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Abstract

Forecasting volatility is of great importance an important topic for researchers, entrepreneurs, and poli-
cymakers. This work compares different volatility models to ascertain their forecasting efficiency. The
models include standard approaches such as Autoregressive Conditional Heteroskedasticity (GARCH),
exponential GARCH, and Stochastic Volatility models (SV). For estimation, a comparison between the
Frequentist and the Bayesian approaches are made using the maximum likelihood and the Monte Carlo
Markov Chains (MCMC) methods. The case analysis considers the Mexican peso/US dollar exchange
rate. The results show a favorable behavior between the SV models estimated with the MCMC and
the GARCH models in forecasting out of the sample. Additionally, the analysis shows that the current

volatility reacts to the data within the last period, despite the former periods.
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Resumen

El prondstico de la volatilidad es un tema importante para investigadores, empresarios y responsables
politicos. Este trabajo compara modelos de volatilidad para determinar su eficiencia en el prondstico.
Los modelos incluyen modelos estdndar, como los son, modelos de Heteroscedasticidad condicional
autoregresiva (GARCH), exponencial y Volatilidad estocéstica (SV). Para la estimacién, se realiza una
comparacion entre los métodos frecuentistas y bayesianos, utilizando méxima verosimilitud y Cadenas
de Marcov Montecarlo (MCMC). El andlisis es aplicado en el tipo de cambio del peso mexicano-ddlar
estadounidense. Los resultados muestran que los modelos SV estimados con MCMC se comportan
favorablemente frente a los modelos GARCH en el prondstico de la muestra. Ademds, el andlisis evi-
dencia que la volatilidad actual reacciona a la dltima informacién dentro de un periodo, sin importar

los periodos anteriores.

Cddigo JEL: C13,C32,C52, G17
Palabras clave: GARCH; Modelo estocastico; Tipo de cambio

Introduction

Exchange rates play an important role in international trade, the determination of investments,
business risk management, as well as in the economic situation within a country (Frankel
and Saravelos, 2012; Korol 2014). The variations in currency prices are caused, in many
cases, by imprecise and ambiguous factors such as economic, political and psychological
conditions (Gabaix and Maggiori, 2015; Della Corte et al. 2016; Pinho and Couto, 2017).
The above generates volatility, uncertainty, and risks for the economic agents that interact
in financial markets.

Volatility is an important issue in regards to international decision-making, since the ex-
pected returns on prices and their high variability have a negative correlation. Therefore, high
volatility generates a decrease in yields and significant losses for economic agents (Guo et
al. 2014; Bali and Zhou, 2016; Morales et al. 2016). In this regard, some studies are oriented
to know both the causes of these fluctuations and the alternatives to minimize uncertainty
(Korol, 2014; Gupta and Kashyap, 2016; Lahmiri, 2017).

The difficulty of explaining and forecasting nominal exchange rate movements was syste-
matically reported by Meese and Rogoff (1983); they considered their behavior as a random
walk, which means that their growth rates are independent events. Similarly, Fama (1965)

developed the efficient market hypothesis, which justifies the impossibility of predicting the
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returns of financial assets and also supports the idea that the stochastic process underlying
the returns is a martingale process.

However, subsequent research has shown how the financial series cannot obey the ethical
assumptions of these two proposals. Characteristics such as independence, identical distribu-
tion and normality may not appear in the series. Subsequently, the exchange rate series can
present some stylized facts like non-linearity, non-normality, volatility clustering, asymmetry
and heavy tails (Yang and Chen, 2014; Patton and Sheppard, 2015; Pinho et al. 2016; Byrne
et al. 2016) which should be considered when modeling and forecasting volatility.

Most of the research efforts regarding price variability have focused on standard forecast
models, where volatility is a key parameter, using conditional heteroskedasticity dependent
on time (Korol, 2014; Pinho et al. 2016). This type of volatility models is called General
Autoregressive Conditional Heteroskedasticity (GARCH), proposed by Engle (1982) and
generalized by Bollerslev (1986) as an alternative to model non-linearity and volatility clusters
in a simple way and easily adapting to different scenarios. Autoregressive models propose
a better performance in terms of forecasting, and they are easy to combine with estimation
methods (West and Cho, 1994; Lahmiri, 2017).

However, there is evidence arguing that GARCH models do not consider stylized facts of
the financial series such as trends, heavy tails, and non-seasonality. Thus, stochastic models
were proposed by Taylor (1986) whose main advantage is to consider a random component
adaptable to abrupt changes. In stochastic models, the volatility estimation process is not
directly observable and part of the equation that represents it is not completely known. To
do this, an additional likelihood function must be constructed that captures the behavior of
the collected data (Jacquier et al. 1994; Sandmann and Koopman, 1998). The likelihood
function is the one that has made the difference between stochastic estimates in the last de-
cade. On the one hand, proposals are using maximum likelihood (Ait-Sahalia and Kimmel,
2007; Abanto-Valle et al. 2017). Alzghool (2017) proposes quasi-likelihood and asymptotic
quasi-likelihood approaches obtaining favorable results. On the other hand, Bayesian simula-
tions have proven forecasting efficiency in numerous occasions (Raftery et al. 1997; Kastner
et al. 2017). In stochastic volatility models, the Monte Carlo Markov Chains (MCMC) has
been generally used in estimation due to its development in algorithms (Jacquier et al. 1994;
Kastner and Fruhwirth-Schnatter; 2014; Kastner, 2016).

However, the two types of models implied time-varying volatilities with very different
properties. To compare the differences, the literature has mainly focused on their forecasting
performance (Rossi, 2013; Clark and Ravazzolo, 2015; Chan and Grant, 2016). Knowing the
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best model for a financial series is a fundamental issue for making decisions, especially in
cases of emerging and free-floating economies where volatility tends to be recurring (Neu-
meyer and Perri, 2005; Rafi and Ramachandran, 2018). In this study, a comparison of some
GARCH and SV models was made. The main objective is to know which model is best to
explain the volatility of the Mexican peso-US dollar exchange rate in terms of minimizing
the forecast error. This work is divided into five sections. The second section describes the
traditional models used in price volatility. The third section describes the structure of the
proposed models and presents the data used to calculate volatility. In the fourth section, the
estimation of the models and a comparison of the two most efficient models to predict volatility

are made. Finally, conclusions are presented and future studies are suggested.
Volatility models

This section presents a summary of the two traditional volatility models used in this study,

in order to evaluate their efficiency.
The GARCH model

The GARCH model (Bollerslev, 1986) is a volatility model where the recent past data provides
information on the variance of a period. Therefore, the value of the current forecast is based
on past information. GARCH models have been used in different areas of volatility price
forecasting, such as the price indices (Kim et al. 2016; Yao et al. 2017), oil prices (Klein and
Walther, 2016; Kristjanpoller and Minutolo, 2016) and exchange rates (Trucios and Hotta,
2016; Gupta and Kashyap, 2016).

The GARCH models for log return series, are given by returns r, = log( al ), let a;

Xp—

i 3
is the innovation at time t, as a, =, — E,_, [r;]. Then a, follows a GARCH (p,q) model if
a, = o,€,, where {€:} is a sequence of independent random variables with equal distribution,

average 0 and variance 1, then the volatility model is represented as follows:
hi = ag + ayaf_; + Brhi_y, (D

where @o,@q,81,62> and a; + B; + B, < 1. The variance process is always straightly po-
sitive and stationary.
The GARCH model family can be obtained from a transformation of the conditional

standard deviation (SD) h, determined by the transformation f(.) of the innovations a,
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, and lagged transformed conditional SDs. This is, the conditional variance h? in a simple
equation follows an AR (1) process. The GARCH (2, 1) model (in which p? follows an AR

(2) process) allows a better variance dynamic, then we have:

hi = ag + ayaf_y + B1hi_y + Bohi_,. )

As we have already noted, we assume that the parameters @o,ay,51,5, are all positive
and (a,+B) < 1.

The GARCH model assumes that positive and negative error variations have a symmetric
effect on volatility, which means that good and bad news have the same effect on volatility.
Patton and Sheppard (2015) show that future volatility is more strongly related to the vola-
tility of past negative returns than to that of positive returns and that the impact of a price
jump on volatility depends on the sign of the jump, with negative (positive) jumps leading
to higher (lower) future volatility.

An exponential GARCH, EGARCH model (Nelson, 1991) assumes that if the distribution
is symmetric, the change in the variance of tomorrow is conditionally not correlated with the
excess of yields of today. Therefore, the asymmetry in a GARCH model can be calculated
as follows:

h? =ap+Bh2 +yE=+w
2

A ht—l

el _ [2f.
el ﬂ @)

where ay, [,y and are constant parameters. Since the coefficient is typically negative,
positive return shocks generate less volatility than negative return shocks. The EGARCH (1,1)
suggests an interesting metric to analyze the effect of the news on conditional heteroscedasticity.

In addition, other models have been proposed in asymmetric volatility, such as the
QGARCH quadratic introduced by Engle (1990) and Sentana (1995), and the GJR model
proposed by Glosten et al. (1993).

Stochastic models
Stochastic volatility models (SV) consider a random variable, in contrast to GARCH

models in which the conditional variance is a deterministic function of the parameters and

the past data. In financial areas, the SV models are applied in many variables such as inflation
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(Chan, 2015; Diebold et al. 2017), price indices (Pinho et al. 2016; Pinho and Couto, 2017)
and exchange rates (Kastner and Fruhwirth, 2014; Alzghool, 2017).

The basic stochastic model is represented as a linear space state model with logarithmic
and chi-square perturbations, its volatility can be represented as an autoregressive AR (1)
model. The first model is the standard stochastic volatility model SV (1) and it is represented

as follows:
h
ye = exp {2} oz, e~N(0,1),

4
hi = p+ phe_y + 1, ne ~ N(0,1),

where y, is the response variable, h; is the unobserved log-volatility of y.. The use of
more than one autoregressive process results in some extensions of the stochastic model.

Considering an SV (2) the log-volatility h, follows a stationary AR (2) process, that is:
h =+ @hey + hey + 0, ne ~ N(0,1). 5)

Note that, the estimation process of stochastic volatility is not directly observable. Therefore,
an additional likelihood function must be constructed to include the behavior of the collected
data. Jaquier, et al (1994) proposes a Bayesian approach, using the Monte Carlo Markov chain
(MCMC) technique where the posterior distribution of the parameters is sampled.

The MCMC creates a Markov process whose stationary transition distribution is specified
through P (8 | Y), then runs a large enough number of simulations where the distribution of
the current process is as close as possible to the stationary transition distribution, thus creating
a posterior distribution (Salimans et al. 2015; Ravenzwaaij et al. 2018).

The simulation starts by taking a random draw z, from the initial distribution p(x | z) and

then a random stochastic transition operator z, is applied. Then:

Z
2e~q(E ).

By judiciously choosing the transition operator and applying it repeatedly, we have a result
that converges to a posterior p(xl z) distribution with an optimal result.

A series of algorithms that carry out the basic idea of the MCMC method have been pro-
posed; these generate a large number of repetitions in a short period of time. Among the most
widely used algorithms are the Metropolis-Hasting algorithm (Lin et al. 2000; Doucet et al.
2015) and Gibss sampling (Roberts and Rosenthal, 2009; Billio et al. 2016). The MCMC


file:///Users/ctoapp108/Desktop/pendientes%20%20de%20marzo/cya%2066(2)/185_2019_ENG/numbering.xml

E. Avilés Ochoa y M.M. Flores Sosa /! Contaduria y Administracion 66(2),2021,1-14
http://dx.doi.org/10.22201/fca.24488410e.2021.2642

method in stochastic models has been used for price volatility with good performance (Kim
et al. 2017; Brix et al. 2018).

Data and model analysis

In order to analyze the efficiency of the models described in the previous section, a real case
of the exchange rate market is considered. The data are the daily prices of the FIX exchange
rate for the US dollar-Mexican peso, during the period 1994-2018. The information was
converted to monthly data where the first data corresponds to April 1994 and the last date is
October 2018. The prices are taken from the official website of the Mexican Central Bank -
Banco de Mexico (BANXICO).

Note that volatility is a variable not directly observed in the market. Therefore, volatility
was calculated as log-volatility (Kim et al. 1998; Chan and Grant, 2016; Gatheral et al. 2018).
The price returns (R) of the currency are used, is the difference between today’s price and

yesterday’s price logarithm. The formulation is as follows:
R=In(") 6)

where P: is the current period price and h? is the log-volatility analyzed, then log vo-

latility is:
hR? = (R; —R)’, (7

where R is the mean in price returns. Five volatility models were developed based on the
traditional GARCH and SV models, then:
GARCH 1,1: hR? = ay + ayaR% | + B1hRE |
GARCH 1,2: hR? = ay + ayaR% | + B1hRZE | + B,hRE ,

EGARCH: hR? = ao + By log (hRE1) + Y-+ @

hRZ_,

laRe_4| \/2
RRZ T

SV 1:hRZ =y + phR,_,

SV 2: hR? =+ phR,_, + PhR,_,

Finally, parameter estimation was calculated as follows: GARCH (1,1), GARCH (2,1)
and EGARCH were estimated by maximum likelihood with a normal distribution. SV (1)
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and SV (2) using an exponential distribution and a prior function for hR,_;, N(0,1), and for
1, N(0.0012,0.1).

Results
Models results

First, the GARCH models were developed and then compared, in order to select the best
one considering some criteria. The Akaike information criterion (AIC) (Akaike, 1974) is a
technique based on a sample fit to estimate the likelihood of a model to predict future values.
A good model is the one that has minimum AIC among all the other models. The Schwarz
Criterion (SC) (Schwarz, 1978) considers both, the closeness of fit of the points to the model
and the number of parameters used by the model. Using this criterion, the best model is the

one with the lowest SC.

Table 1
Analysis of results in GARCH models

Parameters L L .
Model Model parameters o Akaike info criterion Schwarz criterion
significance
ag =0.000433 0.0000
GARCH (1.1) a;=0.465281 0.0000 -4.314630 -4.264637
B1=0.128459 0.0303
@y =0.000434 0.0000
Q1=0.459434 0.0000 -4.314609 4252118
GARCH (2,1)
B1=0.208128 0.0273
B2=-0.073937 0.1361
X0 =-3.428093 0.0000
= 0.0005
EGARCH Bi=0215611 -4.403681 -4.341190
¥ =0.483839 0.0000
W =0.553491 0.0000

The results in Table 1 show that the EGARCH model has the minimum AIC and minimum
SC. However, the parameter «, is negative, then the assumption of positivity is not met.
Therefore, the best model that met the criterion s is the GARCH (1, 1).
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To estimate the parameters of the SV models, the Metropolis Hasting algorithm (Metro-
polis et al. 1953; Hasting, 1970) is used. Monte Carlo standard error (MCSE) is a standard
deviation around the posterior mean of the samples. The acceptable size of the MCSE de-
pends on the acceptable uncertainty, then when we compare models, a lower MCSE is better
(Flegal et al. 2008).

Table 2
Analysis of results in SV models

Montecarlo standard

Model Model parameters Max Efficiency MCMC
error parameters

H=0.0009798 0.00097

SV (1) 0.1342
$=0.2209891 0.00169
1=0.0007921 0.00001

SV (2) ¢ =0.183780 0.00215 0.1032
p=0.172050 0.00209

Table 2 presents the resulting parameters of stochastic models. The Monte Carlo standard
error shows that the parameter ¢ is better in the second model, but the rest of the parameters
are more significant in the first model. The efficiency MCMC demonstrates that SV1 is the
best model with 13.42%.

Comparison of models

In this section, the GARCH (1, 1) and the SV (1) models are compared in the forecast for the
next seven periods. It is observable that the following period which corresponds to November
2018 is a period of high volatility, while the fourth period which corresponds to February
2019 shows low volatility. We use aR and hR that were calculated previously on dependent
variables. To calculate and analyze the errors in forecasting, we use the Mean Absolute De-
viation (MAD), the Root Mean Squared Error (RMSE) and the Mean Absolute Percentage
Error (MAPE) methods (Franses, 2016; Khair et al. 2017). The results are in Table 3.

The error indicators show that the SV1 model minimizes the error for forecasting in periods
of instability (high or low volatility). It is observable that it minimizes the absolute error in
all periods except for the last two. The squared error is small in the stochastic model for most

periods, except in periods five and six.
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The global results in MAD, RMSE, and MAPE are smaller in the SV1 model than in the
GARCH (1.1) model. Therefore, the SV1 model is considered as the best model to predict

the variability in the exchange rate of the outside sample.

Table 3

Forecast analysis

Period Value ~ Rcallogm  Absolute  Squared  Percentage \;apy RMSE  MAPE
volatility error error error

1 0.00051 0.00232715  0.00182  3.313E-06 0.78

2 000158 000018830 0.00139 1939E-06  7.40

3000072 000340258 0.00268 7.176E-06  0.79
GARCH 4 000211 0.00000002 0.00211 4.448E-06  91872.1 0.00135 0.00422 13132.6
-0 0.00070  0.00002223  0.00068 4.647E-07  30.67

6 000053 000041893 0.00011 1319E-08 027

7 0.00070 0.00003959 0.00066 4315E-07  16.59

1 000098 000232715 000135 1.81E06  0.578

2 000149 000018830 0.00131 171E-06  6.934

3000102 000340258 0.00238  5.67E-06  0.700

4 000173 000000002 0.00173  3.00E-06  75433.1 0.00133 0.000002 10787.4
SVl 5000098 0.00002223 0.00096 9.17E-07  43.081

6 000098 000041893 0.00057 3.20E-07 1351

7 000107 000003959 0.00103 1.07E-06  26.089
Conclusions

The exchange rate is a financial variable difficult to predict due to the different inaccuracies
that may occur over time. Nevertheless, literature models have proposed a way to know the
future volatility. GARCH and SV models have been commonly used for forecasting and
estimating volatility. However, no consensus has been reached on which is the best proposal.

This work proposes a comparison between some fundamental models, GARCH and SV.
The analysis concluded that the SV model works better than GARCH models; both were used
to out-of-sample forecasting volatility of the exchange rate. The results show a decrease in

the forecast error in most of the periods analyzed when the stochastic model is used.

10
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In addition, the analysis found that the models of volatility in the series are effective only
when the past information is only a period back, because when the models consider two lags
their effectiveness decreases. In this sense, both the GARCH and SV models show better
adjustments when they only consider a period lag.

Finally, it is suggested that in future research, the functional SV model can be extended

in order to minimize the error.
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