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Abstract

This work develops a comparison between the volatility prediction of traditional time series models 

(ARIMA, EGARCH and PARCH), against two new proposed models based on fuzzy theory (FTS-

Fuzzy ARIMA Tseng’s and FTS-Fuzzy ARIMA Tanaka’s). To make this comparison, we estimated 

the Mexican peso - US dollar exchange rate yield from January 2008 to December 2017. Our main 

result is that the models based on fuzzy theory generate a better estimate of the volatility. The fuzzy 

models show a smaller least forecast error than the traditional time series in both; in and out of sample 

tests; for the volatility in the yield of the  Mexican peso – US dollar exchange rate. Therefore, the fuzzy 

models showed higher efficiency and better reflects the market information.
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Resumen

Este trabajo desarrolla una comparación entre la predicción de volatilidad de los modelos tradicionales 

de series de tiempo (ARIMA, EGARCH y PARCH), contra dos nuevos modelos propuestos basados en 

la teoría difusa (FTS-Fuzzy ARIMA Tseng y FTS-Fuzzy ARIMA Tanaka). Para hacer esta compara-

ción, estimamos el rendimiento del tipo de cambio peso mexicano - dólar estadounidense desde enero 

de 2008 hasta diciembre de 2017. Nuestro resultado principal es que los modelos basados en la teoría 

difusa generan una mejor estimación de la volatilidad. Los modelos difusos muestran un menor error 

de pronóstico que la serie de tiempo tradicional en ambos; dentro y fuera de las pruebas de muestra; 

para la volatilidad en el rendimiento del tipo de cambio peso mexicano - dólar estadounidense. Por lo 

tanto, los modelos difusos mostraron una mayor eficiencia y reflejan mejor la información del mercado.

Código JEL: C22, C51, C53

Palabras clave: Lógica difusa; Fuzzy ARIMA; Serie de tiempo difusas; Regresión lineal difusa

Introduction 

The increased uncertainty and complexity of the foreign exchange market makes difficult the 

predictions of the exchange rates yields. This complexity issue makes unfit the traditional time 

series models like ARIMA and the GARCH family because they cannot forecast the volati-

lity dynamics adequately. In order to better capture the nature of the volatility, we use Fussy 

Time Series (FTS). The main argument of FTS models is that the volatility of the financial 

variables responds to a membership function that captures the market uncertainty and a set 

of fuzzy logic rules that determine the behavior of the financial time series.

Tanaka et al. (1982) made the first efforts in “Fuzzy Econometrics” adapting the “Fuzzy” 

concept to linear regression. The main result of their investigation was the conjunction of the 

Fuzzy Linear Function and the Linear Regression into the Fuzzy Linear Regression Model. 

This methodology is the basis for the development of various similar models about fuzzy 

regression. As examples of the derived models, we mention Tanaka’s (1987) Fuzzy Possibi-

listic Linear model and the Tseng’s et al. (2001) Fuzzy ARIMA model. Both seminal models 

gave the decision-makers the capability to analyze the best and worst possible situations.  

Since 1993, when Song and Chissom (1993a), (1993b), (1994) proposed the Fuzzy Time 

Series using the elements of a stochastic process in terms of linguistic values, several studies 

used them in diverse applications such as enrollment forecasts, Economics, Finance, and 

others. In the vast majority of those papers, the Fuzzy Time Series (FTS) capture the under-
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lying uncertainty related to the stochastic process that generates the time series. The FTS 

methodology assumes that the time series is a fuzzy set, and thus, the analyst can explore 

it using approximate reasoning expressed by a fuzzy relationship equation. The use fuzzy 

equation is then a way in which we can measure the uncertainty and imprecise knowledge 

behind the time series.

 As a betterment of the FTS technique, Chen’s (1996) methodology strengthen the forecast 

when the information is inaccurate. Furthermore, Chen et al. (2004) developed a new method 

to forecast the time-variant Fuzzy Time Series by employing thirteen fuzzy subsets. 

Tsaur (2012) developed a Fuzzy Time Series model combined with a Markov Chain to 

forecast a stochastic process by transferring the matrix of elements to linguistic values and 

then to fuzzy logic groups to generate a new fuzzy time series.  Wo work opened a new way 

to forecast variables as fuzzy time series, other examples of this technique are  (Guney et al., 
2017) and (Silva et al. ,2019).

Other relevant work on the fuzzy time series topic is Pal et al. (2017); they forecasted 

diverse sets of time series (some non-financial) using neural network analysis to modify 

the adjustment of the weights under fuzzy models of type 2. Their results showed that their 

model manages to understand the uncertainty of those different time series. Similar works 

are (Popov et al. ,2005) (Yu and Huarng, 2010), (Xiao, 2017), (Han et al., 2018), (Egrioglu 

et al., 2013), (Singh,2017) and (Souza and Torres, 2018).

Many academics have demonstrated the efficiency, adaptability, and accuracy of fuzzy 

time series forecasts in high volatility environments. However, the clarity and applicability 

of these techniques are not yet commonly known, and there is no agreement on the parameter 

estimation method. Also, previous research does not propose a method to specify a member-

ship function that can successfully forecast financial variables. In this paper, we propose a 

new hybrid fuzzy time series model to forecast the foreign exchange market. We argue that 

combining fuzzy time series theory with the fuzzy ARIMA model; we can generate a fuzzy 

forecast interval so that, with a possibility matrix, we can find the highest possible value. The 

fuzzy forecast interval will provide a  better forecast than traditional models. 

To show the applicability and effectiveness of the proposed methodology, we forecasted 

the MXP/USD exchange rate yield. Our results show that the proposed methodology achieves 

a better forecast than other fuzzy and conventional models, in particular: ARIMA, E-GARCH, 

PARCH, Chen’s technique, and Fuzzy ARIMA.  

We organize the paper as follows: In section 2, we review the concepts of fuzzy time 

series and fuzzy-ARIMA models. In section 3, we formulate the model that combines the 
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hybrid fuzzy time series and the fuzzy ARIMA. We apply the model to forecast the MXP/

USD exchange rate yield and compare our results with other methodologies on section 4. 

Finally, we present conclusions.  

Fuzzy time series and fuzzy-ARIMA model review

This section presents the main ideas that support our model. We start by discussing the fuzzy 

time series theory, and then we discuss the fuzzy ARIMA model. On the next section, we 

combine both techniques to achieve a model that better adjusts to the time series realization.  

Fuzzy Time Series 

Song and Chissom (1993a) (1993b) (1994) states a fuzzy time series as a process  

Y( ) (  = ..., 0,1...), that is a subset of Z and the universe of discourse  on which fuzzy sets  

  ( ) (  = 1,2,...), is defined.  They let the fuzzy time series, F( ) be a collection of membership 

functions, . Then, the fuzzy time series, F( ), is called a fuzzy time series on  

Y( ) (  = ..., 0,1...). The universe of discourse, , is a fuzzy set, such that it contains the values 

between the lower-bound and upper-bound of the time series.

				    				               (1)

Song and Chissom (1993a) stated the fuzzy logical relationship as  and 

,  represents the fuzzified subsets of the yields of the exchange rate. The rela-

tionship between  and F( ) is called a fuzzy logical relationship, . Therefore, 

the IF-THEN rule states that if F( ) is caused by  then this relationship is expressed 

by   or first-order model of F( ).

Furthermore, if  then F( ) is called a time-invariant fuzzy 

time series; it is also called a time-variant process. So that, if the fuzzy time series, F( ) is 

caused by its past realizations, , then the structure is a high-order 

model   (Song and Chissom, 1993a).

The previous definitions provide a way to recognize the elements of a Fuzzy Time Series 

under the consideration of the fuzzy theory. In this paper, we propose an expert system to 

define the intervals and fuzzy relationships that represent market variables such as the MXP/

USD exchange rate yields. Therefore, for the paper´s economic application of the fuzzy time 
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series, the market is the expert mechanism that provides enough information to define the 

“If-Then” rules associated with the variable analyzed.

 

Fuzzy ARIMA 

Most of the traditional econometric works study the time series under the assumption that all 

the elements needed to explain them are within the same series. However, the fuzzy theory 

approach incorporates membership functions in specific components of the models. As an 

example, we regard the Tseng et al. (2002) model (a linear regression model) that assumes 

that its parameters belong to triangular membership function, this is:

			           			               (2)

					   

			   		              (3)

where Z  are observations,  are fuzzy numbers, and their membership  

functions are:

		  		             (4)

The membership function (4) represents the possibility of distribution associated with 

the AR(p) or MA(q) process. Where  is the membership function of the fuzzy set that 

represents the parameter   is the width or spread around the centre of the fuzzy number, 

and  is the centre of the fuzzy number (Ishibuchi and Tanaka, 1992).

The fuzzy ARIMA  model formulation includes three steps, Tseng et al. (2001):

1. Estimate the ARIMA : The input data is considered a crisp set. These results are 

the optimum solutions for the parameters , and the residual  are white noise.

2. Minimize the total vagueness solving (5) and the results found in the last step. 
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               (5)

Then the fuzzy ARIMA model can be represented by:

      (6)

where  is the ARMA process of the time series ,  is the time,    

 is the width or spread around the centre of the fuzzy number, and  is the centre of the 

fuzzy number distribution. The autocorrelation function is  and the partial autocorrelation 

function is . 

The restrictions of the problem (5) have two parts, the first represented as 

 is the ARIMA  model, and the second  

is the fuzzy forecast represented by a triangular membership function 

where H is the h-level that allows determining the minimal fuzziness of the linear regression 

model. And  is the fuzzy ARIMA forecast that is equal a the AR( ) fuzzy  and 

the MA( ) fuzzy .

3. Finally, delete the data around the model’s upper bound and lower bound when the 

fuzzy ARIMA model has outliers with widespread. 

This method provides a “possibility forecast interval” that can identify the best and worst 

possible situations in the behaviour present in a time series. However, it does not provide a 

crisp forecast value to make decisions Egrioglu et al. (2009). The model produces a forecast 

interval of the form:

			   			               (7)
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We point out that there are two methodologies to obtain the fuzzy parameters of the 

ARIMA model, and provides three forecast points,  the traditional ARIMA Tanaka et al. 
(1982),   the high ARIMA and low ARIMA  Tseng et al. (2001). 

Both methods provide a prediction interval that only differs when determining the level 

of fuzziness, h. We show forecasts using both techniques, and use them to establish the crisp 

prediction for the exchange rate yield according to the “if-then” rules.

Model formulation

The fuzzy time series is useful to forecast variables in high uncertainty environments. Accor-

ding to this method, fuzzy logic relationships between the different realizations of the time 

series are defined based on a universe of discourse described by . Previous research defines 

the universe of discourse, , through the interval defined by the maximum and minimum 

absolute values of the time series. In other words, determining the upper and lower bounds 

for the predictions,  .

In this paper, we propose that the universe of discourse is defined using the growth rate of 

the time series and not by its absolute values. In this way, we avoid the limitations of forecast 

associated with non-stationary time series, ensuring a better efficiency in the forecast than 

the previous models. 

Assumption 1. The probability of switching from one fuzzy subset to another is equal to 

the probability of a previous phase.

			   		              (8)

where  is the probability in the actual time and  in a previous step,  is the 

fuzzy subset in a last step and  in the actual step. Therefore  is the relationship 

between fuzzy subsets that indicates how the time series changes from one subset to another. 

And finally,  represents the fuzzy logic relationship in the previous period.

Assumption one points out that the transition probability has only one-step memory; in 

other words, the displacements between fuzzy subsets depends exclusively on the transition 

between subsets on the previous step.

Assumption 2. The logical fuzzy relationship of the current period only depends on the 

relationship of the previous period, this is:
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		              		              (9)

where  is the logical fuzzy relationship of the current period with the one 

on the previous stem, . It is essential to point out that  is the fuzzy 

logical relationship symbol. The second assumption indicates that fuzzy logic relationships 

have only one step memory. This second assumption means that the transition between the 

subsets in the current phase is a function of the previous step.

Possibility matrix (PM). It represents the transition probabilities from one fuzzy subset 

to another. We obtain the PM from the historical distribution of the data; this is by using the 

assumption one. It is important to stress that the sum of the transition probability of each 

subset to all other subsets is one.

		    		            (10)

Relationship matrix (RM): It presents the fuzzy logic relationship of any fuzzy subset to 

another. We found it through the historical distribution of the variable. Each element in the 

matrix will have a value of one if a fuzzy subset can shift to another (or the same) and a value 

of zero if it does not have any possibility of transition.

		

			 

		  		            (11)

We can define the first fuzzy rule using the PM and RM; this is:

IF there is a possible relation: 

				    				              (12)

AND

A relationship relation, 

THEN: It is possible to predict the value of the time series as a function of the first and 

second assumptions. Otherwise, the forecast is not viable. 

The second fuzzy rule is: IF There is the possibility of the forecast; THEN: the prediction 

is the maximum probability of the possibility matrix associated with the three estimated va-

lues in the FUZZY-ARIMA model (7). In other words, the crisp forecast of our methodology 
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is the value with the highest probability of transition obtained form any of the three Fuzzy 

ARIMA forecasts.

Figure 1 represents the membership function of an FTS-fuzzy ARIMA model, in which the 

triangular function in black is the prediction of Fuzzy ARIMA (with three points), while the 

grayscale triangular functions are the fuzzy subsets from the discourse universe, , given in (1). 

The Tanaka’s et al. (1982) triangular membership function generates three predictions, 

given in (7), that can be associated with the transition probability of each subset of the fuzzy 

time series. Because of the  If-Then rules stated in (11), we can establish an algorithm that 

allows us to find the most probable prediction between the possible ones.  The model proposed 

in this paper follows the next steps:

Define the universe of discourse,  associated with the historical data, similarly as Song 

and Chissom (1993a), but taking the growth rate of the time series instead of the absolute 

values of the time series, this is taking the maximum and the minimum of the yields.

Figure 1. Memberships function of an FTS-fuzzy ARIMA model 

Source: Own elaboration in Excel.

I.	 Partition of the universe of discourse, , into several even intervals (seven in this 

case), Chen and Hsu (2004). Each interval corresponds to a fuzzy subset, , in which the 

researcher must divide the two subsets with the highest frequencies in the time series into 

several even intervals (seven in this case); being eighteen subsets of .
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II.	 Fuzzification of historical data: We associated each element of the time series growth 

rate to a single fuzzy subset of de discourse universe, .

III.	 Obtain the matrixes of possibility and relationships using the fuzzy time series 

generated in the previous stage, in other words, to identify the fuzzy logic relationships and 

transition probabilities of the eighteen fuzzy subsets.

IV.	 Define the “If-Then” rules in the fuzzy process or define the first and second fuzzy 

rules to the defuzzification of the fuzzy time series.

V.	 Estimate the Fuzzy ARIMA Model by the methodology of Tseng et al. (2001) or 

Tanaka et al. (1982) and identify the fuzzy subset associated with each forecast.

VI.	 Defuzzification: We need to decompose this stage into three phases. The first one 

identifies the fuzzy subset at the time  and associates it with the three predicted subsets of the 

fuzzy ARIMA model. In the second stage, we observe if there is a fuzzy logic relationship 

(RM) and if this is the case, we must find the transition probability (PM) of the subset of the 

fuzzified yields, , to the prediction of the next fuzzified subset,  of the fuzzy ARIMA 

model (first fuzzy rule); and finally, we take the predicted value of the fuzzy subset with the 

highest transition probability (second fuzzy rule).

Therefore, we can understand that the model proposed from the fuzzy logic relationship 

(RM) and transition probability (PM) matrices, allows us to identify the most probable pre-

diction of the traditional ARIMA, high ARIMA, and low ARIMA. Finally, we obtain the 

FTS-Fuzzy ARIMA forecast values. We provide a scheme of the proposed model in figure 2. 

Figure 2. FTS-Fuzzy ARIMA process  
Source: Own elaboration.
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Application to forecast the yield of the exchange rate of MX/USD

The exchange rate of the Mexican peso to the US dollar is a significant variable for the Mexican 

economy. We applied the proposed method to perform an MXP/USD exchange rate forecast, 

and then we compare it versus other forecasts to identify the model that best suits the actual 

behavior of the time series. We used data from the FIX1 exchange rate provided by México’s 

Central Bank; Banco de México (2019); in a daily format from January 2, 2008, to December 

29, 2017, (2514 observations)2. We added 26 observations to make the sample output test.

The black line in Figures 5 and 6 shows the behaviour of the exchange rate volatility. For 

example, the periods of greatest variability are those in which the Mexican economy presented 

environments of uncertainty motivated by electoral processes, economic crises and the fall in 

oil prices. Therefore, the present investigation looks to identify these economic events through 

the membership functions of the volatility of the exchange rate in table 1.

The fuzzy forecast 

In this subsection, we apply the fuzzy ARIMA FTS model to the foreign exchange market, 

using the time series of the Mexican peso/US dollar exchange rate. We describe each phase 

of our proposed methodology below.

Step I: Define the universe of discourse, ,  associated with the daily historical data

				      U=[-0.06,0.08]				              (13)

Where  is the universe of discourse of the growth rate associated with the exchange rate, 

-0.06 is the lower-bound and 0.08 the upper-bound of the time series data.

Step II: Partition of the universe, (13), into seven  intervals; Chen and Hsu (2004); each 

interval corresponds to a fuzzy subset . After that, we part; for a second time; the two 

subsets with the highest frequency of outputs; being eighteen subsets of . 

Table 1 shows the eighteen fuzzy subsets of (13), highlighting that, unlike what was pro-

posed by Song and Chissom (1993a), not all subsets are of the same size because we divided 

the two intervals with the highest number of observations into seven subsets, [0, 0.04] and 

1 The exchange rate (FIX) is determined by Banco de Mexico as an average of quotes in the wholesale foreign 
exchange market for operations payable in 48 hours.
2 The “KPSS” statistic for the exchange rate in levels shows that there is no empirical evidence to say that the time 
series is stationary, KPSS = 4.4429. On the other hand, obtaining the KPSS statistical value of 0.07752 for the 
growth rate of the exchange rate concludes that this transformation satisfies the criterion of stationary.
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[-0.0171, 0]; With this procedure, we generate the fuzzy time series of the growth rate. The 

reason for the second partition is the excess-kurtosis in the time series. The fuzzy subsets 

identified in Table 1 are those presented by the triangular membership functions in Figure 1.  

Table 1 

The Fuzzy Subsets of the Exchange Rate	

Fuzzy Subset

A1 -0.06 -0.04

A2 -0.04 -0.02

A3 -0.02 -0.0171

A4 -0.0171 -0.0143

A5 -0.0143 -0.0114

A6 -0.0114 -0.0086

A7 -0.0086 -0.0057

A8 -0.0057 -0.0029

A9 -0.0029 0.0000

A10 0 0.0029

A11 0.0029 0.0057

A12 0.0057 0.0086

A13 0.0086 0.0143

A14 0.0143 0.0171

A15 0.0171 0.0200

A16 0.0200 0.0400

A17 0.04 0.06

A18 0.06 0.08

Source: Own elaboration in Excel with data from Banco of Mexico.

Step III: Fuzzification of historical data: We associate each element of the time series 

yield to a single fuzzy subset of . 

Figure 3 shows the eighteen subsets of fuzzy time series (y-axis) associated with exchange 

rate yield over time (x-axis). We use the database showed in the matrix (14) to create Table 

2; this table is fundamental to calculate the matrix (15).
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Figure 3. Fuzzy historical data of rate growth of the rate exchange MX/US 
Source: Own elaboration in Excel with data from Banco of Mexico.

	 Step IV. Obtain the matrixes of possibility and relationships using the fuzzy time 

series generated in the previous stage.

We built the (14) and (15) matrices from the results of phase 3, using assumptions 1 and 

2. Figure 3 shows the possible transition from one fuzzy subset to another. For example, if in 

the period F( – 1) the fuzzy exchange rate was A1 there is a probability of 50% of changing 

to the fuzzy subset A9 or A17. In the next period F( ), we face the same odds. We show the 

transition probabilities in (14).

Table 1 
Fuzzy relationship groups

 

Source: Own elaboration with data from Banco of Mexico.
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On the other hand, (15) shows the fuzzy logic relationships between several subsets. 

Therefore, the 0’s in the matrix indicates no relationship between the subsets, and 1’s indi-

cates a fuzzy logic relationship. It is important to stress that the reader must read the matrix 

in rows, from left to right.

									                   (14)

As the reader may see, there is an intense concentration of the subset A7 to A12, oscillating 

between A2 and A16. In this idea, A7, A8, A9, A10, A11 and A12 can be understood as attraction 

states (Tsaur, 2012). 

For A1, A2, A3, A4, A5 and A6, these are the fuzzy subsets generated by good news, because 

they cause an appreciation of the currency, in the same manner, A13, A14, A15, A16, A17 and A18 

are the ones caused by bad news, they produce a depreciation of the exchange rate. 

The first relevant result is that the methodology of the fuzzy time series provides better 

visualization of the exchange rate uncertainty because it identifies the appreciation and de-

preciation patterns in a graphical form.

A preliminary conclusion of this research is that the phenomena that profoundly impact 

on the behaviour of the exchange rate are transitory because fuzzy sets show a reversion to 

the state of attraction once the impact decreases.

Step V. Define the “If-Then” rules in the fuzzy process or define the first and second 

fuzzy rules to perform the defuzzification of the time series. Until this point, all the databases 

obtained are saved and combined with the results of the next step.
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									                   (15)

Figure 4. Possibility distribution of fuzzy subsets of the exchange rate MX/US 
Source: Own elaboration in Excel with data from Banco of Mexico.

Figure 4 shows the fuzzy volatility areas, specifically denoting the possibility distribution 

of the 18 fuzzy subsets of the exchange rate. Each of the subsets is understood to have a certain 

level of possibility of transition to another fuzzy subset measured by an associated probabi-

lity. For example, the area of A8 is the triangular membership function and it is composed by 

the transition probabilities from A8 to the other 18 fuzzy subsets, the sum of all probabilities 

in A8 is 1. The probabilities associated to each fuzzy subset can be seen in the matrix (14).
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Step VI. Estimate the Fuzzy ARIMA Model by the Tseng et al. (2001) or Tanaka et al. 
(1982) methodology to identify the fuzzy subset associated with each forecast. 

 
Table 3 
Triangular fuzzy parameters of the Tanaka’s model

Lag -ARIMA -Upper -Lower C

AR (1) -0.5504*** 0.00018 -1.10110 0.55064

AR (2) 0.06132*** 0.12329 -0.00065 0.06197

AR (3) -0.0471*** 0.00025 -0.09459 0.04742

AR (4) -0.6149*** 0.00031 -1.23030 0.61530

MA (1) 0.6129*** 1.22593 0.00000 0.61296

MA (4) 0.5461*** 1.09464 -0.00227 0.54846

MA (6) 0.0478*** 0.09706 -0.00131 0.04918

Source: Own elaboration in Excel with data from Banco of Mexico.

We described the analysis of the fuzzy time series in the previous stages using the fuzzy 

ARIMA model. We showed three predictions, one from the traditional ARIMA, other for the 

high ARIMA, and the third for the low ARIMA (see table 5), and whereby we associate the 

fuzzy subset with each forecast using the step III method. 

Table 3 presents the fuzzy parameters of the Fuzzy ARIMA model using Tanaka’s esti-

mation methodology. We categorize the parameters into three points of the triangular mem-

bership function. The -ARIMA is the mean estimation; the high forecast gives the β-Upper 

while the -Lower represents the low prediction. In this case, C is the width of the triangle 

membership function.

 
Table 4 
Triangular fuzzy parameters of the Tseng’s model

Lag -ARIMA -Upper -Lower C

AR (1) -0.5504*** 0.34650 -1.44742 0.89697

AR (2) 0.0613*** 1.01079 -0.88816 0.94948

AR (3) -0.0471*** 0.70908 -0.80341 0.75625

AR (4) -0.6149*** -0.30054 -0.92944 0.31445

MA (1) 0.6129*** 1.40569 -0.17976 0.79273

MA (4) 0.5461*** 1.34047 -0.24810 0.79429

MA (6) 0.0478*** 0.54796 -0.45221 0.50009

Source: Own elaboration in Excel with data from Banco of Mexico. 
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Using the Tanaka’s methodology (5) we can create a triangular membership function for 

the AR(1) where the mean parameter is -0.5504, the upper is 0.34650, the lower is -1.44742, 

and the width is 0.89697, see annexe in figure A8.

 We use bootstrap to generate ten thousand parameters for the high and low point of the 

function. We estimated the points that correspond to the one that solves the linear programming 

problem (5). The results showed that the set of high and low parameters include the optimal 

estimate, and also, the distribution of the coefficients for Tanaka’s methodology follows a 

normal distribution. The parameters in Table 4 illustrate the estimation of fuzzy ARIMA 

through the Tseng’s methodology; the interpretation and results are as described above.

Step VI. Defuzzification.

In this step, We perform the association of the databases obtained in the previous steps 

and the combination of the fuzzy ARIMA model and the fuzzy time series theory. This 

step´s goal is to build a forecast for the hybrid FTS-Fuzzy ARIMA model. Step VI shows 

the forecasts associated with the FTS-Fuzzy ARIMA model for the Mexican peso against 

the US dollar exchange rate. 

Figure 5. Forecast of FTS-fuzzy ARIMA Tanaka’s model 

Source: Own elaboration in Excel with data from Banco of Mexico.

Figure 5 illustrates the forecast for the proposed fuzzy FTS ARIMA model, based on 

Tanaka’s methodology (grey line), and the actual exchange rate’s yield (black line). The 

estimated values provide a better approximation of the analyzed time series compared to the 

results of the models presented in table 5 in the annexes.	

Figure 6 depicts the forecast of the proposed fuzzy ARIMA FTS model, based on Tseng’s 

methodology (light grey line) and the exchange rate yield (black line).  The predicted values 
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represent a better approximation for the time series analyzed in comparison to the results 

obtained from the models presented in Table 5.

Table 5 also shows the in-sample results for the four efficiency measurements performed 

to verify our result’s accuracy tests; the tests were:  Mean Absolute Deviation, Root Mean 

Squared Error, Log-likelihood, and Jarque-Bera normality test. As the reader may see, the 

main result of all these measures is that models based on fuzzy theory present the best accu-

racy values for each test. 

 In the case of the Mean Absolute Deviation test, the best model was FTS-Fuzzy ARIMA 

(Tanaka’s model) with an error 0.0012 points smaller the second-best performance. For the Root 

Mean Squared Error and the Maximum likelihood measurements, the model best model is the 

FTS-Fuzzy ARIMA (Tseng’s model). Finally, the Jarque-Bera test reveals non-normal errors.

Figure 6. Forecast of FTS-fuzzy ARIMA Tseng’s model 
Source: Own elaboration in Excel with data from Banco of Mexico.

We show the out-of-sample forecast in table 6. On that table, we provide empirical evidence 

of the better performance of fuzzy-based models when compared to the traditional methods. 

Notably, the mean percentage daily error indicates that the FTS-Fuzzy ARIMA (the paper´s 

model) is the one that best fits the exchange rate volatility.

The main difference between the models in table 6 and table 5 is that the Fuzzy-ARIMA 

method can not provide out-of-sample values because it does not produce a crisp forecast. It 

provides a prediction interval that we show in Figure 7, sections e.1 and e.2.
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Table 5 
In-Sample test

Model\Statistic
Mean Absolute 
Deviation

Root Mean 
Squared Error

Log-likelihood Jarque-Bera

ARIMA (4, 1, 6) 0.005304 0.007714 8624.435 13063.41

PARCH (1,1) 0.005286 0.007748 8613.304 14637.83

E-GARCH (1, 1) 0.005279 0.007742 8615.262 15207.22

Chen’s methodology 0.013173 0.018420 6980.383 32712.22

High Fuzzy ARIMA Tseng’s 0.014248 0.020340 6201.501 19112.40

Low Fuzzy ARIMA Tseng’s 0.014330 0.020292 6212.230 6846.773

High Fuzzy ARIMA Tanaka’s 0.010308 0.014741 7003.695 12169.23

Low Fuzzy ARIMA Tanaka’s 0.010454 0.014715 7012.422 5165.949

FTS-Fuzzy ARIMA Tseng’s 0.005198 0.007595 8663.060 9931.244

FTS-Fuzzy ARIMA Tanaka’s 0.005156 0.007915 8559.667 101826.2

Source: Own elaboration in Excel with data from Banco of Mexico.

Figure 7 presents the out-of-sample forecasts. Section one (left side) shows the forecast 

for each model and compares it with the real data, while section 2 (right side) contains the 

graphs corresponding to the percentage evolution of the errors. 

For instance, section f.1, (light grey), shows the out-of-sample forecast from FTS-Fuzzy 

ARIMA (Tseng’s model) compared to the real volatility of the exchange rate (black line). 

Section f.2 shows the error’s evolution throughout the study period.  Remarkably, the 

FTS-ARIMA (Tseng’s methodology) shows a stable deviation smaller than 1% from the 

actual value. Its result is significantly better than other models (section a.2, b.2, c.2 and d.2) 

because its result does not lose efficiency as the variable evolves.  
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Figure 7. Out-Sample forecast  
Source: Own elaboration in Excel with data from Banco of Mexico. 
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Finally, the results presented in this section support the hypothesis and complement the 

objective of the research. We provided empirical evidence of a better forecast by a fuzzy 

time series models. We also showed that our model outperforms the  Tseng’s or Tanaka’s 

FTS-ARIMA.

 
Table 6 
Out-Sample test

Model\Test Mean Percentage Daily Error

1 day 5 days 10 days

ARIMA 0.4172% 0.6199% 0.4782%

PARCH 0.3388% 0.6076% 0.4656%

E-GARCH 0.3884% 0.6077% 0.4662%

Chen’s methodology 0.8452% 0.3851% 1.3843%

FTS-Fuzzy ARIMA Tseng’s 0.2719% 0.5440% 0.4488%

FTS-Fuzzy ARIMA Tanaka’s 0.5814% 0.5694% 0.4714%

Source: Own elaboration in Excel with data from Banco of Mexico. 

Conclusions 

This paper’s main conclusion is that fuzzy time series models can better estimate the behavior 

of variables characterized by high volatility, such as the exchange rate. We found that fuzzy 

theory improves the analysis and prediction when compared to traditional econometric models. 

	 We also showed that the two models proposed in this paper outperform traditional 

models in high volatility environments, such as the MXP/USD exchange rate, both in out-

of-sample and in-sample accuracy tests. Therefore, they provide more accurate forecasts for 

economic agents.

Along with the paper, we described the design and development of the FTS-Fuzzy ARIMA 

model and applied it to de MXP/USD yield. The proposed method produced better in-sample 

and out-sample forecast, even in high volatility environments. Our forecasts outperformed 

the traditional ARIMA, EGARCH and PARCH models. 

It is important to stress that the fuzzy logic was successful in identifying time-series pro-

cess volatility clusters or regime changes. The fuzzy methodology also mitigates the effect 

of error propagation in the out-sample exercises.
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This research provides a new methodology to forecast the behavior of the exchange rate 

with higher precision, thereby contributing to the effort to improve forecasting techniques in 

support of decision making by economic agents in Mexico.
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