

Revista argentina de radiología

ISSN: 1852-9992 ISSN: 0048-7619

Sociedad Argentina de Radiología

López, Gerardo M.; Sanabria-Delgado, Jesús A.; Gentile, Ernestina M.J.; Ulla, Marina; Rabellino, José M. Hallazgos posoperatorios esperables en cirugías de aorta torácica ascendente con angiotomografía computada multicorte: todo lo que un médico radiólogo debe conocer Revista argentina de radiología, vol. 86, núm. 2, 2022, Abril-Junio, pp. 115-123 Sociedad Argentina de Radiología

DOI: https://doi.org/10.24875/RAR.M22000024

Disponible en: https://www.redalyc.org/articulo.oa?id=382572315005

Número completo

Más información del artículo

Página de la revista en redalyc.org

Sistema de Información Científica Redalyc

Red de Revistas Científicas de América Latina y el Caribe, España y Portugal Proyecto académico sin fines de lucro, desarrollado bajo la iniciativa de acceso

abierto

ENSAYO ICONOGRÁFICO

Hallazgos posoperatorios esperables en cirugías de aorta torácica ascendente con angiotomografía computada multicorte: todo lo que un médico radiólogo debe conocer

Expected postoperative findings in ascending thoracic aortic surgeries with multislice angiotomography: Everything a radiologist should know

Gerardo M. López*, Jesús A. Sanabria-Delgado, Ernestina M.J. Gentile, Marina Ulla y José M. Rabellino

Servicio de Diagnóstico por Imágenes, Hospital Italiano de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina

Resumen

Para la reconstrucción y el tratamiento de anomalías que comprometen la aorta torácica pueden emplearse diversas técnicas quirúrgicas abiertas, las cuales estarán determinadas por la patología que presente el paciente. La angiotomografía computada multicorte (ATCMC) es el método de elección para su control y seguimiento. El médico radiólogo debe estar familiarizado con las técnicas quirúrgicas empleadas (Wheat, Bentall de Bono, Cabrol, entre otras), con las reparaciones estructurales que se realizan y con los materiales protésicos utilizados con el fin de evitar una interpretación errónea de las imágenes. El fieltro espontáneamente hiperdenso, los conductos protésicos y sus anastomosis, tanto con la aorta como con los grandes vasos, puede generar errores en el informe final y en el diagnóstico.

Palabras clave: Angiotomografía computada multicorte. Procedimientos quirúrgicos cardiovasculares. Aorta ascendente.

Abstract

Multiple surgical techniques can be used for the reconstruction and treatment of abnormalities that compromise the thoracic aorta, which will be determined by the patient's pathology. Multislice computed tomography angiography is the method of choice for their control and monitoring. The radiologist should be familiar with the surgical techniques used (Wheat, Bentall de Bono, and Cabrol, among others), as well as with the structural repairs that are performed and the prosthetic materials used in order to avoid an erroneous interpretation of the images. Spontaneously hyperdense felt, the prosthetic ducts and their anastomosis, both with the aorta and the large vessels, can generate pitfalls in the final report and error in the diagnosis.

Keywords: Multislice computed tomography angiography. Cardiovascular surgical procedures. Ascending aorta.

Objetivo

Reconocer en las angiotomografías computadas multicorte (ATCMC) los hallazgos posoperatorios esperables y *pitfalls* de las diferentes técnicas quirúrgicas disponibles para la aorta torácica ascendente.

Introducción

Las cirugías de la aorta ascendente por patologías agudas (disección y aneurismas aórticos), así como los procesos crónicos (enfermedad ateroesclerótica o alteraciones genéticas, como el síndrome de Marfan y el síndrome de Ehlers-Danlos), requieren casi inevitablemente la resección del segmento afectado y su consecuente reparación con un injerto que une distalmente a la aorta torácica. Existen numerosas técnicas quirúrgicas, que han evolucionado con el paso del tiempo y que presentan singulares características técnicas e imagenológicas. Debido a esto, para el radiólogo es importante conocer los procedimientos y reconocer los cambios esperables en los diversos métodos por imágenes, adquiriendo especial importancia la ATCMC¹.

Discusión

Las técnicas quirúrgicas utilizadas en la reparación de patologías que comprometen la aorta torácica pueden ser clasificadas como interposición o inclusión de un injerto. La técnica de interposición consiste en la resección del segmento afectado y el posterior reemplazo por un injerto compuesto por fibras sintéticas. La técnica de inclusión conlleva una aortotomía y la colocación de un injerto que se sutura en la aorta nativa. Este último es el procedimiento de elección en la actualidad¹. Adicionalmente, la técnica quirúrgica varía según la ubicación y la extensión de la enfermedad, en lo que se tiene en cuenta el compromiso de las arterias coronarias, la válvula aórtica y los vasos supraaórticos¹.

A continuación, se realizará una breve reseña de los cuatro procedimientos más usados que se emplean para el tratamiento quirúrgico de las patologías de la aorta ascendente. Se describen las características imagenológicas habituales que son clave para la correcta interpretación de los cambios esperables y de las potenciales complicaciones.

Cirugía de Wheat

El empleo de un injerto aórtico ascendente que se coloca distal al ostium de las arterias coronarias se conoce como injerto supracoronario, y al asociarse con un reemplazo de la válvula aórtica se conoce como técnica de Wheat (Fig. 1). Los injertos supracoronarios se indican en pacientes con aneurisma de aorta torácica ascendente (generalmente de origen aterosclerótico) que presentan indemnidad estructural de los senos de Valsalva. Con este procedimiento se evitan las complicaciones de la manipulación del *ostium* coronario nativo, lo cual se traduce en una minimización de los riesgos de pseudoaneurismas, estenosis, trombosis y pliegues en el sitio de la anastomosis coronaria. Las complicaciones más frecuentes de este procedimiento son la disección aórtica nativa proximal y los pseudoaneurismas²⁻⁴.

Cirugía de Bentall de Bono

Fue desarrollada para pacientes con enfermedad valvular y dilatación de los senos de Valsalva cuyas paredes eran demasiado vulnerables para permitir la sutura de la prótesis. Consiste en el uso de un injerto compuesto que contiene una prótesis valvular aórtica y el reemplazo protésico de la arteria aorta ascendente, a la que se reimplantan las arterias coronarias nativas (Fig. 2)2,3,5. Consecuente al desarrollo relativamente común de pseudoaneurismas en los sitios de anastomosis de las arterias coronarias nativas, se produjeron mejoras en la técnica que llevaron a la creación del procedimiento de Bentall modificado o «botón de Bentall», en el que se adquiere un botón coronario de la aorta que contiene el ostium de las arterias coronarias junto a esta, facilitando así la anastomosis del injerto (Fig. 3)2,3,5. En la actualidad, el botón de Bentall es el método preferido para la reparación de la raíz aórtica. A pesar de estos últimos cambios, no está exento de la formación de pseudoaneurismas en los sitios de la anastomosis aórtica distal^{2,3,5}.

Cirugía de Cabrol

La técnica de Cabrol se desarrolló como una alternativa al procedimiento de Bentall modificado en pacientes con disección aórtica, aneurisma aterosclerótico e imposibilidad de realizar la técnica de Bentall por aterosclerosis grave que impide el empleo de botones aórticos, así como el compromiso grave de la arteria coronaria proximal. Primero, los *ostia* coronarios se anastomosan a un conducto protésico en una anastomosis término-terminal. A su vez, este conducto está anastomosado al injerto aórtico ascendente en una anastomosis latero-lateral, típicamente posterior al injerto (Fig. 4)^{2,3,5}. La apariencia posoperatoria normal de un conducto retroaórtico puede asemejarse a un

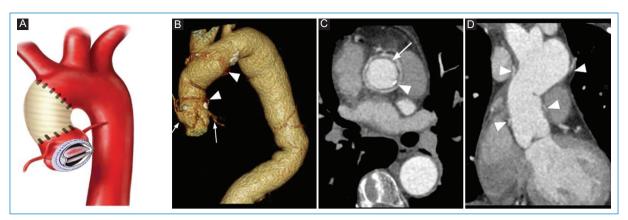


Figura 1. ATCMC que muestra los cambios anatómicos de la aorta ascendente tras la reparación con procedimiento de Wheat. A: diagrama ilustrativo del sitio de anastomosis entre la aorta, el injerto y la válvula protésica. B: 3D volume rendering mostrando el aspecto normal posoperatorio del procedimiento, los sitios de anastomosis (punta de flecha) y la indemnidad de las arterias coronarias nativas (flechas). C: reconstrucción axial oblicua MPR a la anastomosis proximal que muestra la prótesis aórtica hipodensa (flecha) en comparación con el contraste y los fieltros quirúrgicos circundantes (punta de flecha). D: reconstrucción coronal MPR que muestra los sitios de anastomosis proximal y distal (puntas de flecha).

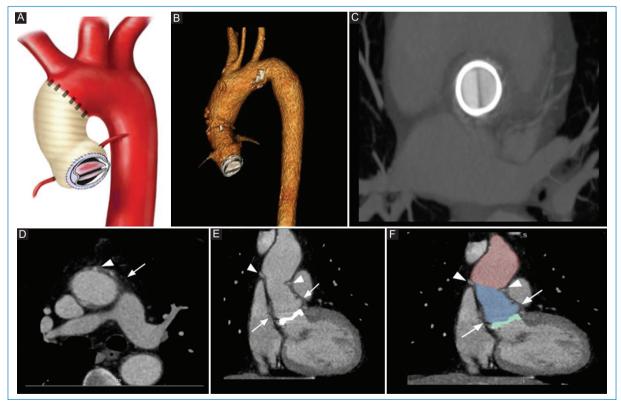


Figura 2. ATCMC que muestra el cambio anatómico de la aorta torácica tras la reparación con procedimiento de Bentall de Bono. A: diagrama que ilustra el sitio de anastomosis entre la aorta y el injerto. B: 3D volume rendering que muestra el aspecto normal posoperatorio del procedimiento. C: prótesis valvular aórtica en reconstrucción MIP axial oblicuo. D: reconstrucción MPR axial con evidencia de los sitios de anastomosis (punta de flecha) y estriación de la grasa mediastinal alrededor de la aorta ascendente en relación con un procedimiento quirúrgico reciente (flecha). E y F: reconstrucción coronal MPR del injerto artificial aórtico (sección celeste) que involucra los botones coronarios (flechas), cambio en el contorno de la aorta ascendente (sección rosa), sitio de anastomosis distal (puntas de flecha) y próstesis valvular (sección verde).

Figura 3. ATCMC. A: 3D volume rendering que muestra el cambio anatómico de la arteria coronaria izquierda (flecha) tras su reimplantación con la técnica del botón de Bentall. B: reconstrucción MPR en el plano axial oblicuo.

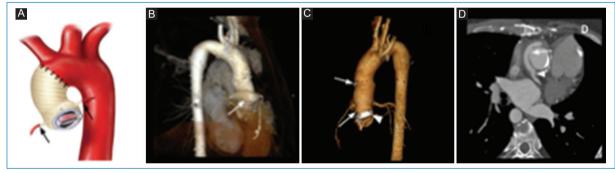


Figura 4. ATCMC que muestra los cambios anatómicos de la aorta ascendente y las arterias coronarias tras la reparación con procedimiento de Cabrol. A: diagrama ilustrativo del sitio de anastomosis entre la prótesis aórtica, la válvula aórtica, la prótesis coronaria y las anastomosis termino-terminal (flechas) con las coronarias nativas. B: 3D volume rendering que muestra la vista posterior de la aorta y la prótesis coronaria (flecha). C: 3D volume rendering que muestra la vista anterior con la válvula mecánica (punta de flecha) y la prótesis de aorta ascendente con sus respectivas anastomosis proximal y distal (flechas). D: plano axial que muestra las anastomosis latero-lateral (flecha) y término-terminal (punta de flecha) de la prótesis coronaria.

colgajo de disección aórtica, por lo que el conocimiento de la técnica quirúrgica y su antecedente es importante al momento del informe imagenológico^{2,3,5}.

Cirugía de Ross

Esta operación fue ideada para implementarse en niños porque el autoinjerto pulmonar crece con el niño, aunque también puede ser utilizada en pacientes de cualquier edad⁶.

En el procedimiento de Ross, la válvula aórtica nativa y la raíz aórtica son reemplazadas a 1 cm distal

al origen de la arteria coronaria derecha, lo que a su vez permite inspeccionar el estado de la válvula aórtica, la raíz aórtica y el tracto de salida del ventrículo izquierdo durante el acto quirúrgico⁷. La válvula pulmonar y la porción proximal de la arteria pulmonar del propio paciente se fijan al tracto de salida del ventrículo izquierdo y al anillo aórtico con múltiples suturas de poliéster. A esta arteria aorta tratada se le reimplantan las arterias coronarias, las cuales serán reubicadas en función de la válvula, pudiendo ser esta última subcoronaria, subcoronaria con preservación del seno no coronario, cilíndrica o raíz completa.

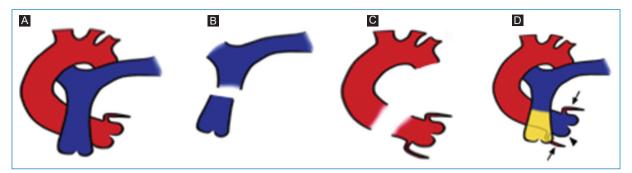


Figura 5. Representación esquemática del procedimiento de Ross. A: disposición habitual de las arterias aorta (rojo) y pulmonar (azul). B: resección del tercio proximal y la válvula de la arteria pulmonar. C: disección de la arteria aorta junto con sus arterias coronarias y la válvula aórtica. D: anastomosis del homoinjerto pulmonar (punta de flecha) con su correspondiente válvula a las arterias coronarias nativas (flechas) y al tracto de salida del ventrículo izquierdo; prótesis pulmonar (amarillo) en el tracto de salida del ventrículo derecho.

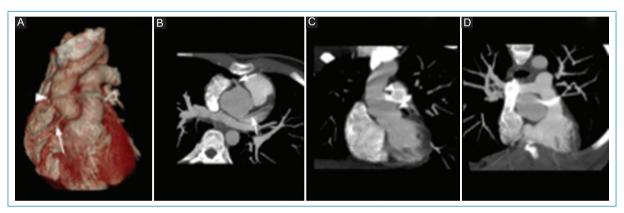
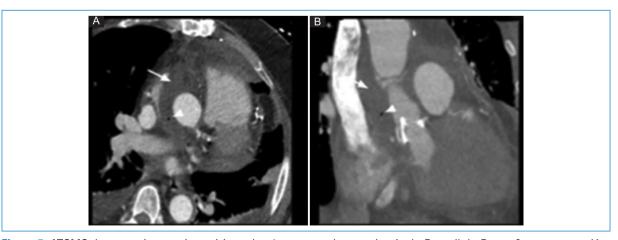



Figura 6. ATCMC que muestra los cambios anatómicos tras la cirugía de Ross. A: 3D volume rendering que evidencia la anastomosis del homoinjerto en la aorta (punta de flecha), la arteria coronaria derecha (flecha) y la bioprótesis tubular valvulada en la arteria pulmonar (punta de flecha hueca). B: reconstrucción MIP axial oblicuo del homoinjerto de la arteria aorta y ambas arterias coronarias (flechas). C: reconstrucción MIP coronal de la arteria aorta con los sitios de anastomosis (puntas de flecha). D: reconstrucción MIP coronal de la arteria pulmonar con la bioprótesis tubular valvulada (punta de flecha hueca).

Figura 7. ATCMC de un paciente asintomático a las 4 semanas de una cirugía de Bentall de Bono. **A**: reconstrucción axial. **B**: reconstrucción coronal oblicua. Se observa líquido periprotésico (flecha) con presencia aislada de burbuja aérea (punta de flecha) en su interior.

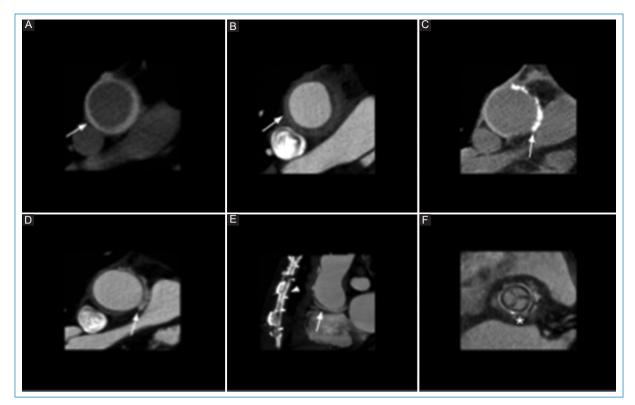
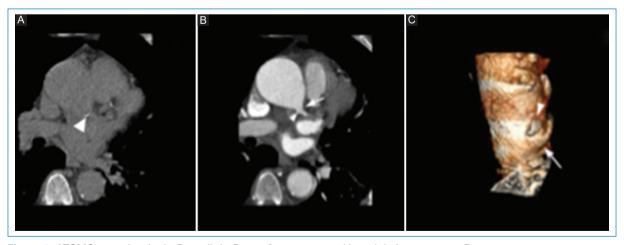



Figura 8. ATCMC de la aorta torácica. A: imagen axial en TC sin contraste que muestra un injerto de polietileno sintético (dacrón) que es hiperdenso y circunferencial en relación a la luz aórtica (flecha), y puede simular un hematoma intramural (pitfall). B: tras la administración de contraste intravenoso, el injerto se torna hipodenso (flecha). C: la imagen axial en TC sin contraste y D: la imagen axial tras la administración del contraste muestran el material de fieltro en el sitio de la anastomosis, que es hiperdenso (flecha) en relación a la luz aórtica y más notorio en la fase sin contraste. E: reconstrucción sagital MIP que muestra las huellas de la esternotomía (punta de flecha) y material de fieltro en el sitio de la anastomosis (flecha). F: reconstrucción axial oblicua MPR que muestra la prótesis biológica (asterisco).

Figura 9. ATCMC tras cirugía de Bentall de Bono. **A:** reconstrucción axial sin contraste. **B:** con contraste intravenoso. Se evidencia una formación sacular hiperdensa en relación al *ostium* de la arteria coronaria izquierda (flecha), con calcificación parietal (punta de flecha), atribuible a un cambio quirúrgico de la técnica de botón de Bentall. **C:** 3D *volume rendering* del mismo paciente que pone de manifiesto la calcificación parietal (punta de flecha) y el botón de Bentall (flecha).

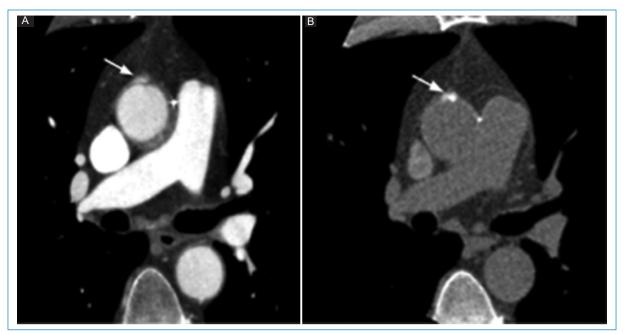


Figura 10. ATCMC tras cirugía de Bentall de Bono. **A**: reconstrucción axial con contraste intravenoso. **B**: fase sin contraste intravenoso. Se evidencia una formación sacular hiperdensa en relación con la aorta ascendente (flecha). En la fase sin contraste se observa en la misma topografía una hiperdensidad en relación con el fieltro (flecha), descartándose un pseudoaneurisma.

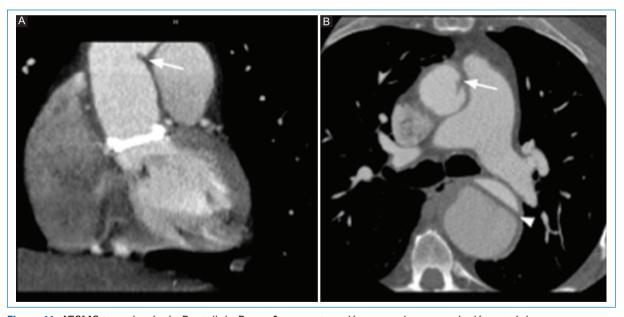
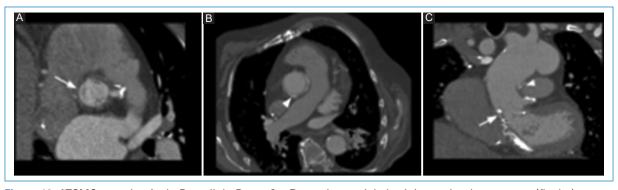



Figura 11. ATCMC tras cirugía de Bentall de Bono. A: reconstrucción coronal con angulación protésica con pseudocolgajo (flecha), simulando un colgajo de disección en la aorta torácica ascendente. B: reconstrucción axial del mismo paciente; se comparan el pseudocolgajo (flecha) dado por la angulación protésica y la presencia de un colgajo de disección real (punta de flecha) en la aorta torácica descendente.

Finalmente, se restablece el flujo de la arteria pulmonar a través de un injerto sintético o bioprotésico (Figs. 5 ^y 6)^{6,7}.

Al igual que otros procedimientos, la cirugía de Ross puede tener complicaciones, entre las que se mencionan el aumento de la regurgitación aórtica y la

Figura 12. ATCMC tras cirugía de Bentall de Bono. **A y B:** en plano axial, depósito anular de contraste (flecha) en relación a la válvula aórtica protésica y a la anastomosis término-terminal distal de la prótesis de aorta ascendente (punta de flecha). **C:** se aprecia la correlación de ambos depósitos en plano coronal.

dilatación progresiva del autoinjerto pulmonar como principales limitaciones^{6,7}.

Hallazgos esperables y pitfalls

Conocer el tiempo de evolución desde la cirugía resulta de vital importancia en la valoración de los hallazgos esperables durante las primeras semanas posteriores al procedimiento. Debido a ello, las características normales en un periodo agudo, menor de 6 semanas, pueden adquirir una significación patológica al volverse crónicas.

Cambios posoperatorios agudos

La visualización de colecciones líquidas homogéneas de baja densidad o áreas de aumento de la densidad de partes blandas periinjerto son hallazgos esperables en los procedimientos de la aorta torácica ascendente. Estas se han asociado con una reacción inflamatoria al material sintético del injerto o un tejido fibroso organizado posterior a un hematoma posoperatorio. Estas colecciones no realzan tras la administración de contraste intravenoso y se pueden resolver espontáneamente. La presencia de burbujas de aire en el mediastino (neumomediastino) es esperable durante el posoperatorio temprano. Sin embargo, estas cualidades deberían ser merecedoras de mención cuando son nuevas, incrementan de tamaño o persisten por más de 6 semanas (Fig. 7)¹⁻³.

Cambios posoperatorios crónicos

La fase sin contraste es de vital importancia para diferenciar las estructuras posquirúrgicas hiperdensas normales de las posibles complicaciones, como son la extravasación del material de contraste y los pseudoaneurismas. El dacrón es el material empleado en las prótesis y se observa de bordes redondeados, paredes lisas y ligeramente hiperdenso en las fases sin contraste intravenoso, lo cual puede simular un pseudoaneurisma. Este último se diferencia por su presentación típica en forma de lesiones hipodensas o isodensas en las imágenes sin contraste (Fig. 8)³⁻⁸.

Otro dato a tener en cuenta son las tiras de fieltro que pueden verse alrededor del injerto, como en los sitios de colocación de la cánula arterial, al igual que el lugar de la anastomosis de la arteria coronaria (técnica del botón) (Fig. 9). Estas tiras también se observan espontáneamente densas en las fases sin contraste, pudiendo asemejar extravasación del contraste o un pseudoaneurisma (Fig. 10)8. Otra manera de diferenciar un pseudoaneurisma es la ubicación, debido a que las tiras de fieltro y de dacrón suelen encontrarse a lo largo de toda la circunferencia de la anastomosis, mientras que un pseudoaneurisma estaría ubicado excéntrico a lo largo de una sola pared. En las fases poscontraste, el injerto suele ser indistinguible de la pared nativa8.

Los pseudocolgajos son visualizados como una banda lineal hipodensa generada por una leve angulación del injerto, en ocasiones confundido con una disección aórtica real, al no ser examinado en múltiples planos (Fig. 11)⁸.

Por último, las áreas de realce u ocupación en el espacio generado entre la raíz del injerto y la envoltura aórtica nativa circundante, así como en la anastomosis del botón de la arteria coronaria, pueden hacer sospechar una dehiscencia o una rotura. Sin embargo, en las técnicas de inclusión, como la de Cabrol, pueden visualizarse con relativa frecuencia y se consideran como hallazgos esperables en el contexto clínico de un paciente asintomático. Pueden persistir sin modificaciones imagenológicas por un largo periodo de tiempo (Fig. 12)⁹.

Conclusiones

Es sumamente importante el conocimiento de los cambios posoperatorios esperables de la cirugía de la aorta torácica ascendente en la ATCMC, para una adecuada interpretación de los hallazgos y evitar errores diagnósticos.

Financiamiento

Este trabajo de investigación no ha recibido ninguna beca específica de agencias de los sectores público, comercial o sin ánimo de lucro.

Conflicto de intereses

Los autores declaran no tener ningún conflicto de intereses.

Responsabilidades éticas

Este es un trabajo observacional retrospectivo que cumplió los principios éticos de la Declaración de Helsinki en su última revisión de octubre de 2000.

Protección de personas y animales. Los autores declaran que para esta investigación no se han realizado experimentos en seres humanos ni en animales.

Confidencialidad de los datos. Los autores declaran que han seguido los protocolos de su centro de trabajo sobre la publicación de datos de pacientes.

Derecho a la privacidad y consentimiento informado. Los autores han obtenido el consentimiento informado de los pacientes y/o sujetos referidos en el artículo. Este documento obra en poder del autor de correspondencia.

Bibliografía

- Hoang JK, Martínez S, Hurwitz LM. MDCT angiography after open thoracic aortic surgery: pearls and pitfalls. AJR Am J Roentgenol. 2009;192:20-7.
- Li W, Rongthong S, Prabhakar AM, Hedgire S. Postoperative imaging of the aorta. Cardiovasc Diagn Ther. 2018;8(Suppl 1):S45-S60.
- Prescott-Focht JA, Martínez-Jiménez S, Hurwitz LM, Hoang JK, Christensen JD, Ghoshhajra BB, et al. Ascending thoracic aorta: postoperative imaging evaluation. RadioGraphics. 2013;33:73-85.
- Arakawa M, Miyata H, Uchida N, Motomura N, Katayama A, Tamura K, et al. Postoperative atrial fibrillation after thoracic aortic surgery. Ann Thorac Surg. 2015;99:103-8.
- Hanneman K, Chan FP, Scott Mitchell R, Craig Miller D, Fleischmann D. Pre- and postoperative imaging of the aortic root. RadioGraphics. 2016;36:19-37.
- Sellke F, Swanson SJ, del Nido PJ, editores. Sabiston and Spencer Surgery of the Chest. Philadelphia, PA: Elsevier Health Sciences; 2015
- Conklin LD, Reardon MJ. Technical aspects of the Ross procedure. Tex Heart Inst J. 2001;28:186-9.
- Garrana S., Martínez-Jiménez S. Postcardiovascular surgery findings of the thoracic aorta. Radiol Clin North Am. 2019;57:213-31.
- Sundaram B, Quint LE, Patel S, Patel HJ, Michael Deeb G. CT appearance of thoracic aortic graft complications. AJR Am J Roentgenol. 2007;188:1273-7.