Abstract: In the investigation, an analysis was carried out on the importance of the biological activity of Lemongrass (Cymbopogon citratus), its benefits and application in the food and non-food industry. The objective was to identify, analyze, organize and compare the information on the bioactive components of the plant species in the industry. The method used is exploratory with a documentary approach of secondary order, since a detailed search of bibliographic information of documents obtained in scientific bases that support the work was carried out. 8 bioactive components and 11 constituents of essential oils were determined, in relation to their use in industry, 2 applications were determined: in food used in beverages (energizing, moisturizing, functional) and as a food additive (antioxidants, preservatives and flavorings) and in the non-food area in the agricultural area (insecticide, fungicides and herbicide), in the cosmetics area (perfume, deodorants and shampoos) and in the pharmacological area (antibacterial and antifungal). The Cympogon citratus for its biological components has been used in the industry during the last years, in the non-food field. Myrcene, citronella, citronellol and geraniol are the components that are most used in the non-food area and citral is the bioactive that is used in the food part.
Keywords: Chemical composition, Agricultural, Cosmetics, Pharmaceutical, Food additive.
Resumen: En la investigación se realizó un análisis sobre la importancia de la actividad biológica de la Hierba Luisa (Cymbopogon citratus), sus beneficios y aplicación en la industria alimentaria y no alimentaria. El objetivo fue identificar, analizar, organizar y comparar la información sobre los componentes bioactivos de la especie vegetal en la industria. El método empleado es exploratorio con enfoque documental de orden secundario, ya que se realizó una búsqueda minuciosa de información bibliográfica de documentos obtenidos en bases científicas que sustentan el trabajo.Se determinó 8 componentes bioactivos y 11 constituyentes de los aceites esenciales, en relación a la utilización en la industria se determinaron 2 aplicaciones: en lo alimentario utilizado en bebidas (energizantes, hidratantes, funcionales) y como aditivo alimentario (antioxidantes, conservantes y aromatizantes) y en lo no alimentario en el área agrícola (insecticida, fungicidas y herbicida), en el área de cosméticos (perfumería, desodorantes y shampoos) y en el área farmacológica ( antibacteriales y antifungicas). El Cympogon citratus por sus componentes biológicos ha sido aprovechado en la industria durante los últimos años, en el campo no alimentario. El mirceno, citronela, citronelol y geraniol son los componentes que más se aprovechan en el área no alimentaria y el citrales el bioactivo que se aprovecha en la parte alimentaria.
Palabras claves: Composición química, Agrícola, Cosméticos, Farmacéutica, Aditivo alimentario.
Articulo
Biological activity of Lemongrass (Cymbopogon citratus) and its applications in industry
Actividad biológica de la Hierba Luisa (Cymbopogon citratus) y sus aplicaciones en la industria
Received: 31 October 2022
Accepted: 26 April 2023
The Food and Agriculture Organization of the United Nations (FAO), the Pan American Health Organization (PAHO) and the World Health Organization (WHO), as international agencies, mention the importance of functional foods (Intriago, 2019) because they contain nutritional characteristics, which help reduce the risk of the presence of diseases; therefore, they possess physiologically active components of plant origin that have pharmacological, therapeutic, antibacterial effects that promote health, physical capacity and mental state of the person (Asgary et al., 2018).
We are currently experiencing profound political and social changes related to clear modifications in people's conduct and behaviour. We are even changing our eating habits, leaving aside the traditional diet, rich in cereals and legumes, to adopt a new culture such as fast food, with high energy value, but deficient in some essential nutrients (Ramírez et al., 2003). For this reason, society is looking for a healthy diet, so science is developing products fortified with a component or bioactive ingredient that provides properties to the body (Britez & Romero, 2019).
In addition, a common product differs from a functional food by having a contaminant-free protein source (Di Cerbo et al., 2017). There are also factors that contribute to food choices, such as familiarity, tastes, convenience, price, knowledge of the food and consumption trends (Britez & Romero, 2019). For this reason, marketing is growing and becoming more varied (Salama & Bustos, 2018).
Following (Totosaus, 2011), foods are evaluated according to three functions: their nutritional value, i.e. their role in providing standard nutritional components; two, based on their sensory properties and a third function is the role of food components in preventing diseases by modulating the physiological system. At the same time (Heredia, 2016), deduces that the functions and health objectives that have been targeted by research in the area of functional foods are: growth and development, metabolism or nutrient utilisation. (Aguilera et al., 2008) considers that some foods can play a beneficial role in addition to their own as suppliers of energy and nutrients.
The International Lile Science lnstitute (ILSI) certifies that a food is functional if it can be successfully demonstrated to have a beneficial effect on one or more specific functions. For this reason, the idea was developed in Japan during the 1980s as a necessity to reduce the high cost of health insurance (Chasquibol et al., 2003). (Hurtado & Zamora, 2015) argue that functional foods are intended to strengthen, improve and stabilise metabolic activity.
Phytochemical properties of functional foods of plant origin
Polyphenols
They originate mainly from plants, which synthesise them in large quantities, and are a product of secondary metabolism. Some are indispensable for plant physiological functions (Pregowska et al., 2012). It is a heterogeneous set of molecules with antioxidant activity that includes acid phenols and flavonoids, characterised by having an aromatic ring (Drago et al., 2006). (Pregowska et al., 2012) mentions that phenolic compounds are a large group of non-energetic substances that are present in plant foods. For this reason, a diet rich in polyphenols helps to stabilise health and reduce the incidence of diseases.
Phytoestrogens
They are a group of non-steroidal compounds that are made up of isoflavones, coumestanes, lignans and flavonoids, and are abundant in legumes, fruits, herbs, grasses and legumes (Cortés-Sánchez et al., 2016). They are of great importance because they have a high biological activity due to their properties of modulating different valuable cellular processes such as cell cycle and cell death (Torres et al., 2017). Furthermore, the effect of phytoestrogens depends exclusively on the type and quantity present in the plant species consumed (R. S. Márquez, 2012).
Vegetable lipids
Vegetable lipids are the oils that we consume in our diet, they are in liquid form, standing out for their chemical structure as monounsaturated and polyunsaturated acids (L. García, 2009). For this reason, they play an essential role in nutrition, because they are an important source of non-protein energy and fat-soluble vitamins, thus generating a saving of food proteins (García et al., 2010).
Would the use of bioactive elements from lemongrasss (Cymbopogon citratus) bring benefits to the industry?
Plants produce a wide variety of secondary metabolites or phytochemicals, many of which have protective functions (Bermúdez-Vásquez et al., 2019b). Besides(Oliveira & Santos, 2021), state that C. citratus is widely used in industry for the properties it provides.This article aims to identify the biological compounds of lemongrass and their application in the food and non-food industry.
Location
The research was carried out at the Amazon State University, located in the city of Puyo, Pastaza province; Km. 2½, on the road from Puyo to Tena (Paso Lateral).
Method
The method used is exploratory of secondary order, since a thorough search of bibliographic information of documents obtained in scientific databases such as Scopus, Springer, Scielo, Google Scholar, Researchgate, undergraduate, master's and doctoral theses was carried out. In order to meet the research objectives, a critical reading of the main selected bibliographic documents was carried out, which were subsequently classified and separated according to the information supporting the work.
Type of research

This literature review has a non-experimental documentary approach, adapting to a collection of information through an analytical reading of documents and bibliographic materials related to the biological activity of lemongrass (Cymbopogon citratus) in industry, with the aim of obtaining background information on studies conducted in order to deepen and investigate the problem.
The study is qualitative with a descriptive scope, because its purpose is to explain the function of lemongrass and its contributions to the industry.
RESULTS AND DISCUSSION
Origin and distribution of Cymbopogon citratus
This species originated in Southeast Asia and, like the rest of the species of the genus Cymbopogon, is distributed in tropical and subtropical regions of the world (Álvarez & Yepes, 2014). Known by the common names 'lemongrass', 'caña santa', 'lemongrass', 'lemon tea', 'citronella' and others (Rojas et al., 2012). It grows up to 2 metres tall, with aromatic leaves between 30 and 100 centimetres, widely distributed and used around the world as a decoction and infusion (Wannissorn et al., 2005).
Chemical composition
The volatile fraction is a prominent characteristic of lemongrass (Bandoni, 2003). Its essential oil yield fluctuates between 0.2 and 1.0 % depending on several factors such as the plant species, its origin, geobotanical conditions and cultivation, as well as extraction methods, duration and temperature (Jaramillo et al., 2017). The main and most abundant biologically active component is citral, a mixture of two monoterpene, stereoisomeric aldehydes from geranial and neral (Lopez, 2022). The bioactive components of lemongrass are listed in table 2.

Applications in industry
According to (Aćimović et al., 2020) C. citratus is considered to be of great interest in the industry because it has a rich source of bioactive compounds with a wide range of applications such as food and non-food as detailed in table 3.

C. citratus industrially, (Table 4) serves as an additive, flavouring, preservative in beverages and food (Oladeji et al., 2019).

According to Silva (2016), energy drinks contain citral to provide health benefits, and Ramirez et al. (2021) states that they are non-alcoholic because they are composed of plant extracts that include vitamins, minerals, etc. (Salazar, 2006). While Perez (2015)mentions that hydrating drinks have natural flavouring in order to replenish the energy and electrolytes lost by the human body during physical activity, (Salazar, 2006) argues that consumption is due to its pleasant taste ensuring proper hydration. Cucaita (2017), adds that Cymbopogon citratus functional beverages have bioactive components that reduce the risk of disease and Yilmaz et al.(2019), states that it contributes to nutritional well-being due to its high consumption rate. And when making beverages, it becomes important for its functional properties that benefit human mental or bodily health (Enriquez et al., 2023).
Non-food industry
Society has implemented the functionality of biologically active compounds that have applications in agricultural and cosmetic areas (Table 5) (Gamero et al., 2021).

Kaur, (2021) indicates that lemongrass oil has the ability to repel insects that are present in the environment. On the other hand, Tacoaman, (2018) suggests that being a natural producto, it helps to stimulate the metabolic processes of crops to strengthen them and protect them from microorganisms. Also, Rodriguez et al (2018) argues that in their study on the antifungal activit.y of C. citratus the main component is (citral), which has the characteristic of inhibiting the growth of moulds and fungi. In addition, Vargas, (2013) considers that being an organic input, it contributes to the defence functions of plants, influencing as a tonic to counteract adverse conditions. Montero et al., (2017) underlines that herbicides provide weed control in the field because they destroy the cell membrane and cause the desiccation of invasive plants.
Duran et al., (2021) emphasise that in the production of perfumes, the active ingredients enhance their aroma. Kim et al. (2022) also states that deodorants contain antioxidants that eliminate body odour and have a protective capacity on the skin. Similarly, Tabassum, (2020) defines in his study on lemongrass shampoo that it has effects on the presence of dandruff on the scalp. The use of C. citratus in the non-food area has non-toxic effects due to its natural active ingredients and has a friendly impact on the environment.
Pharmaceutical industry
It plays a major role in healthcare systems worldwide (Márquez, 2019). The practice of herbal medicine is based on the therapeutic use (Table 6) of plants as a medicinal supplement. It uses their extracts in different formulations (Gallegos, 2016).

Also, Ekpenyong et al. (2015) evaluated the antifungal activity resulting in the destruction of phytopathogens present in the environment. In addition, Giler, (2018) describes that flavonoids contain antioxidant properties that contribute to the reduction of cardiovascular diseases. Cymbopogon citratus is used in the pharmaceutical industry to produce medicines and cleaning products, and research has shown its effectiveness against diseases, fungi and bacteria. According to (Chambal, 2015), lemongrass essential oil has an inhibitory capacity against Candida albicans strains, suggesting the potential value of this element for this skin treatment.
Furthermore, Kishore et al. (1993) carried out studies on ointments and creams containing this element and found it to be effective in its use, taking into account the susceptibility of Candida spp. to antifungals. According to (Enriquez et al., 2018), in his study on Guaviduca indicates that the antioxidant activity of a plant species is the expression of the different phenolic elements that are being used to neutralise reactive oxygen species.
Forty-six scientific articles were analysed, of which 60% indicate the biological power and use of lemongrass extract in the food and non-food industry. After the literature review, the antibacterial and significant antifungal effect on Gram (+) and Gram (-) strains was identified, and as it is a promising source of antimicrobial chemical compounds, it was used in the food and non-food line. In the non-food field, myrcene, citronella, citronellal, citronellol and geraniol are the components that are most used, and in the food industry, the bioactive citral is used to give functionality to products, lower costs and avoid toxicity.The use of lemongrass extract plays an important role in the local and global industry due to its biological components that substitute, preserve and improve the final products offered in the food and non-food market.
Received: 31/10/2022
Accepted: 26/04/2023





