecimiento de poblaciones de hongos y bacterias benéficos para las plantas en el suelo, midiendo la actividad exo-enzimática, biomasa microbiana, contenido de nutrientes esenciales y cambios en la diversidad taxonómica de la comunidad microbiana en el suelo (You $et\,al.$, 2022), generalmente, el aumento de estos factores deriva en efectos físicos positivos sobre la planta, como aumento en la longitud de raíces, aumento del tamaño en el tallo y hojas.

El objetivo general de esta revisión es profundizar sobre los efectos del BC en las propiedades benéficas del suelo y el mejoramiento en el desempeño de los cultivos, principalmente en evaluar los aspectos involucrados entre la interacción del BC y las comunidades microbianas del suelo, con el fin de elucidar los mecanismos sub-yacentes que permiten la restauración de la calidad del suelo, la promoción y desarrollo de las plantas. En el texto se analizan objetivos y resultados de artículos científicos recientes sobre el uso del BC como enmienda del suelo, en tanto que los principales efectos benéficos del BC en el suelo, las plantas y la atmósfera se muestran en la figura 1.

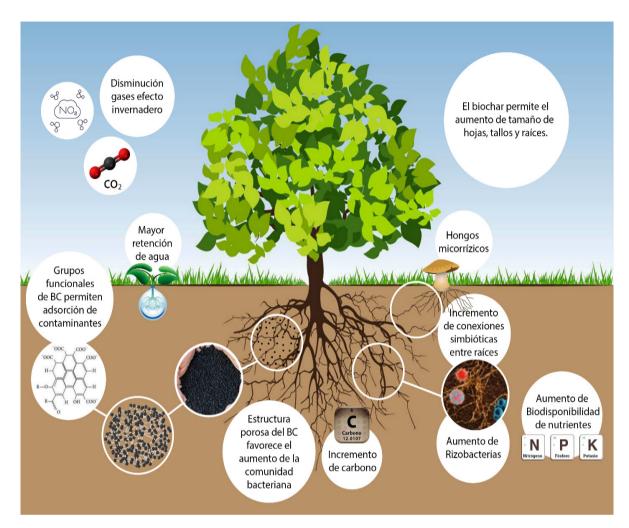


Figura 1. Impacto del BC sobre el aumento de la comunidad de rizobacterias, de nutrientes en el suelo y en la disminución de gases de invernadero.

MÉTODO

Se utilizaron cinco bases de datos y se realizó la búsqueda de artículos científicos publicados bajo las palabras clave, biochar, microorganismos del suelo, enzimas, rizobacterias, micorrizas, comunidad bacteriana, encontrando más de mil documentos y seleccionando los más importantes, fundamentándose en el factor de impacto, fecha de publicación más reciente, autores más citados, chequeando otras revisiones y metaanálisis sobre el tema, para luego de una búsqueda selectiva, analizar los artículos seleccionados y analizar las conclusiones, comparando entre ellos factores en común y diferencias. Se seleccionaron 149 y se analizaron a fondo 70 artículos relacionados con los mecanismos de interacción entre el BC y la promoción de los microorganismos del suelo, de los cuales se detallan la procedencia geográfica y la base de datos donde fueron hallados, la distribución porcentual de los artículos por año de publicación es 30, 24,3, 18,6 y 27,1 % correspondientes a los años 2022, 2021, 2020 y 2019 al 2011, respectivamente. El 48,6 % de los artículos evaluados pertenecen a la región asiática, destacándose por su amplia producción científica en este tema (cuadro 1).

Cuadro 1. Distribución de artículos sobre la influencia de BC en microbiota del suelo por ubicación geográfica y bases de datos.

Continente	Número de artículos	ScienceDirect	Scopus	Springerlink	Google Scholar	SciELO
Europa	19	6	4	7	2	0
Asia	34	29	2	2	1	0
América	16	9	3	1	2	1
Oceanía	1	0	0	0	1	0
Total	70	44	9	10	6	1

La figura 2, detalla, mediante un diagrama de flujo, el mecanismo de búsqueda y selección de los artículos basándose en la guía PRISMA 2020 (Preferred Reporting Items for Sistematic reviews and Meta-Analyses).

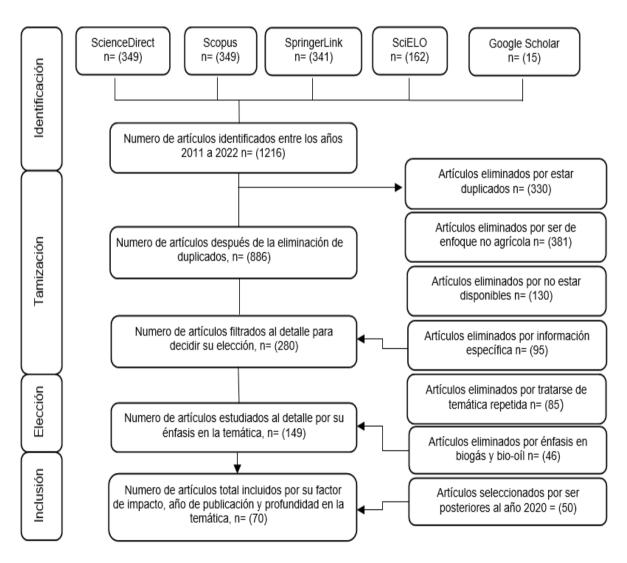


Figura 2. Flujograma de búsqueda y selección de los estudios incluidos acorde con las cuatro fases de la guía PRISMA 2020.

DESARROLLO DEL TEMA

Microbiología del suelo y su relación simbiótica con las plantas

Los microorganismos presentes en el suelo establecen relaciones simbióticas con las plantas que son benéficas para ambas partes, donde los microorganismos obtienen energía a través de la transformación de polisacáridos simples (glucosa, maltosa, fructosa, arabinosa, entre otros) liberados por las raíces de la planta, mientras que la planta, a su vez, obtiene los nutrientes esenciales que liberan los microorganismos luego de sus procesos digestivos. Las raíces de las plantas liberan exudados que son compuestos orgánicos como polisacáridos, aminoácidos, ácidos orgánicos y compuestos fenólicos que promueven la proliferación de microorganismos (Hermans et al., 2020; Silva-Gonzaga et al., 2021).

Las micorrizas son hongos reconocidos presentes en la rizosfera que interactúan simbióticamente con las raíces de las plantas; al colonizar la raíz, aportan nutrientes y agua, absorbidos mediante sus hifas micorrizales (Abbaspour et al., 2020; Aalipour et al., 2021). Hongos como Basidiomycetes, Ascomycetes (ectomicorrizas) y Glomeromycetes (endomicorrizas) constituyen divisiones fúngicas reconocidas por sus efectos mutualistas, principalmente por su afinidad para absorber P, debido al menor diámetro y mayor extensión de las hifas micorrizales comparado con las raíces (Gao & DeLuca, 2020). La rizosfera constituye un punto sensible a la respuesta del cultivo porque concentra una gran actividad metabólica con intercambio de nutrientes entre la atmósfera y el suelo (Silva-Gonzaga et al., 2021). Los microorganismos PGPR contribuyen al crecimiento vegetal aumentando la disponibilidad de nutrientes limitantes: dentro de sus funciones se destacan la descomposición de la materia orgánica, la conversión de N orgánico a N amoniacal (amonificación), la mineralización de N (nitrificación) y la solubilización de P (Zhong et al., 2022). La actividad microbiana del suelo hace parte de los ciclos biogeoquímicos de elementos como C, N y P. La clasificación de los microorganismos del suelo está en función de la forma como obtienen C y energía, siendo heterótrofos los que se nutren mediante oxidación de compuestos orgánicos y autótrofos los que consiguen C proveniente del CO, y otras fuentes inorgánicas, siendo los heterótrofos los que ocupan la mayor parte de la rizosfera. Los géneros Strenotrophomonas y Variibacter han sido detectados como mineralizadores de P; diazótrofos como Rhizobium, Azotobacter y Azospirillum son conocidos como fijadores y transformadores de N en su forma lábil mediante la formación de nódulos en las raíces de leguminosas, las familias Bradyrhizobiaceae e Hyphomicrobiaceae son también conocidas como mineralizadores del ciclo de N en el suelo; otras familias bacterianas como Burkholderia ambifaria, Burkholderia sp. 383 y Pseudomonas putida son rizobacterias conocidas por su actividad solubilizadoras de fosfatos (Anderson et al., 2011; Patiño-Torres et al., 2012; Zheng et al., 2021).

Biochar como enmienda del suelo, propiedades y caracterización

El uso del material residual carbonoso poroso BC obtenido a partir de los procesos de transformación térmica de biomasa en un ambiente inerte anaeróbico (Li, Y et~al., 2020; Pinzon-Nuñez et~al., 2022) se describe en investigaciones y aplicaciones de la última década como una propuesta importante que permite disminuir la contaminación (Antar et~al., 2021) y cantidad de emisiones de ${\rm CO}_2$ a la atmósfera por la quema de grandes cantidades de residuos agrícolas y de biomasa residual (Munar-Flórez et~al., 2022), como mantener una buena efectividad de las condiciones físicas, químicas y bióticas del suelo que permiten recuperar su fertilidad (El-Naggar et~al., 2019; Yuvaraj et~al., 2021). La idea principal que resalta la importancia en la producción de BC es el secuestro de carbono, lo que significa el almacenamiento de carbono en los suelos; al retornar el BC al suelo puede actuar como un sumidero de carbono, lo que disminuye la emisión de GEI.

Los agro-residuos de la biomasa con enorme potencial como recurso renovable han atraído una gran atención, debido a que su uso en la elaboración de biocarbón hace parte del nuevo modelo mundial de bioeconomía circular (Ameloot *et al.*, 2013; Ghodake *et al.*, 2021) que se enfoca en la reutilización de residuos como materias primas disminuyendo la contaminación provocada por acumulación de desechos, a la vez que economiza los procesos existentes de reciclaje y descontaminación (Chiappero *et al.*, 2020). Las mejoras en la salud del suelo,

el crecimiento de las plantas, el secuestro de carbono y la mitigación de GEI son evidentes en varios estudios científicos publicados sobre BC (Sanchez-Reinoso, et al., 2020). Existen algunos resultados desfavorables en la interacción BC-suelo, generalmente, el aspecto benéfico está limitado a condiciones particulares como el tipo de biomasa utilizada, la tasa de aplicación en el suelo, tipo de suelo, clima y especies de cultivos (Zimmerman et al., 2011).

De acuerdo con Joseph et al. (2021) la tasas de aplicación de BC que reportan mayor efectividad son de 40 ton/ ha o inferiores; tasas de aplicación mayores pueden llevar a resultados negativos, sobre todo en la microbiota del suelo, pues el BC puede liberar sustancias como sales solubles, compuestos orgánicos volátiles (VOC) e hidrocarburos aromáticos policíclicos (PAH) con niveles fitotóxicos. Las propiedades fisicoquímicas del BC (composición, área superficial, capacidad de retención de agua, pH, conductividad eléctrica, tamaño de partícula, distribución del tamaño de poros), generalmente dependen de las condiciones del proceso de pirólisis y de las características fisicoquímicas de la biomasa (Joseph et al., 2021). El rendimiento y calidad de BC varían significativamente con la tecnología de producción, cómo el tipo de pirólisis, materia prima, tiempo de residencia en la pirólisis y procesos de activación post-pirólisis. Las características predominantes del BC, están influidas por la biomasa utilizada, p. ej., la biomasa basada en madera genera BC con gran área superficial, biomasa de paja presenta BC con alta CEC (capacidad de intercambio catiónico), a base de estiércol animal se obtiene BC con alto contenido de N y P (Yaashikaa et al., 2020; Romero et al., 2021). La temperatura de fabricación alrededor de 500 °C favorece un BC con alto pH y contenido de cenizas, así como mayor permanencia de carbono en el suelo (Ji et al., 2022): temperatura superior a los 500 °C presenta la carbonización es fase predominante en la pirólisis, removiendo los átomos metálicos como Ca, K, y Mg, por lo que aumenta el contenido de carbono fijo total en el residuo de BC (Kamali et al., 2022). Existen otros procesos de elaboración de BC como la carbonización hidrotermal, gasificación, torrefacción y carbonización instantánea (Kaur et al., 2021). Las relaciones entre H/C y O/C son un indicador importante para determinar la estabilidad, carbonización y aromaticidad del BC fabricado; una relación menor a 0,7 H/C indica incremento de las estructuras aromáticas y relaciones de O/C menores a 0,2 se presentan en BC con gran estabilidad (Munar-Flórez et al., 2022).

La estructura del BC puede variar en complejidad y estructura química, desde estructuras tipo grafito hasta anillos aromáticos de alto peso molecular que persisten en la capa del suelo durante millones de años (Ghodake et al., 2021). La mayor diferencia entre el BC y otro tipo de materia orgánica es su gran proporción de carbono aromático (El-Naggar et al., 2019) y, específicamente, la aparición de estructuras de carbono aromáticas fusionadas (Rodriguez et al., 2021).

Zhao et al. (2013) y otros autores han publicado resúmenes de resultados de pirólisis lenta con diferentes materias primas de biomasa, la relación entre el contenido de carbono en la biomasa (30-40 %) y el contenido de carbono en el BC obtenido, siendo el mayor rendimiento de 79 % obtenido para el lodo de palma, y pH promedio de 10,2 (cuadro 2).

Efectos del biochar sobre la microbiología del suelo

El factor biótico del suelo o la relación simbiótica que establecen los microorganismos presentes en la rizosfera (micorrizas y rizobacterias) es uno de los factores importantes que influyen en gran medida en el desarrollo y crecimiento vegetal (Morugán-Coronado et al., 2022), donde el BC demuestra su función afectando positivamente las propiedades biológicas del suelo (Harter et al., 2014). Está comprobado que el BC mejora las condiciones en las comunidades bióticas del suelo de diferentes maneras (Lehmann et al., 2011; Song et al., 2020): el BC puede funcionar como un microhábitat de microorganismos, creando una especie de "arrecife de coral" que permite multiplicar la diversidad de la comunidad microbiana y protegerlos de la desecación y depredación (Mukherjee et al., 2022), provocando cambios en el pH o en la presencia y disponibilidad de compuestos químicos benéficos, disminución de compuestos tóxicos por su efecto tipo "esponja" que adsorbe metales pesados y compuestos orgánicos provenientes de herbicidas y plaguicidas (Haider et al., 2021; Yuvaraj et al., 2021); la sorción de estos contaminantes en el suelo por efecto del BC se explica por su alta cantidad de grupos funcionales con carga negativa (hidroxilo, carboxilo, acetoxi, alcoxi) que interactúan por medio de fuerzas de Van der Waals,

puentes de hidrógeno, interacciones dipolo-dipolo, intercambio iónico y protonación, función que normalmente ejecutan las partículas arcillosas y la materia orgánica en el suelo (Yang & Lu, 2022). El BC también puede modificar las interacciones entre la biota del suelo y moléculas de señalización, mediante fisisorción, dada su propiedad de alta porosidad (Harter et al., 2014).

Cuadro 2. Resumen de diferentes materias primas pirolizadas, temperatura de pirólisis lenta, contenido de carbono en biomasa y BC, rendimiento, compuestos volátiles y pH.

Materia prima	T, °C	C de bioma- sa, %	C de BC, %	Rendimiento, %	Volátiles, %	pН	Referencia
Paja de trigo	500	62,9	26,4	29,8	17,6	10,2	(Zhao et al., 2013)
Césped	500	62,1	28,0	27,8	18,9	10,2	(Zhao et al., 2013)
Aserrín	500	75,8	28,5	28,3	17,5	10,5	(Zhao et al., 2013)
Cascara de maní	500	73,7	34,4	32,0	16,0	10,5	(Zhao et al., 2013)
Elodea de agua	500	25,6	47,1	58,4	32,4	10,3	(Zhao et al., 2013)
Clórela	500	39,3	33,0	40,2	29,3	10,8	(Zhao et al., 2013)
Residuo de papel	500	56,0	24,7	36,6	30,0	9,9	(Zhao et al., 2013)
Cascara de camarón	500	52,1	34,3	33,4	26,6	10,3	(Zhao et al., 2013)
Estiércol de cerdo	500	42,7	26,6	38,5	11,0	10,5	(Zhao et al., 2013)
Estiércol de vaca	500	43,7	41,8	57,2	17,2	10,2	(Zhao et al., 2013)
Racimo de fruta vacío	500	50,9	54,5	35,1	27,5	-	(Lee et al., 2017)
Lodo de palma de aceite	500	53,2	72,4	79,2	24,1	-	(Lee et al., 2017)
Mazorcas-elote	300	46,9	73,1	33,4	32,0	-	(Intani et al., 2016)
Cascaras de mazorca	300	44,9	67,9	30,7	30,6	-	(Intani et al., 2016)

La proliferación de microorganismos en el suelo se evidencia por el aumento de agentes biológicamente activos (exo-enzimas) que estimulan la descomposición de materiales orgánicos (Cui et al., 2020), dicho aumento enzimático se relaciona directamente con la cantidad de elementos que son liberados a causa de su acción, por ejemplo, la enzima ureasa se relaciona con la cantidad disponible de N y la fosfatasa alcalina con el P, así como la enzima β -glucosidasa se relaciona con la cantidad de C lábil, jugando un papel importante en la mineralización de la materia orgánica del suelo y en los ciclos biogeoquímicos del C (Günal et al., 2018). Para medir la actividad microbiana se analiza la presencia de exo-enzimas presentes en el suelo (Lopes et al., 2021), de hecho, existe una fuerte correlación entre el C total, N y varias exo-enzimas como la β -glucosidasa y la ureasa (Dominchin et al., 2021). Posterior a la siembra y adición de BC, se determina si existe un incremento en la concentración de la enzima, lo que indica la promoción y aumento de la población de microorganismos y, a su vez, en la calidad del suelo relacionada con su biodisponibilidad de C presente (Acosta-Martínez et al., 2019). Otro método usado para evaluar la diversidad microbiana en el suelo debido a la adición de BC, es el análisis de Polimorfismo de Longitud de Fragmentos de Restricción Terminal (TRFLP) del gen bacteriano 16S-rRNA (Patiño-Torres et al., 2012), que es un método de los más eficaces para evidenciar cambios en la biota del suelo (Anderson et al., 2011; Li, S et al., 2020; Cybulak et al., 2021; Dominchin et al., 2021).

La aplicación conjunta de BC con fertilizantes aumenta las concentraciones de las exo-enzimas β -glucosidasa, ureasa, fosfatasa ácida y arilsulfatasa y la biomasa microbiana total del suelo en un periodo de tiempo largo (Lopes *et al.*, 2021), la aplicación de BC con microorganismos efectivos (ME) mejoran el rendimiento de crecimiento de las plantas (Xia *et al.*, 2022), aumentan la adquisición y acumulación de nutrientes en cultivos cuyos suelos sufren estrés por exceso de salinidad y alcalinidad. Song *et al.* (2020) demostraron que la aplicación combinada de BC con urea incremento las actividades de β -glucosidasa por 1,3, amino-peptidasa por 1,4, mejoró la concentración de N y P en 1,2 y 1,5 veces y aumentó la longitud de raíces en un 74 %.

En el trabajo reportado por Joseph et al. (2021) se describen los mecanismos en el tiempo de respuesta de las plantas a la adición de BC, dividiendo en tres etapas los períodos de residencia de BC dentro del suelo: inicial, media y final, destacándose la etapa media (1-6 meses) como la más productiva en términos biológicamente activos. Basándose en diversos metaanálisis, los autores encontraron que, dentro de este período, la respuesta microbiana aumenta sobre todo en suelos con alto contenido de N y aplicaciones de BC producidos a bajas temperaturas con materias primas ricas en nutrientes, como estiércol animal (Li et al., 2020). En suelos de contextura fina con pH ácido, la adición de BC incrementó el contenido de C de la biomasa microbiana y las actividades de las exo-enzimas ureasa, fosfatasa alcalina y deshidrogenasa en 22, 23, 25 y 20 % respectivamente, incrementos en las actividades enzimáticas que corresponden directamente a un cambio positivo en la estructura y actividad microbiana (Xia et al., 2022). Estos cambios están directamente relacionados con los efectos positivos del BC en el suelo, el incremento del pH, desarrolla un papel importante en la abundancia de la biota del suelo, está demostrada una fuerte correlación entre el aumento del pH del suelo y el aumento de la abundancia microbiana con un rango óptimo de pH para las bacterias entre 6,0 y 8,5; el BC, debido a su contenido de cenizas alcalinas, tiene un efecto potencial no solo sobre el aumento de la comunidad microbiana, sino también en la creación de un ambiente favorable para la acción de muchas exo-enzimas presentes en el suelo, dado que las reacciones catalizadas por enzimas son dependientes del pH (Lecroy et al., 2013). El incremento del pH por adición del BC ejerce un efecto de encalado, reduciendo la acidez del suelo, que de manera conjunta también disminuye la concentración de metales pesados como el Al, que en suelos con pH por debajo de 5,0 se solubiliza como Al³⁺ que satura los enlaces electrostáticos con las arcillas y materia orgánica del suelo, inhibiendo que nutrientes necesarios para la planta (K, Na, Mg) estén disponibles, generando un déficit nutricional en la planta, que finalmente produce una disminución de tamaño de raíces, tallos y hojas (Gorovtsov et al., 2020; Joseph et al., 2021).

La aplicación conjunta de ME con BC subsana los efectos contraproducentes generados por el estrés en suelos contaminados al regenerar las condiciones adecuadas del suelo. Haider *et al.* (2021) demostraron que la aplicación de ME más abono orgánico de origen animal (estiércol de cerdo) sumado a una matriz de BC producido con paja de maíz en condiciones anaeróbicas a 550 °C, mejoran la fertilidad en la siembra de soya, reducen el contenido contaminante de Cd en el suelo y evidencian que la aplicación conjunta de BC+ME; debido a su efecto sinérgico, es una herramienta más efectiva que la aplicación individual de cada elemento individual. Además, compararon muestras de control contaminadas con Cd sin ningún aditivo contra muestras con enmienda de BC+ME en valores cuantitativos de longitud de raíz, pH y conductividad eléctrica, contenido de N, P, K, notándose en todas las evaluaciones que los valores incrementaron en las muestras con enmienda de BC+ME. El suelo modificado con BC también minimizó significativamente el estrés oxidativo de las hojas de soya. Se registró una reducción de 13,9 % en la producción de dialdehído malónico (indicador de estrés oxidativo) en el suelo modificado con BC de estiércol de vaca, los autores concluyeron que la enmienda conjunta de BC+ME disminuye los niveles de Cd contaminante ejerciendo una fito-remediación eficaz, este resultado concuerda con resultados positivos de otros autores sobre remoción de metales pesados por efecto del BC (Tu *et al.*, 2020).

Los resultados ambientales claves incluyen la disponibilidad reducida de metales tóxicos y contaminantes orgánicos (Amoah-Antwi et al., 2020; Wang et al., 2021). Oliveira-Fernandes et al. (2021) evaluaron el uso de BC producido de cachaza de caña de azúcar a 380 °C por pirólisis lenta, como adsorbente de compuestos orgánicos tóxicos en aguas residuales, sus elevados valores de área superficial, meso-porosidad y grupos funcionales con carga negativa presentes en la superficie interactúan de manera eficaz y capturan las moléculas provenientes de un pesticida con tiametoxam (Oliveira-Fernandes et al., 2021).

Dominchin *et al.* (2021) examinaron cómo la comunidad microbiana del suelo y la actividad enzimática bajo diferentes prácticas de manejo de la tierra responden a una aplicación combinada de urea y BC, encontrando que los suelos modificados solo con 3 % de BC aumentaron altamente el contenido de C y N totales, además, el BC aplicado redujo significativamente el contenido de nitratos del suelo. Anderson *et al.* (2011) evaluaron los cambios temporales en la ecología microbiana del suelo y encontraron en suelos con enmienda de BC ocurría un incremento promedio superior al 5 % en la abundancia de algunas familias bacterianas tanto en la rizosfera como en suelo profundo usando la técnica TRFLP. Los cambios temporales del suelo con BC fueron el incremento de

las especies bacterianas: Bradyrhizobiaceae, Thermomonosporaceae, Hyphomicrobiaceae (8-14%), que tienen una relación significativa con el ciclo del N, participan en el proceso de nitrificación y desnitrificación de nitratos (NO_3^-) y disminuyen la emisión de N_2^- O, dicha alteración en el ciclo del N permite que aumente la cantidad de N en su forma lábil (amoniacal), de esta manera las raíces de la planta tienen mayor acceso a este nutriente esencial, estas observaciones concuerdan con otros resultados experimentales que confirman este hecho (Anderson et al., 2011; Cayuela et al., 2013; Antor et al., 2022).

Moreno et al. (2022) evaluaron el efecto del BC en la protección de las comunidades microbianas bajo estrés por sequía en un sistema simulado que permite disminuir la cantidad de riego, previendo los efectos provocados por el cambio climático. Los resultados obtenidos mostraron siempre que las cantidades de TOC (C orgánico total) y SOC (C orgánico en suelo) aumentaron en todos los casos al adicionar BC, tanto en condiciones climáticas normales como en condiciones climáticas extremas. Con el valor de la DHA (actividad deshidrogenasa) se evaluó un índice global de la actividad microbiana en el suelo y la tendencia de cambio de esta enzima durante el experimento se elevó en suelos con enmienda de BC. Otras actividades enzimáticas analizadas como APA (actividad fosfatasa alcalina), BGA (actividad β -glucosidasa), URA (actividad de ureasa) y PARA (actividad de proteasa) indicaron un aumento relativo (Moreno et al., 2022).

Dvořáčková *et al.* (2021) compararon la respuesta microbiológica de la aplicación de BC con y sin activación mediante la medición de la enzima DHA, siendo el BC preparado por un proceso diferente a la pirólisis, como es la carbonización en seco (500-700 °C) a partir de biomasa vegetal de desechos. Los resultados demostraron que el BC sin tratamiento previo tuvo un efecto negativo sobre la comunidad microbiana al incrementar la mortalidad microbiana y disminuir la actividad de la enzima deshidrogenasa, sin embargo, el hecho de activar el BC mediante aireación en un lecho húmedo mostró resultados positivos sobre la producción de la enzima deshidrogenasa y aumentó la biomasa microbiana. El BC crudo o sin tratamiento de activación mostró altos niveles de compuestos aromáticos policíclicos como naftaleno y pireno. Los BC con altos niveles de estos compuestos muestran un comportamiento negativo sobre la microflora del suelo (Valizadeh *et al.*, 2022; Shen *et al.*, 2022). La activación del BC mediante aireación y envejecimiento de este aumenta los niveles de la enzima DHA coincidiendo con el resultado que la activación de BC puede aumentar la actividad de la biota del suelo (Dvořáčková *et al.*, 2021).

Quilliam et al. (2013) realizaron SEM con glucosa marcada con isotopo C^{14} dentro de la estructura de BC para determinar si el nivel de colonización bacteriana aumentaba alrededor de BC. A pesar de que los resultados demostraron que no hubo un incremento microbiano significativo en el interior de las partículas de BC y que el 17,5 % de tamaño de poros presentaban valores inferiores a 1 μ m, tamaño inviable para que se desarrolle vida bacteriana; en la carósfera (suelo contiguo al BC) se presentaron mejorías en las características fisicoquímicas del suelo, que finalmente aumentan las interacciones suelo-planta-microorganismos. Se ha comparado el efecto de usar BC elaborado a diferentes temperaturas de pirólisis para una misma materia prima, encontrando que la utilización de BC por parte de los microorganismos bacterianos y fúngicos después de más de un año de aplicación en el suelo es beneficiada por la temperatura de pirólisis en muestras de BC obtenido a 350 °C en comparación con BC a 700 °C (Yu et al., 2018; Zhang et al., 2022).

Gorovtsov et al. (2020) y Yan et al. (2021) evaluaron los mecanismos de las interacciones del BC con los microorganismos del suelo teniendo en cuenta diferentes factores como compuestos orgánicos volátiles, presencia de hidrocarburos poliaromáticos, composición de elementos nutrientes minerales, impacto de las propiedades y estructura del suelo, pH y formación de agregados. La alta diversidad de factores determinantes tanto en el suelo, como en la fabricación de BC, hace que la complejidad de la discusión de los resultados sea doblemente compleja, sin embargo, el alto porcentaje de efectividad del BC como promotor de microorganismos, intensifica la investigación que busca esclarecer todos los posibles mecanismos, con el fin, no solo de explicarlos, sino de volverlos reproducibles.

CONCLUSIONES

El BC constituye una enmienda efectiva para restaurar la calidad fisicoquímica de los suelos, aumentando el pH, la capacidad de intercambio catiónico, la capacidad de retención de agua, aireación, penetrabilidad de las raíces, área superficial, disminuyendo la densidad aparente, alterando las comunidades bacterianas y micorrícicas de la rizosfera; todos estos cambios positivos en el suelo derivan en mayor disponibilidad de nutrientes esenciales que incrementan la fertilidad vegetal.

Se han reportado experimentos de diversidad genómica de la comunidad microbiana del suelo, en donde el uso de BC altera las familias bacterianas involucradas en el ciclo de N, aumentando la disponibilidad en forma amoniacal y disminuyendo las perdidas como N_2O . Los estudios recientes confirman nuestra hipótesis que el BC promueve el incremento de la microbiota del suelo, aumentando los niveles exo-enzimáticos de deshidrogenasa, β -glucosidasa, fosfatasa alcalina, ureasa, entre otras, adicionalmente incrementos en los valores de biomasa microbiana, contenido de C, N, P y K, demuestran su efectividad como enmienda del suelo, aunque algunos resultados experimentales difieren, posiblemente atribuido a factores como la heterogeneidad de la materia prima, método de fabricación y la inactivación posterior a la pirólisis, entre otros, que conlleva a la necesidad de mayor investigación.

Los métodos de fabricación de BC inciden directamente en la calidad del producto y en los efectos de influencia en el suelo. La calidad, características y tratamiento del suelo, así como las condiciones climatológicas presentes antes y durante la siembra y el desarrollo vegetal, juegan un rol fundamental en los resultados obtenidos en los experimentos que utilizan BC como enmienda del suelo.

REFERENCIAS

- AALIPOUR, HAMED; NIKBAKHT, ALI; ETEMADI, NEMATOLLAH; MACDONALD, JOANNE. Co-inoculation of Arizona cypress with mycorrhizae and rhizobacteria affects biomass, nutrient status, water-use efficiency, and glomalin-related soil protein concentration. Urban Forestry & Urban Greening, v. 60, 2021, p. 127050 https://doi.org/10.1016/j.ufug.2021.127050
- ABBASPOUR, ALI; ZOHRABI, FARSHAD; DOROSTKAR, VAJIHEH; FAZ, ANGEL; ACOSTA, JOSE A. Remediation of an oil-contaminated soil by two native plants treated with biochar and mycorrhizae. Journal of Environmental Management, v. 254, 2020, p. 109755. https://doi.org/10.1016/j.jenvman.2019.109755
- ACOSTA-MARTÍNEZ, VERÓNICA; PÉREZ-GUZMÁN, LUMARIE; JOHNSON, JANE, M. Simultaneous determination of β -glucosidase, β -glucosaminidase, acid phosphomonoesterase, and arylsulfatase activities in a soil sample for a biogeochemical cycling index. Applied Soil Ecology, v. 142, 2019 p. 72–80 https://doi.org/10.1016/j.apsoil.2019.05.001
- AMELOOT, N.; GRABER, E.R.; VERHEIJEN, F.G.A.; DE NEVE, S. Interactions between biochar stability and soil organisms: Review and research needs. European Journal of Soil Science, v. 64, n. 4, 2013, p. 379–390. https://doi.org/10.1111/ejss.12064
- AMOAH-ANTWI, COLLINS; KWIATKOWSKA-MALINA, JOLANTA; THORNTON, STEVEN F.; FENTON, OWEN; MALINA, GRZEGORZ; SZARA, EWA. Restoration of soil quality using biochar and brown coal waste: A review. Science of the Total Environment, v. 722, 2020, p. 137852. https://doi.org/10.1016/j.scitotenv.2020.137852
- ANAND, ABHIJEET; KUMAR, VIVEK; KAUSAL, PRIYANKA. Biochar and its twin benefits: Crop residue management and climate change mitigation in India. Renewable and Sustainable Energy Reviews, v. 156, 2022, p. 111959.
 - https://doi.org/10.1016/j.rser.2021.111959

- ANDERSON, CRAIG R.; CONDRON, LEO M.; CLOUGH, TIM J.; FIERS, MARK; STEWART, ALISON; HILL, ROBERT A.; SHERLOCK, ROBERT R. Biochar induced soil microbial community change: Implications for biogeochemical cycling of carbon, nitrogen, and phosphorus. Pedobiologia, v. 54, 2011, p. 309–320 https://doi.org/10.1016/j.pedobi.2011.07.005
- ANTAR, MOHAMMED; LYU, DONGMEI; NAZARI, MAHTAB; SHAH, ATEEQ; ZHOU, XIAOMIN; SMITH, DONALD L. Biomass for a sustainable bioeconomy: An overview of world biomass production and utilization. Renewable and Sustainable Energy Reviews, v. 139, 2021, p. 110691. https://doi.org/10.1016/j.rser.2020.110691
- ANTOR, NAZMUL; SHAMIM, MIA; HASAN, MD; LIPI, NOWROSE; JINDO, KEIJI; SANCHEZ-MONEDERO, MIGUEL; RASHID, MD. Chemical and biological activation of biochar favors N immobilization in biochar and its release to plant. Pedosphere, 2022, p. 1-16. https://doi.org/10.1016/j.pedsph.2022.06.050
- BHATTACHARYYA, SIDDARTHA-SHANKAR; LEITE-DORILEO, FERNANDA-FIGUEIREDO; FRANCE, CASEY L.; ADEKOYA, ADETOMI O.; ROS, GERARD H.; DE VRIES, WIM; MELCHOR-MARTÍNEZ, ELD M.; IQBAL, HAFIZ M.; PARRA-SALDÍVAR, ROBERTO. Soil carbon sequestration, greenhouse gas emissions, and water pollution under different tillage practices. Science of The Total Environment, v. 826, 2022, p. 154161. https://doi.org/10.1016/j.scitontev.2022.154161
- CAYUELA, MARIA-LUZ; SÁNCHEZ-MONEDERO, MIGUEL-ANGEL; ROIG, ASUNCIÓN; HANLEY, KELLY; ENDERS, AKIO; LEHMANN, JOHANNES. Biochar and denitrification in soils: ¿When, how much and why does biochar reduce N₂O emissions?. Scientific Reports, v. 3, 2013, p. 1732. https://doi.org/10.1038/srep01732
- CHIAPPERO, MARCO; NOROUZI, OMID; HU, MINGYU; DEMICHELIS, FRANCESCA; BERRUTI, FRANCO; DI MARIA, FRANCESCO; MAŠEK, ONDREJ; FIORE, SILVIA. Review of biochar role as additive in anaerobic digestion processes. Renewable and Sustainable Energy Reviews, v. 131, 2020, p. 110037. https://doi.org/10.1016/j.rser.2020.110037
- CUI, QIAN; XIA, JIANGBAO; YANG, HONGJUN; LIU, JINGTAO; SHAO, PENGSHUAI. Biochar and effective microorganisms promote Sesbania cannabina growth and soil quality in the coastal saline-alkali soil of the Yellow River Delta, China. Science of The Total Environment, v. 756, 2020, p. 143801. https://doi.org/10.1016/j.scitotenv.2020.143801
- CYBULAK, MARTA; SOKOŁOWSKA, ZOFIA; BOGUTA, PATRYCJA. The influence of biochar on the content of carbon and the chemical transformations of fallow and grassland humic acids. Scientific Reports, v. 11, 2021, p. 5698.
 - https://doi.org/10.1038/s41598-021-85239-w
- DE MASTRO, FRANCESCO; BRUNETTI, GENNARO; TRAVERSA, ANDREINA; BLAGODATSKAYA, EVGENIA. Fertilization promotes microbial growth and minimum tillage increases nutrient-acquiring enzyme activities in a semiarid agro-ecosystem. Applied Soil Ecology, v. 177, 2022, p. 104529. https://doi.org/10.1016/j.apsoil.2022.104529
- DOMINCHIN, MARIA-FLORENCIA; VERDENELLI, ROMINA-AYLÉN; BERGER, MICAELA-GISELL; AOKI, ANTONIO; MERILES, JOSÉ-MANUEL. Impact of N-fertilization and peanut shell biochar on soil microbial community structure and enzyme activities in a Typic Haplustoll under different management practices. European Journal of Soil Biology, v. 104, 2021, p. 103298. https://doi.org/10.1016/j.ejsobi.2021.103298
- DVOŘÁČKOVÁ, H.; ZÁHORA, JAROSLAV; POSPÍSILOVÁ, LUBICA; VICEK, VITESLAV. Potencial de biocarbón después de su activación biológica por microflora nativa del suelo. Revista MVZ Córdoba, v. 26, n. 3, 2021, e2219.
 - https://doi.org/10.21897/rmvz.2219
- EL-NAGGAR, ALI; LEE, SANG-SOO; RINKLEBE, JÖRG; FAROOQ, MUHAMMAD; SONG, HOCHEOL; SARMAH, AJIT K.; ZIMMERMAN, ANDREW R.; AHMAD, MAHTAB; SHAHEEN, SABRY M.; OK, YONG-SIK. Biochar application to low fertility soils: A review of current status, and future prospects. Geoderma, v. 337, 2019, p. 536–554.
 - https://doi.org/10.1016/j.geoderma.2018.09.034

- GAO, SI; DELUCA, THOMAS H. Biochar alters nitrogen and phosphorus dynamics in a western rangeland ecosystem. Soil Biology and Biochemistry, v. 148, 2020, p. 107868. https://doi.org/10.1016/j.soilbio.2020.107868
- GHODAKE, GAJANAN-SAMPATRAO; SHINDE, SURENDRA-KRUSHNA; KADAM, AVINASH-ASHOK; SARATALE, RIJUTA-GANESH; SARATALE, GANESH-DATTATRAYA; KUMAR, MANU; PALEM, RAMASUBBA-REDDY; AL-SHWAIMAN, HIND A.; ELGORBAN, ABDALLAH M.; SYED, ASAB; KIM, DAE-YOUNG. Review on biomass feedstocks, pyrolysis mechanism and physicochemical properties of biochar: State-of-the-art framework to speed up vision of circular bioeconomy. Journal of Cleaner Production, v. 297, 2021, p. 126645. https://doi.org/10.1016/j.jclepro.2021.126645
- GOROVTSOV, ANDREY V.; MINKINA, TATIANA M.; MANDZHIEVA, SAGLARA S.; PERELOMOV, LEONIV V.; SOJA, GERHARD; ZAMULINA, INNA V.; RAJPUT, VISHNU D.; SUSHKOVA, SVETLANA N.; MOHAN, DINESH; YAO, JUN. The mechanisms of biochar interactions with microorganisms in soil. Environmental Geochemistry and Health, v. 42, n. 8, 2020, p. 2495–2518. https://doi.org/10.1007/s10653-019-00412-5
- GÜNAL, ELIF; ERDEM, HALIL; DEMIRBAŞ, AHMET. Effects of three biochar types on activity of β -glucosidase enzyme in two agricultural soils of different textures. Archives of Agronomy and Soil Science, v. 64, n. 14, 2018, p. 1963–1974. https://doi.org/10.1080/03650340.2018.1471205
- HAIDER, FASIH-ULLAH; COULTER, JEFFREY A.; CHEEMA, SARDAR-ALAM; FAROOQ, MUHAMMAD; WU, JUN; ZHANG, RENZHI; SHUAIJIE, GUO; LIQUN, CAI. Co-application of biochar and microorganisms improves soybean performance and remediate cadmium-contaminated soil. Ecotoxicology and Environmental Safety, v. 214, 2021, p. 112112. https://doi.org/10.1016/j.ecoenv.2021.112112
- HARTER, JOHANNES; KRAUSE, HANS-MARTER; SCHUETTLER, STEFANIE; RUSER, REINER; FROMME, MARCUS; SCHOLTEN, THOMAS; KAPPLER, ANDREAS; BEHRENS, SEBASTIAN. Linking N_2O emissions from biochar-amended soil to the structure and function of the N-cycling microbial community. The ISME Journal, v. 8, 2014, p. 660–674. https://doi.org/10.1038/ismej.2013.160
- HERMANS, SYRIE M.; BUCKLEY, HANNAH L.; CASE, BRADLEY S.; CURRAN-COURNANE, FIONA; TAYLOR, MATTHEW; LEAR, GAVIN. Using soil bacterial communities to predict physico-chemical variables and soil quality. Microbiome, v. 8, 2020, p. 79. https://doi.org/10.1186/S40168-020-00858-1
- INTANI, KIATKMJON; LATIF, SAJID; KABIR, RAFAYATUL A.K.M.; MÜLLER, JOACHIM. Effect Of Self-Purging Pyrolysis on yield of biochar from maize cobs, husks and leaves. Bioresource Technology, v. 218, 2016, p. 541–551. https://doi.org/10.1016/j.biortech.2016.06.114
- JI, MENGYUAN; WANG, XAOXIA; USMAN, MUHHAMAD; LIU, FEIHONG; DAN, YITONG; ZHOU, LEI; CAMPANARO, STEFANO; LUO, GANG; SANG, WENJING. Effects of different feedstocks-based biochar on soil remediation: A review. Environmental Pollution, v. 294, 2022, p. 118655.

https://doi.org/10.1016/j.envpol.2021.118655

- JOSEPH, STEPHEN; COWIE, ANETTE L.; VAN ZWIETEN, LUKAS; BOLAN, NANTHI; BUDAI, ALICE; BUSS, WOLFRAM; CAYUELA, MARIA-LUZ; GRABER, ELLEN R.; IPPOLITO, JAMES A.; KUZYAKOV, YAKOV; LUO, YU; OK, YONG-SIK; PALANSOORIYA, KUMUDUNY N.; SHEPHERD, JESSICA; STEPHENS, SCOTT; WENG, ZHE-HAN; LEHMANN, JOHANNES. How biochar works, and when it doesn't: A review of mechanisms controlling soil and plant responses to biochar. GCB Bioenergy, v. 13, n. 11, 2021, p. 1731–1764. https://doi.org/10.1111/gcbb.12885
- KAMALI, MOHAMMADREZA; SWEYGERS, NICK; AL-SALEM, SULTAN; APPELS, LISE; AMINABHAVI, TEJRAJ M.; DEWIL, RAF. Biochar for soil applications-sustainability aspects, challenges and future prospects. Chemical Engineering Journal, v. 428, 2022, p. 131189. https://doi.org/10.1016/j.cej.2021.131189

- KAUR, NAVILJYOT; BHARDWAJ, PRIYANKA; SINGH, GURSHARAN; KUMAR-ARYA, SHAILENDRA. Applicative Insights on Nascent Role of Biochar Production, Tailoring and Immobilization in Enzyme Industry-A Review. Process Biochemistry, v. 107, 2021, p. 153–163. https://doi.org/10.1016/i.procbio.2021.05.017
- KOCSIS, TAMÁS; RINGER, MARIANNA; BIRÓ, BORBÁLA. Characteristics and Applications of Biochar in Soil–Plant Systems: A Short Review of Benefits and Potential Drawbacks. Applied Sciences, v. 12, 2022, p. 4051. https://doi.org/10.3390/app12084051
- LECROY, CHASE; MASIELLO, CAROLINE A.; RUDGERS, JENNIFER A.; HOCKADAY, WILLIAM C.; SILBERG, JONATHAN J. Nitrogen, biochar, and mycorrhizae: Alteration of the symbiosis and oxidation of the char surface. Soil Biology and Biochemistry, v. 58, 2013, p. 248–254. https://doi.org/10.1016/i.soilbio.2012.11.023
- LEE, XIN-JIAT; LEE, LAI-YEE; GAN, SUYIN; THANGALAZHY-GOPAKUMAR, SUCHITHRA; NG, HOON-KIAT. Biochar potential evaluation of palm oil wastes through slow pyrolysis: Thermochemical characterization and pyrolytic kinetic studies. Bioresource Technology, v. 236, 2017, p. 155–163. https://doi.org/10.1016/j.biortech.2017.03.105
- LEHMANN, JOHANNES; RILLIG, MATTHIAS C.; THIES, JANICE; MASIELLO, CAROLINE A.; HOCKADAY, WILLIAM C.; CROWLEY, DAVID. Biochar effects on soil biota A review. Soil Biology and Biochemistry, v. 43, n. 9, 2011, p. 1812–1836. https://doi.org/10.1016/j.soilbio.2011.04.022
- LI, SHUAILING; WANG, SHUO; FAN, MIAOCHUN; WU, YANG; SHANGGUAN, ZHOUPING. Interactions between biochar and nitrogen impact soil carbon mineralization and the microbial community. Soil and Tillage Research, v. 196, 2020 p. 104437. https://doi.org/doi.org/10.1016/j.still.2019.104437
- LI, YUNCHAO; XING, BO; DING, YAN; HAN, XINHONG; WANG, SHURONG. A critical review of the production and advanced utilization of biochar via selective pyrolysis of lignocellulosic biomass. Bioresource Technology, v. 312, 2020, p. 123614. https://doi.org/https://doi.org/10.1016/j.biortech.2020.123614
- LOPES, ÉRIKA-MANUELA; REIS, MATHEUS-MEDES; FRAZÃO, LEIDIVAN-ALMEIDA; DA MATA-TERRA, LORENA-EMANUELLE; LOPES, ERNESTO-FILIPE; DOS SANTOS, MARINALVA-MARTINS; FERNANDES, LUIZ-ARNALDO. Biochar increases enzyme activity and total microbial quality of soil grown with sugarcane. Environmental Technology and Innovation, v. 21, 2021, p. 101270. https://doi.org/10.1016/j.eti.2020.101270
- MORENO, JOSÉ-LUIS; BASTIDA, FELIPE; DÍAZ-LÓPEZ, MARTA; LI, YUNKAI; ZHOU, YUNPEG; LÓPEZ-MONDÉJAR, RUBEN; BENAVENTE-FERRACES, IRIA; ROJAS, ROXANA; REY, ANA; GARCÍA-GIL, JUAN-CARLOS; PLAZA, CÉSAR. Response of soil chemical properties, enzyme activities and microbial communities to biochar application and climate change in a Mediterranean agroecosystem. Geoderma, v. 407, 2022, p. 115536.
 - https://doi.org/10.1016/j.geoderma.2021.115536
- MORUGÁN-CORONADO, ALICIA; PÉREZ-RODRÍGUEZ, PAULA; INSOLIA, ELIANA; SOTO-GÓMEZ, DIEGO; FERNÁNDEZ-CALVIÑO, DAVID; ZORNOZA, RAUL. The impact of crop diversification, tillage and fertilization type on soil total microbial, fungal and bacterial abundance: A worldwide meta-analysis of agricultural sites. Agriculture, Ecosystems and Environment, v. 329, 2022, p. 107867. https://doi.org/10.1016/j.agee.2022.107867
- MUKHERJEE, SANTANU; SARKAR, BINOY; KUMAR-ARALAPPANAVAR, VIJAK; MUKHOPADHYAY, RAJ; BASAK, B.B.; SRIVASTAVA, PRASHANT; MARCHUT-MIKOLAJCZYK, OLGA; BHATNAGAR, AMIT; SEMPLE, KIRT T.; BOLAN, NANTI. Biochar-microorganism interactions for organic pollutant remediation: Challenges and perspectives. Environmental Pollution, v. 308, 2022, p. 119609. https://doi.org/10.1016/j.envpol.2022.119609

- MUNAR-FLÓREZ, DAVID-ARTURO; RAMIREZ-CONTRERAS, NIDIA-ELIZABETH; GARCIA-NUÑEZ, JESÚS-ALBERTO. Biocarbón como producto de la biomasa residual de palma de aceite en un concepto de economía circular. Boletín Técnico. v. 41, 2022, p. 1–80. https://publicaciones.fedepalma.org/index.php/boletines/article/view/13709
- OLIVEIRA-FERNANDES, JULIA; BERNARDINO-ROLIM, CASSIANO-AUGUSTO; MAHLER, CLAUIDO-FERNANDO; SANTELLI, RICARDO-ERTHAL; BRAZ-FERREIRA, BERNARDO; BORGES, RENATA C.; DA CUNHA VELOSO, MÁRCIA-CRISTINA; ROMEIRO, GILBERTO; CINCOTTO, FERNANDO-HENRIQUE. Biochar Generated from Agro-Industry Sugarcane Residue by Low Temperature Pyrolysis Utilized as an Adsorption Agent for the Removal of Thiamethoxam Pesticide in Wastewater. Water, Air, and Soil Pollution, v. 232, n. 2, 2021, p. 1–13. https://doi.org/10.1007/s11270-021-05030-5
- PATIÑO-TORRES, CARLOS; SÁNCHEZ-DE PRAGER, MARINA. Aislamiento e identificación de bacterias solubilizadoras de fosfatos, habitantes de la rizósfera de chontaduro (*B. gassipaes* kunth). Biotecnología en el Sector Agropecuario y Agroindustrial, v. 10, n. 2, 2012, p. 177–187. https://revistas.unicauca.edu.co/index.php/biotecnologia/article/view/258
- PINZON-NUÑEZ, DIEGO-ARMANDO; ADARME-DURAN, CARLOS-ALBERTO; VARGAS-FIALLO, LUZ-YOLANDA; RODRIGUEZ-LOPEZ, NELSON; RIOS-REYES, CARLOS-ALBERTO. Biochar as a waste management strategy for cadmium contaminated cocoa pod husk residues. International Journal of Recycling of Organic Waste in Agriculture, v. 11, 2022, p. 101–115. https://doi.org/10.30486/ijrowa.2021.1920124.1192
- QUILLIAM, RICHARD S.; GLANVILLE, HELEN C.; WADE, STEPHEN C.; JONES, DAVEY L. Life in the "charosphere" Does biochar in agricultural soil provide a significant habitat for microorganisms?. Soil Biology and Biochemistry, v. 65, 2013, p. 287–293. https://doi.org/10.1016/j.soilbio.2013.06.004
- RODRIGUEZ, JOSE-ALEXANDER; LUSTOSA-FILHO, JOSE-FERREIRA; AZEVEDO-MELO, LEONIDAS-CARRIJO; RODRIGUES-DE ASSIS, IGOR; SENNA-DE OLIVEIRA, TEÓGENES. Co-pyrolysis of agricultural and industrial wastes changes the composition and stability of biochars and can improve their agricultural and environmental benefits. Journal of Analytical and Applied Pyrolysis, v. 155, 2021, p. 105036. https://doi.org/10.1016/j.jaap.2021.105036
- ROMBEL, ALEKSANDRA; KRASUCKA, PRACTYCJA; OLESZCZUK, PATRYC. Sustainable biochar-based soil fertilizers and amendments as a new trend in biochar research. Science of the Total Environment, v. 816, 2022, p. 151588.
 - https://doi.org/10.1016/j.scitontev.2021.151588
- ROMERO, CARLOS M.; HAO, XIYING; LI, CHUNLI; OWENS, JEN; SCHWINGHAMER, TIMOTHY; MCALLISTER, TIM A.; OKINE, ERASMUS. Nutrient retention, availability and greenhouse gas emissions from biocharfertilized Chernozems. Catena, v. 198, 2021, p. 105. https://doi.org/10.1016/j.catena.2020.105046
- SANCHEZ-REINOSO, ALEFSI-DAVID; ÁVILA-PEDRAZA, EDGAR-ALVARO; RESTREPO-DIAZ, HERMANN. Use of biochar in agriculture, a review. Acta Biologica Colombiana, v. 25, n. 2 2020, p. 327–338. https://doi.org/10.15446/abc.v25n2.79466
- SHEN, XIULI; MENG, HAIBO; SHEN, YUJUN; DING, JINGTAO; ZHOU, HAIBIN; CONG, HONGBIN; LI, LIJIE. A comprehensive assessment on bioavailability, leaching characteristics and potential risk of polycyclic aromatic hydrocarbons in biochars produced by a continuous pyrolysis system. Chemosphere, v. 287, 2022, p. 132116.
 - https://doi.org/10.1016/j.chemosphere.2021.132116
- SILVA-GONZAGA, MARIA-ISIDORA; DE JESUS-SANTOS, JOSÉ-CARLOS; DE ALMEIDA, ANDRÉ-QUINTAO; DA ROS, KÁSSIO; MELO-SANTOS, WALLACE. Nitrogen and phosphorus availability in the rhizosphere of maize plants cultivated in biochar amended soil. Archives of Agronomy and Soil Science, 2021, p. 1–13 https://doi.org/10.1080/03650340.2020.1869215

- SONG, XIAONA; RAZAVI, BAHAR S.; LUDWIG, BERNARD; ZAMANIAN, KAZEM; ZANG, HUADOM; KUZYAKOV, YAKOV; DIPPOLD, MICHAELA A.; GUNINA, ANNA. Combined biochar and nitrogen application stimulates enzyme activity and root plasticity. Science of the Total Environment, v. 735, 2020 p. 139393.
 - https://doi.org/10.1016/j.scitotenv.2020.139393
- TU, CHEN; WEI, JIN; GUAN, FENG; LIU, YING; SUN, YUHUAN; LUO, YONGMING. Biochar and bacteria inoculated biochar enhanced Cd and Cu immobilization and enzymatic activity in a polluted soil. Environment International, v. 137, 2020, p.105576.
 - https://doi.org/10.1016/j.envint.2020.105576
- VALIZADEH, SOHEIL; LEE, SANG-SOO; CHOI, YONG-YUN; BAEK, KITAE; JEON, BYONG-HUNG; ANDREW-LIN, KING-YUN; PARK, YOUNG-KWON. Biochar application strategies for polycyclic aromatic hydrocarbons removal from soils. Environmental Research, v. 213, 2022, p. 113599. https://doi.org/10.1016/j.envres.2022.113599
- WANG, JIE; SHI, LIANG; ZHAI, LULU; ZHANG, HAOWEN; WANG, SHENGXIAO; ZOU, JIANWEN; SHEN, ZHENGUO; LIAN, CHUNLAN; CHEN, YAHUA. Analysis of the long-term effectiveness of biochar immobilization remediation on heavy metal contaminated soil and the potential environmental factors weakening the remediation effect: A review. Ecotoxicology and Environmental Safety, v. 207, 2021, p. 111261. https://doi.org/10.1016/j.ecoenv.2020.111261
- WANG, MENGMENG; WU, YUNCHENG; ZHAO, JIAYING; LIU, YU; CHEN, ZHE; TANG, ZHAOYANG; TIAN, WEI; XI, YUNGUANG; ZHANG, JIBING. Long-term fertilization lowers the alkaline phosphatase activity by impacting the phoD-harboring bacterial community in rice-winter wheat rotation system. Science of the Total Environment, v. 821, 2022, p. 153406.
 - https://doi.org/10.1016/j.scitotenv.2022.153406
- WU, CHUCHU; ZHI, DAN; YAO, BIN; ZHOU, YUZHOU; YANG, YUAN; ZHOU, YAOYU. Immobilization of microbes on biochar for water and soil remediation: A review. Environmental Research, v. 212, 2022, p. 113226. https://doi.org/10.1016/j.envres.2022.113226
- XIA, HAO; RIAZ, MUHAMMAD; LIU, BO; LI, YUXUAN; EL-DESOUKI, ZEINAB; JIANG, CUNCANG. Over two years study: Peanut biochar promoted potassium availability by mediating the relationship between bacterial community and soil properties. Applied Soil Ecology, v. 176, 2022, p. 104485. https://doi.org/10.1016/j.apsoil.2022.104485
- YAASHIKAA, P.R.; KUMAR, SHENTIL P.; VARJANI, SUNITA; SARAVANAN, A. A critical review on the biochar production techniques, characterization, stability, and applications for circular bioeconomy. Biotechnology Reports, v. 28. 2020, p.e00570.
 - https://doi.org/10.1016/j.btre.2020.e00570
- YADAV, VINEET; JAIN, SHILPI; MISHRA, POOJA; KHARE, PUJA; SHUKLA, ASHUTOSH K.; KARAK, TANMAY; SINGH, ANIL K. Amelioration in nutrient mineralization and microbial activities of sandy loam soil by short term field aged biochar. Applied Soil Ecology, v. 138, 2019, p. 144–155. https://doi.org/10.1016/j.apsoil.2019.01.012
- YAN, TAOTAO; XUE, JIANHUI; ZHOU, ZHIDONG; WU, YONGBO. Biochar-based fertilizer amendments improve the soil microbial community structure in a karst mountainous area. Science of the Total Environment, v. 794, 2021, p. 148757.
 - https://doi.org/10.1016/j.scitotenv.2021.148757
- YANG, CAIDI; LU, SHENGGAO. Straw and straw biochar differently affect phosphorus availability, enzyme activity and microbial functional genes in an Ultisol. Science of the Total Environment, v. 805, 2022, p. 150325.
 - https://doi.org/10.1016/j.scitotenv.2021.150325
- YOU, XINXIN; WANG, SHENG; DU, LINA; WU, HUAN; WEI, YI. Effects of organic fertilization on functional microbial communities associated with greenhouse gas emissions in paddy soils. Environmental Research, v. 213, 2022, p. 113706.
 - https://doi.org/10.1016/j.envres.2022.113706

- YU, Z.; CHEN, L.; PAN, S.; LI, Y.; KUZYAKOV, Y.; XU, J.; BROOKES, P.C.; LUO, Y. Feedstock determines biocharinduced soil priming effects by stimulating the activity of specific microorganisms. European Journal of Soil Science, v. 69, n. 3, 2018, p. 521–534.
 - https://doi.org/10.1111/ejss.12542
- YUVARAJ, ANANTHANARAYANAN; THANGARAJ, RAMASUNDARAM; KARMEGAM, NATCHIMUTHU; RAVINDRAN, BALASUBRAMANI; CHANG, SOON-WOONG; AWASTHI, MUKESH-KUMAR; KANNAN, SOUNDARAPANDIAM. Activation of biochar through exoenzymes prompted by earthworms for vermibiochar production: A viable resource recovery option for heavy metal contaminated soils and water. Chemosphere, v. 278, 2021, p. 130458.
 - https://doi.org/10.1016/j.chemosphere.2021.130458
- ZHANG, GE; DOU, SEN; MENG, FANRONG; YIN, XIANBAO; ZHOU, XIN. Transformation of biochar into extracted humic substances under short-term laboratory incubation conditions: Evidence from stable carbon isotopes. Soil and Tillage Research, v. 215, 2022, p. 105189. https://doi.org/10.1016/j.still.2021.105189
- ZHAO, LING; CAO, XINDE; MAŠEK, ONDREJ; ZIMMERMAN, ANDREW. Heterogeneity of biochar properties as a function of feedstock sources and production temperatures. Journal of Hazardous Materials, v. 256–257, 2013, p. 1–9.
 - https://doi.org/10.1016/j.jhazmat.2013.04.015
- ZHENG, MAN-MAN; WANG, CHAO; LI, WENG-XIN; GUO, LONG; CAI, ZE-JIAN; WANG, BO-REN; CHEN, JUAN-CHEN; SHEN, REN-FANG. Changes of acid and alkaline phosphatase activities in long-term chemical fertilization are driven by the similar soil properties and associated microbial community composition in acidic soil. European Journal of Soil Biology, v. 104, 2021, p. 103312.
 - https://doi.org/10.1016/j.ejsobi.2021.103312
- ZHONG, LEI; LI, GAOYUAN; QING, JINWU; LI, JINLEI; XUE, JIANMING; YAN, BEIBEI; CHEN, GUANGYI; KANG, XIAOMING; RUI, YICHAO. Biochar can reduce N₂O production potential from rhizosphere of fertilized agricultural soils by suppressing bacterial denitrification. European Journal of Soil Biology, v. 109, 2022, p. 103391.
 - https://doi.org/10.1016/j.ejsobi.2022.103391
- ZIMMERMAN, ANDREW R.; GAO, BIN; AHN, MI-YOUN. Positive and negative carbón mineralization priming effects among a variety of biochar-amended soils. Soil Biology and Biochemistry, v. 43, n. 6, 2011, p. 1169–1179. https://doi.org/10.1016/j.soilbio.2011.02.005