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Abstract

This article applies the multiplicative quadrinomial tree numerical method with non-constant volatility
to assess a real option of abandonment, based on an estimate of the conditional volatility for WTT oil
commodity prices and their respective equivalence in a GARCH-diffusion model. The methodology
refers to the use of an estimate of type GARCH (1,1) and the numerical method through a quadrinomial
tree. There are two main findings: 1) when employing the quadrinomial method, the value of the real
option turned out to be greater than the value estimated through the traditional multiplicative binomial
method, due to underestimation of the real value of volatility that occurs in a specific period according
to the latter method; and 2) a methodological contribution that demonstrates plainly way the presence
of non-constant conditional volatility as well as being able to value all types of options using stochastic

volatility.
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Resumen

Este articulo utiliza el método de arboles cuatrinomiales multiplicativos con volatilidad no constante
para valorar una opcién real de abandono, a partir de la estimacién de la volatilidad condicional para la
serie de precios del commoditie crudo tipo WTI y su respectiva equivalencia con un modelo de difu-
sion GARCH. La metodologia propuesta refiere el uso una estimacién tipo GARCH (1,1) y el uso del
método numérico por arboles cuatrinomiales. Los dos principales hallazgos son: 1) cuando se emplea el
método cuatrinomial, el valor de la opcidn tiende a ser mayor que el estimado por el método tradicional
de arboles binomiales multiplicativos, debido a una subestimacién del valor real de la volatilidad para
el ultimo método, para un periodo de tiempo especifico; y 2) la contribucién metodolégica propuesta
puede ser utilizada de una forma relativamente sencilla cuando existe presencia de volatilidad condi-

cional no constante y permite la valoracion de todo tipo de opciones utilizando volatilidad estocéstica.

Codigo JEL: C19, C32, C65, G13, G32
Palabras clave: GARCH; Series de tiempo; Modelo de difusion GARCH; Arboles cuatrinomiales; Valoracion de

opciones

Introduction

Among academics, the discounted cash flow (DCF) is the most used method for valuing
capital assets, but it is also criticized because it does not include important elements such as
the occurrence of contingent events, the present risk in cash flows and volatility (Trigeorgis,
1996). The real options approach (ROA) serves as a complementary methodology to the DCF
method, allowing to include volatility as a fundamental parameter to quantify risk and to
collect some elements associated with uncertainty (Keswani & Shackleton, 2006). Trigeorgis
(1996), Mun (2006) and Branddo, Dyer and Hahn (2012) have argued the difficulty of its esti-
mation but have also indicated the importance of doing so appropriately to be able to perform
an adequate valuation. Additionally, to assume that the volatility parameter is constant and
unconditional, such as the one used in the ROA method, is considered impractical to model
the price returns of financial series, capital assets and commodities, given the presence of a
series of empirical characteristics such as leptokurtosis, heavy tail distributions, clustering
volatility, and conditional variance that changes randomly over time (Grajales Correa &
Pérez Ramirez, 2007).
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According to this, it is necessary to make a good estimate of the real option for the ROA
method, value that depends largely on the way that volatility is described and estimated.
In other words, the option is very sensitive to the value that is calibrated for this factor, as
demonstrated by Trigeorgis (1990), who in an analytical and empirical way concluded that
an increase in that volatility by 50% could result in an increase by 40% of the real option.
Concurrently, Keswani and Shackleton (2006) presented variations of more than 210% in
the value of the real option when the volatility increases from 10% to 30% (Brandio et al.,
2012). Taking the above into account, it was possible to conclude that the theory used to
estimate the parameter of volatility contained in the ROA method has only been focused
towards the calculation of its structure and its unconditional and constant behavior, without
exploring the advantages that its conditional and stochastic estimation has (Vasseur, Sanchez,
& Escobar, 2019).

In the last three decades, several studies have focused on volatility estimation, given its
importance to economic agents and its use in financial and economic applications and because
volatility plays an important role in decisions that involve financial risk (Posedel, 2005). It
is common to find financial time series that exhibit some stylized facts, effects only began
to be collected after the appearance of the most used classical models corresponding to the
non-linear time series of autoregressive conditional heteroskedasticity (ARCH). This model
was developed in the 1980s in the seminal works of Bollerslev (1986) and Engle (1982), who
focused their efforts on including a functional relation between current and past conditional
volatility as well as on describing the statistical distribution of the errors in detail (Argéez
Sosa, Batiin Cutz, Guerrero Lara, Kantin Chim, Medina Peralta, & Panti Trejo, 2014). The
previously mentioned models included the inertial behavior of volatility as well as the au-
tocorrelation effect in all financial time series (Novales, 1993); that is, fundamentally, it is
necessary to consider all the past information of a variable in predicting its current and future
behavior (De Arce, 1998).

The ARCH generalization process to estimate conditional volatility was presented by
Bollerslev (1986). His model of generalized autoregressive conditionally heteroskedasticity
(GARCH) allowed multiple developments and extensions (Hansen & Lunde, 2005). The basis
and simplicity of the functional structure of GARCH, specifically the type (1,1), has been
considered to be the starting point for several financial applications (Preminger & Storti, 2017).

Recently, some models include stochastic volatility and were created, fundamentally, to
overcome the underlying problems when considering volatility in terms of the evaluation
time horizon. Motivated by this empirical evidence, several authors, such as Chesney and
Scott (1989), Heston (1993), Hull and White (1987), Scott (1987), Stein and Stein (1991),
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and Wiggins (1987), proposed models with stochastic volatility as a parsimonious extension
of the Black—Scholes model (Black & Scholes, 1973); among these models, the GARCH-di-
ffusion type proposed by Drost and Werker (1996) and Duan (1996, 1997) excels. The
novelty of this model is that it was the first approximation between a GARCH process and
a stochastic volatility model. Additionally, multiple research developments of this model
exist, both theoretical (Barone-Adesi, Rasmussen, & Ravanelli, 2005; Chourdakis & Dotsis,
2011; Christoffersen, Jacobs, & Mimouni, 2010; Ritchken & Trevor, 1999) and empirical
(Figa-Talamanca, 2009; Plienpanich, Sattayatham, & Thao, 2009; Wu, Ma, & Wang, 2012;
Wu, Yang, Ma, & Zhao, 2014).

This article is organized as follows. Section 2 describes the GARCH (1,1) type and the
GARCH-diffusion model. Then, in section 3, the equivalence between the variance of these
models is formally presented. Section 4 summarizes the multiplicative quadrinomial method
to assess options, both real and financial. In section 5, some concepts to assess real options
are summarized. Section 6 describes a counterfactual case as an example. Finally, section 7

includes discussion, conclusions, and suggestions for future research.

Volatility models
GARCH model

Volatility is a characteristic of any financial time series and, although it is considered
non-constant, it is usually defined as homoscedastic and long-term estimates to be made. As it
is unobservable, it is important to analyze and collect the oscillation that occurs in short-term,
this is known as conditional volatility of the underlying asset (Casas Monsegny & Cepeda
Cuervo, 2008). Based on this fact, Bollerslev (1986) and Engle (1982) developed models
to analyze short-term conditional variations. Specifically, Bollerslev (1986) proposed the
GARCH (p, q) model from the ARCH (q) model to overcome the weakness of estimating,
in certain cases, many parameters, which complicate its estimation. Avoiding a possible loss
of precision, a restricted alternative parameterization was defined, dependent on a reduced

number of parameters. This model has the following structural form (Tsay, 2005):

1, ~ N(O, hf) with &, =hn,and 77, N (0,1)

k=, +Z‘_J CLE] z.,-lﬁfh;ﬂ w1
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where &, is the innovation variable or shock variable in the period !; A, is the standard
deviation in the period . 5, is the normal random variable (iid) with mean 0 and variance
1 in period 7, 7 is the conditional variance in period 'i; a, is the alpha coefficient; /B; is
the beta coefficient; and gf_r is the square of the shock’s lagged value. Equation (1.1) is the
conditioned variance depends on the previous perturbations as well as the lagged variances.
The best-known and simplest model in the literature is the GARCH (1,1) model, which co-
rresponds to an exponential smoothed model of variance and is considered to be a simple but
useful model to estimate conditional volatility. Its functional structure is as follows:

hl =o,+as], +Bh (1.2)

with ¢, >0, @, 2 0and [ >0 where o, + 3, <1 as a sufficient condition to be
a stationary process.

This model can be used to emulate the conditional volatility, both the prices and the
returns of financial assets as well as the risk value in portfolios and the exchange rates be-
tween currencies. For example, Casas Monsegny and Cepeda Cuervo (2008) used Gillette’s
prices and found that this model explains their behavior to a large degree. Gazda and Vyrost
(2003) used data from the Slovakia Stock Index (SAX) to estimate the respective returns,
using three different models — GARCH, exponential GARCH (EGARCH), and threshold
GARCH (TARCH) — and found that the adjustment of the conditional variance could be
achieved with any of these methods. Engle and Patton (2007) also used it in an index, spe-
cifically the Dow Jones, and reached the conclusion that the GARCH-type models help to
capture different stylized facts offered by the market. Additionally, Martens (2002) modeled
and forecast the volatility of the S&P500 futures index, using high-frequency data. Engle
(2001) used the model to estimate the risk value in a hypothetical portfolio composed by 50%
of the Nasdaq index, 30% of the Dow Jones index, and long-term bonds. Its use was also
extended to other contexts, for example, exchange rates. Alexander and Lazar (2006) used it
to model the American dollar in regard to three important currencies: Pound Sterling, Euro,
and Yen; their main finding indicated that the empirical evidence favors the use of the normal
mixture in conjunction with a GARCH (1,1) model. Hansen and Lunde (2005) presented an
important work, in which it was indicated that the model was not surpassed by 330 similar
and more sophisticated ARCH-like models. They arrived at this conclusion by using data on
the exchange rate between the German mark and the American dollar; however, they also
indicated that, when using the returns of IBM’s stock, the GARCH model apparently is not

the most appropriate when a leverage effect is present.
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GARCH-diffusion model

This model was introduced by Wong in 1964, but its popularity grew following the works
of Nelson (1990a, 1990b). Drost and Werker (1996) and Duan (1996, 1997) were the first
authors to propose an approximation between a GARCH process and the stochastic volatility
model and to indicate that it is possible to exchange such processes as required, offering an
important development for future research in such regard. Later, Ritchken and Trevor (1999)
developed the same idea but expressed it in an algorithm to assess options, both European
and American, based on the trinomial tree model. Subsequently, Barone-Adesi et al. (2005)
analytically derived the first four moments of the model and obtained a closed solution to
value an option; in addition, they analyzed the implicit volatility surfaces with this solution.
An important condition was discovered by Christoffersen et al. (2010), who demonstrated
empirically, through the use of realized volatilities, S&P500 returns, and an option data
panel, that the Heston (1993) model was poorly specified, because in the diffusion model
presented by the author, volatility was found in the square root instead of being considered
linear. These conclusions were reaffirmed by Chourdakis and Dotsis (2011); although they
also suggested that the model should consider a nonlinear drift against a linear one. Recent
studies have indicated that this model gives a better description of the behavior and dynamics
of financial series than other types of models, such as the well-known model of Heston (1993)
(A1t-Sahalia & Kimmel, 2007; Jones, 2003; Wu, Zhou, & Wang, 2018). It has been used as
a good model for adjusting financial option data (Chourdakis & Dotsis, 2011; Christoffersen
et al., 2010; Kaeck & Alexander, 2012; Wu et al., 2012).

The most recent research on this model is considered to be empirical, and it has been
used successfully in applications to different contexts; for example, Figa-Talamanca (2009)
used multiple stock market indexes to compare the theoretical and empirical autocovariances,
concluding that this model captures autocovariance observed in the data. At the same time,
Plienpanich et al. (2009) integrated a disturbance through fractional noise into the diffusion
model; their results showed that a better estimation of the stock price of a commercial bank
was attained using this model rather than the traditional Black—Scholes model. Similar con-
clusions were obtained by Wu et al. (2012), who analyzed the Hang Seng index (HSI) and
concluded that the GARCH-diffusion model offers better predictions of the price of warrants
than the classical model. Years later, Wu et al. (2014) studied the Hong Kong stock market
through American options and found the same advantage. Finally, Wu and Zhou (2016) used
the Chinese volatility index (iVIX); their main findings indicated that the risk of volatility
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market values and the risk premium volatility were negative, which implied that investors in
the Shanghai stock exchange are risk averse.

In general terms, this type of model is usually characterized by not having a closed solution
and belongs to the class of non-affine models; in addition, solutions must be achieved through
numerical methods, simulation, or the use of integrals in stochastic differential equations
(Barone-Adesi et al., 2005). The system equations presented by this model have the following
functional structure (Wu et al., 2012):

e g, i)
ds, = uS,dt +\/Ff Sdaw, (1.3)

dv,=a(0-V,)di+oV,dw,”

1.4)

where the parameters ¢, &, and & are constant and equivalent to the mean-reversion

speed, the mean long-term volatility or tendency, and the volatility of volatility, respective-
. ( 2) . . .

ly. For its part, PV!“} and I/VI ) correspond Independent One-Dimensional Standard Wiener

Motion processes.

Equivalence between conditional variance process of GARCH (1,1) and variance of
GARCH-diffusion stochastic volatility model

Proposition 1. The functional structure GARCH (1,1) type presented in section 2.1, Equa-
tion (1.2) is equivalent to the differential equation proposed in (1.4), i.e. V,

. 1is equivalent
to hf, with ,

(l_al_ﬁl) g= a, ﬂ

and 0 —
At I- a, = 18| \/E

o=

Proof.

Asg|Q,, N (O,hf),its moment generating function is givenby )\") — exp[—l ;13;3]
a”q)[.’} 2
- n s .
and, E |:(€: | Qr—l):| = . -J;—n-

ot"

It is easy to see that gol‘n]' =1, }‘;’[(.5'r | QH)] =0, .*{':[(é-:l,3 | Q. )] =0. Itcan
also be established that,
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E[(gf Q,, )] s

E[(e19.,)]=3 (1.3)
var[(sf |Q, )] =2n

Consider the variable y, = hf + \/Ehfe{; e

i

N(0,1). Using the characteristic function of
the normal distribution on Y, it follows that,

E[(exp(z’tyrﬂ Q, l)} = E[(exp(ithf +H\Ehfe;) Q, I):|
= cxp(r’rf.f )exp{—%rl thJ
where, y,|Q, , N (hf ; 2#:;') thatis y, as gf they conserve the same two first moments

conditioned to Q) .

From Equation (1.2) then,

h,‘z = f?rj—l = Q +a1£:l—1 + ﬁ]hrz—1 _hrj—l; as y, d grl (Hull, 2014, pp. 272273
W=k, = a—(1-a—B)H, +a Vaniie,
., 11—, — 2 -
ﬂh; _ ( 1 ﬂl ) &, = hr_—l Af+ a'—ﬁ hr._—l Afg’_[
At l—a,—f VAL

AR} = a(@—h,)At+oh? AW,; AW, =JAte, N(0,Ar). 06

Thus, the limit process of (1.6) is given by the stochastic differential equation
dhf el = hf dt + O'hf dW,; W, itis a One-Dimensional Standard Wiener Motion.
Figure 1 below shows a numerical experiment, graphically demonstrating the equivalence

between the variance of these two processes.
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Conditional Variance GARCH(1,1) (CVG)
and Stpchastic Var!ance GARCPr-l-Difussion {ISVGD)
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g | i
7 1
2015H] v
b= i; ! L !
£ |k o i
.).. 0.1 fa ﬁa i i
@ i ‘a '¥: .a
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’ “
0 1 L 1 1
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Figure 1. Equivalence between the conditional variance of the GARCH (1,1) process with estimated parameters
w=0.001, a=10.08, ‘6’ = ().9] and the stochastic variance of the GARCH-Diffusion model with ,

with ¢ =0.01 , @ =0.1 and o =0.1131 initial volatility for two processes, O': =V, =0.032 and
N =1 000 .Source: Prepared by the authors with simulated data using MATLAB

As shown in Figure 1, the dynamics of the conditional and stochastic volatility generated

for each are apparently the same, equivalent values being found among these processes.
Multiplicative quadrinomial tree model from the GARCH-diffusion model

Once the parameters have been estimated by the GARCH (1,1) model and its equivalents
defined by the GARCH-diffusion model, the numerical method is derived using the multipli-
cative quadrinomial tree to describe the discrete behavior of the price of the underlying asset.
The dynamic factors and transition probabilities are presented below.

Considering the proposed differential equation system given by (1.3) and (1.4), over the time
interval ["nﬂ- ], where e , @ >0, @ > 0,and ¢ > 0 are constant, while {ij}()” and

{ wm} are Independent One-Dimensional Standard Brownian Motions, supposing further
4

=0
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that S.r = ST_ and K — ]’/: , the probabilities of the transition and growth factors for the
processes V, and Sr , respectively, are defined as (Pareja-Vasseur & Marin-Sanchez, 2019):

o [;j‘fl'-a-;&}@
; ; y_1 Y
—exp(oxf_} f” m,A{ —exp[ [;——I]AIJ andp” 2 !

2y

20

2

i

J/{J’]
i _ (i 0 - N _ b
k' pr(JV J_) I) =—, A; = exp(puAt) and g, N0
To consider the recombination of two binomial treesS(") :(S(:-]), J eJ% and
i) = (V#{”), ke K%, which possess the same number of nodes along their time axes, that
is, ji) — gt for all ¢, q.{;j’ denotes the transition probabilities of S{i) with increases and
decreases defined by hf) and ‘,i(_f'J, and for 1) they are plf), ;{;E), and d};), respectively
y ) .
(Marin Sanchez, 2010). The direct product S 57" is defined by a tree 7' with a node
described by T M ( 5‘(!}, V.{j} ) at the time I. In the next step, Ttr;: generates four nodes —
=800 V00, T = (SP0 1), 30 (S‘.‘)h‘."*, Vd), and

FHLE+1 kA JHLE

ik PR A

) _ [b[’}i’t (r)dirl)— the respective probabilities of which are g!”p|’ (1— g\ )pfj,

m( p}”) and ( er)( pi”), respectively (Lari-Lavassani, Simchi, & Ware, 2001;

Pareja-Vasseur & Marin-Sanchez, 2019).

i+l
1 i+l - ]}-"'1
i
j}.k
i1
T

T i+1

J+Lk

Figure 2a. The first step of the proposed multiplicative quadrinomial
tree model of the stochastic asset price and volatility.
Source: Prepared by the authors using Photoshop

10
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Figure 2b. Recombination of the second step of the proposed multiplicative quadrinomial tree model.
Source: Prepared by the authors using Photoshop

After all the corresponding parameters have been defined for v and for § , it is possible
to construct a quadrinomial tree that emulates the behavior of price \,, which, in each discrete
step, has a value of branches equal to 4"  where n corresponds to the number of steps, but,
when the respective recombination is performed, the number of branches decreases to n,as
can be seen in Figure 2b. Below we show the value of each position for the first step of the
tree, as shown in Figure 2a (Pareja-Vasseur & Marin-Sanchez, 2019).

19 =10, 10 =10 | 19 =10aKd | 1 =10

L1

Real option valuation

One of the techniques used to value the recent development of capital assets is known as
ROA. This method, which is complementary to the DCF, seeks to introduce the volatility
present in cash flows as well as the occurrence of contingent events. This methodology emer-
ged from the theory of financial options but is applied when the valuation is performed for
capital assets in real markets. This theoretical definition was coined by Stewart Myers, who
indicated that many corporate assets could be seen as call options (Myers, 1977). This type
of options, such as financial options, can be assessed using different techniques, of which
the most appropriate corresponds to the numerical method with multiplicative binomial
tree (Cox, Ross, & Rubinstein, 1979), because of its intuitive and simple handling. In this
technique, the price in continuous time of an underlying asset approximates the Geometric
Brownian Motion emulated through discrete time in the form of a tree, in which it is possible

to analyze, graphically and numerically, the anticipated execution or otherwise of the option.

11
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The ROA technique estimates the strategic net present value (NPV) and this value is com-
pared with the static NPV, which is estimated in the traditional way using the DCF method,
finding the real option value (Maya Ochoa & Pareja Vasseur, 2014; Mun, 2002; Trigeorgis,
1996). According to this theory, it is common for use options to differ, contract, expand, or

abandon, among others; for American call and put options modified or adapted to that context.
Algebraic expression

Assume that the life of an option (real or financial) over an asset that does not pay dividends,

with an initial price SO and exercise price K , is divided into /; sub-intervals, each with

duration Af. Define f (’) as the value of the option in the node (i J k) - Based on Marin
F st

Sanchez (2010), the price of the asset has quadrinomial recombination in the node (i, j, k),

which can be represented by the following expression:

k-1 i~k i1 i
(i) _ ¢ w i—w m i-
G () (A N L N O
w=1 w=1 m=l m=l (17)
S ) ; ;
with 1 = Tlfl}; i=2,...N, j=12,..;i,and k =1,2,...,i. Keep in mind that,
in this case, both 71 and ¢ are constant, so Equation (1.7) is summarized as follows:
1 i—k
=5, Hh:.' l_lf;__w ® I/:]I.{"’_ICI' "/ Below there is a well-known algebraic approach

w=l w=]

based on the proposed methodology to assess the basic real options:
e In the case of an option to wait, the evaluation is performed in a similar way to an
American financial call option; that is, the value on its maturity date is given by

max (7, — K ); thus,

k-1 N-k
fm—max[b [1] ] V' "a™ -k 0)

w=l1 w=]

for j=1,2,...,i and £ =12 ... i, while its discounted value is defined as,
() _ {7) (7)) p(i+1) (F)) pl+1)
f; b maX[T -K (q_,? P'( f_,r+l Fil ( )JU f_,r k41 +(i‘_,r ( _pk ) Lk

(maf o-s0) 1) 4
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* In the case of an expansion option, in which the expansion factor is defined by
EF and K represents the additional investment for expansion, it is considered as a

modified American call option, the value of which on its maturity date is given by
max (7, * EF - K,T;) ; therefore,

k k-1 N-k ) Bl Nk _ )
S = max [(SU [T TE  * v ™ -’]*EF—K,SO | 04 B AR AR A J}

w=] w=] w=l w=l

e for F=12 0 and £ =1,2....,i. In addition, its discounted value is defined as,
(i) i i) pli+l) (i i+1} (i) (i) i+l
1) = oax| T EF - K, (¢ 60 £k +(1-4) p0 e+ (1- ) 1152

(-t o-r0)57) 47 ]

* In the case of a contraction option, in which the contraction factor is defined by CF

and, in this case, K represents the disinvestment or release of funds by contraction, it
is considered as a modified American put option, the value of which on its maturity
date is given by max ([; L *CF+K }; hence,

w=l1 w=l

— N—k
rs )—max[gnnh l_[!r Vo dY ’,[S Hh"l—[f e Ean ’]"‘(T+KJ

for j=1,2,....i and k =1,2,...,i . In addition, its discounted value is defined as,
i) i - (i) _ [F i+1) i+l i+
1) =max| T CP+ K (g PO ffi+ (1-a) PO AR + 4P (1- ) 1150
+(1—q£.”)( p( r)j:Hl))Atx} 4 ]

» In the case of an abandonment option, in which the salvage value corresponds to K
in this case, it is considered as a modified American put option, the value of which

on its maturity date is given by max (7, K) ; thus,
k-1 N-k

ff(,'f'] =max| S, | |4} Hf f Yok V;,u"" d¥i K

w=| w=l
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for j=1,2,...,i and £ =1,2,...,/. In addition, its discounted value is defined as

follows,
(i) _ (i) (#+1) q" (7+1) (i) (1+1)
.f_:r\k_ [ (q; p!. frrl.h—l ( }) f:rHI +q_; (1 )fHH

H(1-a?)(1-p0) 117 )4 4 |

Application example
Methodology

The methodology used in this paper is based on deductive logic and it is classified as quan-
titative, descriptive and non-experimental, besides as longitudinal respect time series (Her-
nandez, Fernidndez, & Baptista, 2010). The methodology here presented rest on the use of
a deductive logic and it is possible to classified as theorical, quantitative, non-experimental
and longitudinal through time series analysis. It is formalized via econometric, mathematic
and computational tools. We built a quadrinomial recombination in a non-constant volatility
environment, that implied for its construction a rigorous mathematic deduction, which one
was applied to value the real option of an oil sector project. Accordingly, the whole investi-
gation could be considerate as an illustrative case, based on Hayes, Kyer and Weber (2015)

from a quantitative point of view.
Data collection

The data series was extracted from the Bloomberg platform and its WTI (West Texas In-
termediate) oil futures quoted prices with ticket CL1, with an operating contract for 1 000
barrels. The commodity has been listed on Bloomberg since March 30, 1983, but the sample
used was obtained from January 1, 2013 to August 14, 2018, resulting in a total of 1 466
observations. Due to the liquidity of this type of contract, it is common to use it as a point of

reference for the most of crude international prices. Figure 3 shows the commodity prices.
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Figure 3. WTI oil commodity prices series used as the sample.
Source: Taken from the Bloomberg platform (2018).

Data analysis

Table 1 presents some of the most relevant news that affected the commodity price in the

market, which suggested important variations in the behavior of this variable.

Table 1
Main events that influenced the WTI oil price variation in the sample

Price
Date Event
(USD)
. The price was the lowest for that year, due to low gasoline production and low
April 18,2013 . 86.68
oil demand
The price was the maximum for that year, because President Barack Obama
September 5, 2013 . . . L . 108.37
spoke about possible military intervention in Syria
The price fell and broke the USD 100 barrier, due to a rebound effect that
January 9, 2014 . . 91.66
resulted from high speculation
The market showed a downward trend since 2014, and the price reached the
March 17, 2015 USD 40 level. The explanation was related to the weakness of the dollar value 43.46
and the expectation of the policy report of the Federal Reserve
After a brief rise in the oil price since April of that year, it collapsed because
August 24, 2015 38.24

investors were waiting for information about stockpiles in the US
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This was the lowest price for the entire data series, mainly due to oversupply
February 11,2016  in the market and the level of the barrel inventory in Cushing, Oklahoma (the  26.21
largest stockpile place in the US)

The price increased due to political conflicts in Nigeria that affected supply
June 8, 2016 . . 51.23
and reduced oil reserves in the US

The price fell below USD 40 again, due to excessive supply of crude oil and

August 2, 2016 . 39.51
low dollar price
This was the lowest price in 2017; again, a direct effect of oversupply, due to

June 21, 2017 high levels of stockpiles in the US, and from this moment, the price showed 42.53

relative growth until the date on which the data were extracted

Source: Prepared by the authors with information taken and adapted from the Bloomberg platform (2018).

Results

Price series results

Figures 4a and 4b (see Appendix) offer the descriptive statistics and a correlogram (Box,
Jenkins, Reinsel, & Ljung, 2015) for the selected commodity price series; as it can be seen,
there seems to be the first-lag autocorrelation, meaning that the price on one day is correlated
with that on the next. As a complement, Table 2 presents the finding formalized with the
Breush—Godfrey test (Breusch, 1978; Godfrey, 1978), In this case, we detect autocorrelation

of order 1 in the price residuals.

Table 2
Breusch—Godfrey serial correlation LM test

Variable Coefficient Std error t-statistic Prob.

C -7.76And-05 0.034304  -0.002262 0.9982
RESID(-1) 0.963292 0.026130  36.86560 0.0000
RESID(-2) 0.035201 0.026130 1.347177 0.1781

Note: Two lags are included
Source: Prepared by the authors using EViews.

The result shows that the alternative hypothesis is not rejected and that there is a serial
correlation of some order, in this case, for the first lag. Based on this, we can define, analyze,
and model the variable using a system of stochastic differential equations of the GARCH-di-
ffusion type. Once the equation for the price has been defined, the yields are estimated as

an alternative to detect conditional volatility, as stated in the following Equation, which is
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Sr. - ‘Srr_ =
derived from (1.3): R, = S JE = UAG VT where 5,! is the price in period £, S

fea

, is the price in period {f__] : ', is the risk-free rate; A"; is the time in period £;; V: L is the
stochastic volatility process in period f,_;and 7], | is a random number with N (0,1)in

period £ ,_1; in addition,

V V;J-L ]?":-1 = h’i-l}?ﬂ—t = g’r-l (1'8)

Thus,
S, -,

R = W = uJAL, + &,

(1.9)
Yield series results

In this section, we present the analysis of the WTI oil yield series estimated from Equation
(1.9). We present the descriptive statistics (Figure 5a), and graphically check stationarity (Figure
5b), autocorrelation (Figure 6a), and heteroskedasticity (Figure 6b); suggesting conditional
volatility, it should be estimated through ARCH models. As a complement, some tests are
presented below, to verify the previous characteristics. The following statistical tests were
performed: the Kwiatkowski—Phillips—Schmidt—Shin test (Kwiatkowski, Phillips, Schmidt,
& Shin, 1992), to detect if the series was stationary on average; the Breush—Godfrey test,
to detect presence of serial autocorrelation; and the Ljung—Box Q test (Ljung & Box, 1978)
and Engle ARCH test (Engle, 1982), to check for heteroskedasticity in the series. The results

are as follows:

Table 3
Kwiatkowski—Phillips—Schmidt—Shin test

LM stat.
Kwiatkowski—Phillips—Schmidt—Shin test statistic 0.088610
Asymptotic critical values: 1% level 0.216000

5% level 0.463000
10% level 0.347000

Note: The trend and intercept are included.

Source: Prepared by the authors using EViews
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Table 4
Breusch—Godfrey serial correlation LM test

Variable Coefficient ~ Std error  t-statistic ~ Prob.

C 6.69And-06 0.008658 0.000773  0.9994
RESID(-1) -0.067052 0.026155 -2.563647 0.0105
RESID(-2) -0.003275 0.026156  -0.125199  0.9004

Note: Two lags are included.

Source: Prepared by the authors using EViews

Table 5
Ljung—Box test

Stat. p-value c-value
127.8451 0 3.8415

Note: One lag is included.

Source: Prepared by the authors using MATLAB.

Table 6

Engle ARCH test

Variable Coefficient Std error  t-statistic ~ Prob.
C 0.077605 0.007062  10.98838  0.0000

RESID"2(-1)  0.295272 0.024988 11.81659 0.0000
Note: One lag is included.

Source: Prepared by the authors using EViews.

The results were evaluated with an Alpha value of 10%. Thus, the series is apparently
stationary on average, since the null hypothesis should not be rejected for any of the critical
values (Table 3); the series also apparently has autocorrelation of order 1, because the one
residual lag is significant (Table 4); and, finally, there is heteroskedasticity as indicated by
the two tests (Ljung—Box and Engle ARCH). We have satisfactory evidence to reject the null
hypothesis that the series does not have significant ARCH effects (Tables 5 and 6).
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Findings

Parameter estimation corresponding to the GARCH (1,1) process

Once the statistical tests had been applied to the yield series, we move on to estimate the
value of each of the parameters using a GARCH (1,1) model as presented in Equation (1.2)
to find their equivalents in the GARCH-diffusion model, as presented later.

Table 7
GARCH (1,1) estimation process for the WTI oil yield series

Variable Coefficient Std error z-statistic Prob.

Variance Equation

C 0.000496 0.000224 2.219792 0.0264
RESID(-1)"2 0.061478 0.008451 7.274757 0.0000
GARCH(-1) 0.935966 0.008894 105.2315 0.0000

Note: With unconditional prevariance.
Source: Prepared by the authors using EViews.

Table 7 shows the results and indicates that the coefficients are significant with an Alpha

value of 10%; thus, the estimation has the following structural form:
W =a, g’ +Bh . h =0.000496+0.061478¢], +0.935966h

Figure 7a exhibits the WTI oil yield conditional volatility for the established dates; in
addition, the yield residual squared correlogram was estimated to verify that there was white
noise (Figure 7b).

It can be seen in Figure 7a, that there are three volatility clusters defined: The first has low
volatility from 2013 to mid-2014, the second has high volatility until the end of 2016, and
the third shows some lower volatility until the end. On the right side, Figure 7b presents the
residuals squared correlogram, in which the series contains white noise, which is completely
random. To conclude this section, the estimation of the WTI oil price versus the real prices
for the given range is presented below. The forecast was constructed from the information
offered by the GARCH (1,1) conditional volatility process and then a random number series
was generated to estimate the respective residuals, as shown in Equations (1.8) and (1.9), the

forecast is presented in Figure 8.

19


file:///Users/ctoapp108/Desktop/pendientes%20%20de%20marzo/cya%2066(2)/312_2018_ENG/numbering.xml

J.A. Pareja Vasseur, et al. | Contaduria y Administracion 66(2),2021, 1-30
http://dx.doi.org/10.22201/fca.24488410e.2021.2331

120 T T T T

ssssss Real Price
= = =Estimated Price GARCH(1,1) | |

“ht W\ |

80

70 -

Price USD

60 ’

Wyl ¥
. Wi ﬁv“f W’
Y

40 -

30t * l

20 : ' '
2013 2014 2015 2016 2017 2018

Time

Figure 8. WTTI oil real prices versus estimated prices using the conditional volatility of GARCH (1,1) model.
Source: Prepared by the authors using Matlab.

As it can be observed in Figure 8, the estimated prices and the real ones were close to each
other, and to verify this result, the mean square error was used. The result of 1.61 indicates
that the estimation was robust and followed the dynamics of the process. The estimated prices
were built using Equations (1.8) and (1.9), as follows: .5, =5, + *‘}Sr,.. AL+, \/E "’;:...C’r._.'

Equivalence between the values of the parameters of the GARCH (1,1) model and those of
the GARCH-diffusion model

From the equivalence between the variance of processes detailed in section 3, Table 8 offers

the values of the parameters between the GARCH (1,1) model and the GARCH-diffusion
{}_al_ﬂ?l) 8_ ao alﬁ

, 0= , and g =222, The values in last
At -, — 5, JA!

column (Table 8), will be utilized to model non-constant volatility in the ROA case presented

model using Equations: ¢ =

in the following section.
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Table 8
Equivalent values of the parameters for the GARCH (1,1) and GARCH-diffusion processes

Method

GARCH (1,1) GARCH-diffusion

&, 0.000496 €& 0.002556

Parameters
Q’l 0.061478 @ 0.194127

,[J)] 0.935966 O 0.086942

Source: Prepared by the authors using EViews and MATLAB.

Real option valuation: a counterfactual case

As a counterfactual case, in this section we discuss a real option valuation using the algebraic
expression of an option of abandonment, as described in section 5.1. To find the value of the
strategic NPV, the numerical method was employed by means of quadrinomial trees with the
stochastic volatility model presented in section 4 and considering the values estimated for the
GARCH-diffusion model exhibited in Table 8, which are the parameters of Equation (1.4).
Finally, the solution was compared with the estimated results of the traditional multiplicative
binomial method.

Suppose the oil company “X” based its efforts exclusively to upstream process. This firm
signed an exploration and production contract (E&P), where a determinate area was assigned
to them, which one is used to exploration, evaluation and oil extraction. The development of
contract E&P counts with a geological and geophysical analysis and wanted to know the stra-
tegic NPV value of a project according to the ROA methodology and that its cash flows can be
modeled using Equations (1.3) and (1.4). Assume the WTI oil prices used to estimate the cash
flows are perfectly correlated with the project and volatility is the same that project without
administrative flexibility has (Branddo, Dyer, & Hahn, 2012). The estimated static NPV of the
project is affected by the technical probability and corresponds to S, = 1; =91.82, which
was calculated according to the traditional DCF methodology with an appropriate risk-adjusted
rate. Besides that, is estimated the technical probability or the geological success depends on
the occurrence probability of these factors, as basement, caprock, reservoir rock, and its own
dynamics. The previous information allowed to find the technical probability as the probability
product sequence mentioned before.

The firm also determined that it has an opportunity to assign the rights and property of the
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project to a third party at the value of K = 66 when the market conditions are unfavorable. That
is, this value corresponds to the salvage value and remains constant over the evaluation horizon
of the firm’s abandonment option (Pareja Vasseur & Cadavid Pérez, 2016). Assume, in addition,
the following values that were obtained from the GARCH (1,1) estimation process of the WTI
oil price yields between January 2013 and August 2018 and their equivalents for the GARCH-di-
ffusion model (see Table 8): V; =0.194127, r=0.0294, & =0.02556, #=0.194127,
and ¢ =0.0869,as wellas o, = 0.3319 was obtained with the standard deviation of the
aforementioned yield series for the traditional multiplicative binomial methodology.

Table 9
Comparison of the value of the strategic NPV through the quadrinomial method and the binomial
method

Method/time 1 2 3 4 5
(1) Quadrinomial tree 95.59 100.09 102.37 104.57 106.31
(2) Binomial tree 91.88  96.93 96.96 99.99 100.01

(3) Difference in percentage 4.04% 3.26% 5.58% 4.58% 6.30%
Source: Prepared by the authors using MATLAB and Excel.

The results of the strategic NPV for the periods from year one to year five, with annual
steps, are summarized in Table 9. It can be seen in all the cases that value estimated by our
proposed method is higher than the traditional one. This would indicate an undervaluation of
the strategic NPV at estimating lower volatility than the one actually presented in the series.
Specifically, the first row shows the values for our methodology; for example, for the fourth
year, a strategic NPV is estimated at 104.57, with an abandonment option of 12.75, whereas
using the traditional method with multiplicative binomial trees, that is, the second row, the
results are 99.99 and 8.17, respectively. The last row of Table 9 shows the percentage diffe-
rences between the NPV values of the two methods, concluding that there is an approximate
average of 5% for all the years of the real option evaluation. It is important to state that, if
constant volatility 44.06% had been used in the traditional methodology, which comes from

J@ in the proposed method, the results between the two methodologies would be very
close. This means that the real option value of the traditional method would be undervalued
due to poorly estimation of volatility because such value is greater than estimated using the

standard deviation of the yields.
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Conclusions

The findings can be summarized as follows. First, the price analysis helps to detect first-lag
autocorrelation, which suggested that there was evidence of conditional heteroskedasticity
in the time series chosen as the sample. Second, with the price we detected three different
volatility clusters for the WTI oil, two with moderate volatilities, the first between 2013
and 2014 and the second between 2017 and 2018, and one with high volatility for 2015 and
2016. This implies that volatility is not constant but dynamic and for that reason, it should
be modeled in the latter form. Third, once price yields were estimated, it was possible to use
a statistical test at the 10% significance Alpha level to look for stationarity, autocorrelation,
and heteroskedasticity, suggesting that the price variations of WTI oil have conditional vo-
latility depending on the time. Fourth, it was possible to estimate a GARCH process for the
WTI oil commodity and model its variance using a GARCH (1,1) model. We found out that
the residuals after the estimation were white noise, that is, completely random. Fifth, using
mathematical and statistical development, it was possible to find an equivalence between
the GARCH (1,1) conditional volatility and the stochastic variance of the GARCH-diffusion
model. The latter provided elements to build and develop the numerical method by trees to
assess options that are derived from the behavior of this commodity type. Sixth, it was possible
to use an algebraic expression to depict the evolution of the price of an asset in presence of
both dynamic and constant volatility in such a way that its effect is captured in an appropriate
manner, to model the evolution or behavior of the underlying asset in the market. Seventh, it
was concluded that the real option value is higher in our method than the binomial method,
because “real” volatility is greater than that estimated by traditional simple standard yields
deviation. It was also indicated that, when the traditional binomial method uses /& as
volatility, the values of the strategic NPV are similar.

Future research aims to analyze how it changes the quadrinomial method when there is
a correlation between Brownian Motions. At the same time, using different commodities as
real options applications with the proposed methodology is also necessary. The appropriate
analysis is advocated to determine the initial volatility value for proposed method, since
changes in this variable produces significant variations in real option assess.

Finally, this research connects the areas of econometrics and stochastic processes, verifying
that there is existence of a relationship between variances of the GARCH (1,1) model and the
GARCH-diffusion model; therefore, in this line of research, future research could demons-

trate the equivalences that could exist between the different models of the ARCH family and
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their equivalents in the stochastic differential equations system to obtain better estimates of

derivatives’ prices and accordingly to facilitate a deeper, developed, and efficient market.

References

Ait-Sahalia, Y., & Kimmel, R. (2007). Maximum likelihood estimation of stochastic volatility models. Journal of
Financial Economics, 83(2), 413-452. https://doi.org/10.1016/j.jfineco.2005.10.006

Alexander, C., & Lazar, E. (2006). Normal mixture GARCH (1, 1): Applications to exchange rate modelling.
Journal of Applied Econometrics, 21(3), 307-336. https://doi.org/10.1002/jae.849

Argéez Sosa, J., Batin Cutz, J., Guerrero Lara, E., Kantin Chim, D., Medina Peralta, S., & Panti Trejo, H. (2014).
Un paseo por el modelo GARCH y sus variantes. Abstraction & Application, 10, 35-50. Available in: https://
intranet.matematicas.uady.mx/journal/descargar.php?id=59 and consulted in: 20/09/2017

Barone-Adesi, G., Rasmussen, H., & Ravanelli, C. (2005). An option pricing formula for the GARCH diffusion
model. Computational Statistics & Data Analysis, 49(2), 287-310. https://doi.org/10.1016/j.csda.2004.05.014

Black, F., & Scholes, M. (1973). The pricing of options and corporate liabilities. Journal of Political Econo-
my, 81(3), 637-654. https://doi.org/10.1086/260062

Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics, 31(3),
307-327. https://doi.org/10.1016/0304-4076(86)90063-1

Box, G. E. P., Jenkins, G. M., Reinsel, G. C., & Ljung, G. M. (2015). Time series analysis: Forecasting and control.
Hoboken, NJ: John Wiley & Sons. https://doi.org/10.1002/9781118619193

Branddo, L. E., Dyer, J. S., & Hahn, W. J. (2012). Volatility estimation for stochastic project value models. European
Journal of Operational Research, 220(3), 642-648. https://doi.org/10.1016/j.ejor.2012.01.059

Breusch, T. S. (1978). Testing for autocorrelation in dynamic linear models. Australian Economic Papers, 17(31),
334-355. https://doi.org/10.1111/j.1467-8454.1978.tb00635.x

Casas Monsegny, M., & Cepeda Cuervo, E. (2008). Modelos ARCH, GARCH y EGARCH: aplicaciones a series
financieras. Cuadernos de Economia, 27(48), 287-319. Available in: https://revistas.unal.edu.co/index.php/
ceconomia/article/view/1460/2083 and consulted in: 20/07/2018

Chesney, M., & Scott, L. (1989). Pricing European currency options: A comparison of the modified Black—Scholes
model and a random variance model. Journal of Financial and Quantitative Analysis, 24(3), 267-284. https://
doi.org/10.2307/2330812

Chourdakis, K., & Dotsis, G. (2011). Maximum likelihood estimation of non-affine volatility processes. Journal of
Empirical Finance, 18(3), 533-545. https://doi.org/10.1016/j.jempfin.2010.10.006

Christoffersen, P., Jacobs, K., & Mimouni, K. (2010). Volatility dynamics for the S&P500: Evidence from realized
volatility, daily returns, and option prices. Review of Financial Studies, 23(8), 3141-3189. https://doi.org/10.1093/
rfs/hhq032

Cox, J. C., Ross, S. A., & Rubinstein, M. (1979). Option pricing: A simplified approach. Journal of Financial Eco-
nomics, 7(3), 229-263. https://doi.org/10.1016/0304-405x(79)90015-1

De Arce, R. (1998). Introduccién a los modelos autorregresivos con heterocedasticidad condicional (ARCH).
Working Paper, Instituto L. R. Klein, Universidad Auténoma de Madrid. Available in: https://www.uam.es/
otroscentros/klein/doctras/doctra9806.pdf and consulted in: 08/03/2018

Drost, F. C., & Werker, B. J. (1996). Closing the GARCH gap: Continuous time GARCH modeling. Journal of
Econometrics, 74(1), 31-58. https://doi.org/10.1016/0304-4076(95)01750-x

Duan, J. C. (1996). A unified theory of option pricing under stochastic volatility — From GARCH to diffusion.
Hong Kong University of Science and Technology. Available in: https://rmi.nus.edu.sg/duanjc/index_files/
files/opm_sv.pdf and consulted in: 15/05/2017

24


file:///Users/ctoapp108/Desktop/pendientes%20%20de%20marzo/cya%2066(2)/312_2018_ENG/numbering.xml
https://doi.org/10.1016/j.jfineco.2005.10.006
https://doi.org/10.1002/jae.849
https://intranet.matematicas.uady.mx/journal/descargar.php?id=59
https://intranet.matematicas.uady.mx/journal/descargar.php?id=59
https://doi.org/10.1016/j.csda.2004.05.014
https://doi.org/10.1086/260062
https://doi.org/10.1016/0304-4076(86)90063-1
https://doi.org/10.1002/9781118619193
https://doi.org/10.1016/j.ejor.2012.01.059
https://doi.org/10.1111/j.1467-8454.1978.tb00635.x
https://doi.org/10.2307/2330812
https://doi.org/10.2307/2330812
https://doi.org/10.1016/j.jempfin.2010.10.006
https://doi.org/10.1093/rfs/hhq032
https://doi.org/10.1093/rfs/hhq032
https://doi.org/10.1016/0304-405x(79)90015-1
https://doi.org/10.1016/0304-4076(95)01750-x

J.A. Pareja Vasseur, et al. | Contaduria y Administracion 66(2),2021, 1-30
http://dx.doi.org/10.22201/fca.24488410e.2021.2331

Duan, J. C. (1997). Augmented GARCH (p, q) process and its diffusion limit. Journal of Econometrics, 79(1),
97-127. https://doi.org/10.1016/s0304-4076(97)00009-2

Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates of the variance of United King-
dom inflation. Econometrica: Journal of the Econometric Society, 987—-1007. https://doi.org/10.2307/1912773

Engle, R. (2001). GARCH 101: The use of ARCH/GARCH models in applied econometrics. Journal of Economic
Perspectives, 15(4), 157-168. https://doi.org/10.1257/jep.15.4.157

Engle, R. F., & Patton, A. J. (2007). What good is a volatility model? In Forecasting volatility in the financial mar-
kets (3rd ed.) (pp. 47-63). https://doi.org/10.1016/b978-075066942-9.50004-2

Figa-Talamanca, G. (2009). Testing volatility autocorrelation in the constant elasticity of variance stochastic
volatility model. Computational Statistics & Data Analysis, 53(6), 2201-2218. https://doi.org/10.1016/j.
csda.2008.08.024

Gazda, V., & Vyrost, T. (2003). Application of GARCH models in forecasting the volatility of the Slovak share
index (SAX). Biatec, 11, 2. Available in: https://www.nbs.sk/_img/Documents/BIATEC/BIA02_03/17_20.pdf
and consulted in: 20/07/2018

Godfrey, L. G. (1978). Testing against general autoregressive and moving average error models when the re-
gressors include lagged dependent variables. Econometrica: Journal of the Econometric Society, 1293-1301.
https://doi.org/10.2307/1913829

Grajales Correa, C. A., & Pérez Ramirez, F. O. (2007). Modelos discretos y continuos para estimar la densidad
de probabilidad de la volatilidad estocdstica de los rendimientos de series financieras. Revista Ingenierias
Universidad de Medellin, 6(11), 105-123. Available in: http://www.redalyc.org/articulo.oa?id=20503606 and
consulted in: 20/07/2018

Hansen, P. R., & Lunde, A. (2005). A forecast comparison of volatility models: Does anything beat a GARCH
(1,1)? Journal of Applied Econometrics, 20(7), 873—889. https://doi.org/10.1002/jae.800

Hayes, R., Kyer, B., & Weber, E. (2015). The case study cookbook. Available in: https://web.wpi.edu/Pubs/E-
project/Available/E-project-121615-16473 1/unrestricted/USPTO_CookbookFinal.pdf and consulted in:
20/07/2018

Hernandez Sampieri, R., Fernandez Collado, C., & Baptista Lucio, P. (2010). Metodologia de la investigacion. (5ta
ed.) Mexico: McGraw-Hill Available in: https://www.esup.edu.pe/descargas/dep_investigacion/Metodologia%20
de%201a%20investigaci%C3%B3n%205ta%20Edici%C3%B3n.pdf and consulted in: 20/07/2018

Heston, S. L. (1993). A closed-form solution for options with stochastic volatility with applications to bond and
currency options. Review of Financial Studies, 6(2), 327-343. https://doi.org/10.1093/rfs/6.2.327

Hull, J. C. (2014). Student solutions manual for options, futures, and other derivates. Upper Saddle River, N. J:
Pearson Prentice Hall.

Hull, J., & White, A. (1987). The pricing of options on assets with stochastic volatilities. Journal of Finance, 42(2),
281-300. https://doi.org/10.2307/2328253

Jones, C. (2003). The dynamics of stochastic volatility: Evidence from underlying and options markets. Journal of
Econometrics, 116(1-2), 181-224. https://doi.org/10.1016/s0304-4076(03)00107-6

Kaeck, A., & Alexander, C. (2012). Volatility dynamics for the S&P 500: Further evidence from nonaffine,
multi-factor jump diffusions. European Financial Management, 36, 3110-3121. https://doi.org/10.1016/j.
jbankfin.2012.07.012

Keswani, A., & Shackleton, M. B. (2006). How real option disinvestment flexibility augments project NPV.
European Journal of Operational Research, 168(1), 240-252. https://doi.org/10.1016/j.ejor.2004.02.028

Kwiatkowski, D., Phillips, P. C., Schmidt, P., & Shin, Y. (1992). Testing the null hypothesis of stationarity
against the alternative of a unit root: How sure are we that economic time series have a unit root? Journal of
Econometrics, 54(1-3), 159-178. https://doi.org/10.1016/0304-4076(92)90104-y

Lari-Lavassani, A., Simchi, M., & Ware, A. (2001). A discrete valuation of swing options. Canadian Applied
Mathematics Quarterly, 9(1), 35-74. Available in: http://www.math.ualberta.ca/ami/CAMQ/pdf_files/
vol_9/9_1/9_1b.pdf and consulted in: 08/06/2018

25


file:///Users/ctoapp108/Desktop/pendientes%20%20de%20marzo/cya%2066(2)/312_2018_ENG/numbering.xml
https://doi.org/10.1016/s0304-4076(97)00009-2
https://doi.org/10.2307/1912773
https://doi.org/10.1257/jep.15.4.157
https://doi.org/10.1016/b978-075066942-9.50004-2
https://doi.org/10.1016/j.csda.2008.08.024
https://doi.org/10.1016/j.csda.2008.08.024
https://doi.org/10.2307/1913829
https://doi.org/10.1002/jae.800
https://web.wpi.edu/Pubs/E-project/Available/E-project-121615-164731/unrestricted/USPTO_CookbookFinal.pdf
https://web.wpi.edu/Pubs/E-project/Available/E-project-121615-164731/unrestricted/USPTO_CookbookFinal.pdf
https://doi.org/10.1093/rfs/6.2.327 
https://doi.org/10.2307/2328253
https://doi.org/10.1016/s0304-4076(03)00107-6
https://doi.org/10.1016/j.jbankfin.2012.07.012
https://doi.org/10.1016/j.jbankfin.2012.07.012
https://doi.org/10.1016/j.ejor.2004.02.028
https://doi.org/10.1016/0304-4076(92)90104-y

J.A. Pareja Vasseur, et al. | Contaduria y Administracion 66(2),2021, 1-30
http://dx.doi.org/10.22201/fca.24488410e.2021.2331

Ljung, G. M. L., & Box, G. E. P. (1978). On a measure of lack of fit in time series models. Biometrika, 65(2),
297-303. https://doi.org/10.2307/2335207

Marin Sanchez, F. (2010). Arboles binomiales para la valoracién de opciones sobre procesos derivados de la
ecuacion diferencial estocdstica auténoma. Ingenieria y Ciencia, 6(12), 145-170. Available in: http://www.
scielo.org.co/pdf/ince/von12/v6n12a07.pdf and consulted in: 31/08/2016

Martens, M. (2002). Measuring and forecasting S&P 500 index-futures volatility using high-frequency data. Journal
of Futures Markets: Futures, Options, and Other Derivative Products, 22(6), 497-518. https://doi.org/10.1002/
fut.10016

Maya Ochoa, C., & Pareja Vasseur, J. (2014). Valoracién de opciones reales a través de equivalentes de certeza.
Ecos de Economia: A Latin American Journal of Applied Economics, 18(39), 49—71. https://doi.org/10.17230/
ecos.2014.39.3

Mun, J. (2002). Real options analysis: Tools and techniques for valuing strategic investments and decisions. Hoboken,
NJ: John Wiley & Sons. Available in: https://books.mec.biz/tmp/books/URSF4SYM38H1V3TRSUZ3.pdf and
consulted in: 31/08/2016

Myers, S. C. (1977). Determinants of corporate borrowing. Journal of Financial Economics, 5(2), 147-175. https://
doi.org/10.1016/0304-405x(77)90015-0

Nelson, D. B. (1990a). ARCH models as diffusion approximations. Journal of Econometrics, 45(1-2), 7-38. https://
doi.org/10.1016/0304-4076(90)90092-8

Nelson, D. B. (1990b). Stationarity and persistence in the GARCH (1, 1) model. Econometric Theory, 6(3),
318-334. https://doi.org/10.1017/s0266466600005296

Novales, A. (1993). Econometria. (2nd ed.). Madrid: McGraw-Hill. Available in: https://econometrialOl.files.
wordpress.com/2013/02/econometria-2ed-a-novales.pdf and consulted in: 08/03/2018

Pareja Vasseur, J., & Cadavid Pérez, C. (2016). Valoracién de patentes farmacéuticas a través de opciones reales:
equivalentes de certeza y funcién de utilidad. Contaduria y Administracién, 61(4), 794-814. https://doi.
org/10.1016/j.cya.2016.06.004

Pareja-Vasseur, J., & Marin-Sanchez, F. (2019). Quadrinomial trees to value options in stochastic volatility models.
The Journal of Derivatives, 27(1), 49-66; https://doi.org/10.3905/j0od.2019.1.076

Plienpanich, T., Sattayatham, P., & Thao, T. H. (2009). Fractional integrated GARCH diffusion limit models.
Journal of the Korean Statistical Society, 38(3), 231-238. https://doi.org/10.1016/j.jkss.2008.10.003

Posedel, P. (2005). Properties and estimation of GARCH (1, 1) model. Metodoloski Zvezki, 2(2), 243. Available in:
https://www .stat-d.si/mz/mz2.1/posedel.pdf and consulted in: 08/03/2018

Preminger, A., & Storti, G. (2017). Least squares estimation for GARCH (1, 1) model with heavy tailed errors.
Econometrics Journal, 20(2), 221-258. https://doi.org/10.1111/ectj.12089

Ritchken, P., & Trevor, R. (1999). Pricing options under generalized GARCH and stochastic volatility processes.
Journal of Finance, 54(1), 377—402. https://doi.org/10.1111/0022-1082.00109

Scott, L. O. (1987). Option pricing when the variance changes randomly: Theory, estimation, and an application.
Journal of Financial and Quantitative Analysis, 22(4), 419-438. https://doi.org/10.2307/2330793

Stein, E. M., & Stein, J. C. (1991). Stock price distributions with stochastic volatility: An analytic approach. Review
of Financial Studies, 4(4), 727-752. https://doi.org/10.1093/rts/4.4.727

Trigeorgis, L. (1990). A real options application in natural resource investment. Advances in Futures and Options
Research, 4, 153-164.

Trigeorgis, L. (1996). Real options: Managerial flexibility and strategy in resource allocation. Cambridge, MA:
The MIT Press.

Tsay,R.S.(2005). Analysis of financial time series (2nd ed.). John Wiley & Sons. https://doi.org/10.1002/0471746193

Vasseur, J. P., Sanchez, N. M. P., & Escobar, M. E. M. (2019). Real Options Volatility: Literature Review and
a Case of Application in the Colombian Oil Sector. Revista de Métodos Cuantitativos para la Economia y la
Empresa, 27, 136-155. Available in: https://www.upo.es/revistas/index.php/RevMetCuant/article/view/2820
and consulted in: 07/12/2018

26


file:///Users/ctoapp108/Desktop/pendientes%20%20de%20marzo/cya%2066(2)/312_2018_ENG/numbering.xml
https://doi.org/10.2307/2335207
https://doi.org/10.1002/fut.10016
https://doi.org/10.1002/fut.10016
https://doi.org/10.17230/ecos.2014.39.3
https://doi.org/10.17230/ecos.2014.39.3
https://doi.org/10.1016/0304-405x(77)90015-0
https://doi.org/10.1016/0304-405x(77)90015-0
https://doi.org/10.1016/0304-4076(90)90092-8
https://doi.org/10.1016/0304-4076(90)90092-8
https://doi.org/10.1017/s0266466600005296 
https://doi.org/10.1016/j.cya.2016.06.004
https://doi.org/10.1016/j.cya.2016.06.004
https://doi.org/10.1016/j.jkss.2008.10.003
https://doi.org/10.1111/ectj.12089
https://doi.org/10.1111/0022-1082.00109
https://doi.org/10.2307/2330793
https://doi.org/10.1093/rfs/4.4.727
https://doi.org/10.1002/0471746193 
https://www.upo.es/revistas/index.php/RevMetCuant/article/view/2820

J.A. Pareja Vasseur, et al. | Contaduria y Administracion 66(2),2021, 1-30
http://dx.doi.org/10.22201/fca.24488410e.2021.2331

Wiggins, J. B. (1987). Option values under stochastic volatility: Theory and empirical estimates. Journal of Finan-
cial Economics, 19(2), 351-372. https://doi.org/10.1016/0304-405x(87)90009-2

Wu, X.-Y., Ma, C.-Q., & Wang, S.-Y. (2012). Warrant pricing under GARCH diffusion model. Economic Mod-
elling, 29(6), 2237-2244. https://doi.org/10.1016/j.econmod.2012.06.020

Wu, X., Yang, W., Ma, C., & Zhao, X. (2014). American option pricing under GARCH diffusion model: An
empirical study. Journal of Systems Science and Complexity, 27(1), 193-207. https://doi.org/10.1007/s11424-
014-3279-2

Wu, X., & Zhou, H. (2016). Garch diffusion model, iVIX and volatility risk premium. Economic Computation
& Economic Cybernetics Studies & Research, 50(1). Available in: https://ideas.repec.org/a/cys/ecocyb/v50y-
2016i1p327-342.html and consulted in: 27/07/2018

Wu, X., Zhou, H., & Wang, S. (2018). Estimation of market prices of risks in the GARCH diffusion model. Economic
Research — Ekonomska IstraZivanja, 31(1), 15-36. Available in: https://www.tandfonline.com/doi/full/10.1080/1
331677X.2017.1421989 and consulted in: 27/07/2018

Annex

20

Senes: PRECIOS
Sample 110172013 81472018
Observations 1466

Mean 66.75945
Median 57 46500
Magmum  110.5300
Miimum 2621000
Sid. Dev. 2350843
Skewness 0448257
Kurtosis 1668255
Jarque-Bera 1574201
Probabity  0.000000

Y @ % @ N M 0 oW M

Figure 4a. WTI oil price descriptive statistics.
Source: Prepared by the authors using EViews.
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Figure 4b. WTTI oil price residuals autocorrelation and partial autocorrelation correlogram.
Source: Prepared by the authors using EViews.
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Figure 5a. Descriptive statistics.

Source: Prepared by the authors using EViews.
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Figure 5b. Yield graph.
Source: Prepared by the authors using EViews.
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Figure 6a. WTI oil yield residuals autocorrelation and partial autocorrelation correlogram.
Source: Prepared by the authors using EViews.
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Figure 6b. WTI oil yield residuals squared autocorrelation and partial autocorrelation correlogram.

Source: Prepared by the authors using EViews.
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