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Abstract

This work develops a comparison between the volatility prediction of traditional time series models
(ARIMA, EGARCH and PARCH), against two new proposed models based on fuzzy theory (FTS-
Fuzzy ARIMA Tseng’s and FTS-Fuzzy ARIMA Tanaka’s). To make this comparison, we estimated
the Mexican peso - US dollar exchange rate yield from January 2008 to December 2017. Our main
result is that the models based on fuzzy theory generate a better estimate of the volatility. The fuzzy
models show a smaller least forecast error than the traditional time series in both; in and out of sample
tests; for the volatility in the yield of the Mexican peso — US dollar exchange rate. Therefore, the fuzzy
models showed higher efficiency and better reflects the market information.
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Resumen

Este trabajo desarrolla una comparacion entre la prediccion de volatilidad de los modelos tradicionales
de series de tiempo (ARIMA, EGARCH y PARCH), contra dos nuevos modelos propuestos basados en
la teorfa difusa (FTS-Fuzzy ARIMA Tseng y FTS-Fuzzy ARIMA Tanaka). Para hacer esta compara-
cion, estimamos el rendimiento del tipo de cambio peso mexicano - d6lar estadounidense desde enero
de 2008 hasta diciembre de 2017. Nuestro resultado principal es que los modelos basados en la teoria
difusa generan una mejor estimacién de la volatilidad. Los modelos difusos muestran un menor error
de prondstico que la serie de tiempo tradicional en ambos; dentro y fuera de las pruebas de muestra;
para la volatilidad en el rendimiento del tipo de cambio peso mexicano - d6lar estadounidense. Por lo

tanto, los modelos difusos mostraron una mayor eficiencia y reflejan mejor la informacién del mercado.

Cdédigo JEL: C22,C51, C53
Palabras clave: Légica difusa; Fuzzy ARIMA; Serie de tiempo difusas; Regresion lineal difusa

Introduction

The increased uncertainty and complexity of the foreign exchange market makes difficult the
predictions of the exchange rates yields. This complexity issue makes unfit the traditional time
series models like ARIMA and the GARCH family because they cannot forecast the volati-
lity dynamics adequately. In order to better capture the nature of the volatility, we use Fussy
Time Series (FTS). The main argument of FTS models is that the volatility of the financial
variables responds to a membership function that captures the market uncertainty and a set
of fuzzy logic rules that determine the behavior of the financial time series.

Tanaka et al. (1982) made the first efforts in “Fuzzy Econometrics” adapting the “Fuzzy”
concept to linear regression. The main result of their investigation was the conjunction of the
Fuzzy Linear Function and the Linear Regression into the Fuzzy Linear Regression Model.
This methodology is the basis for the development of various similar models about fuzzy
regression. As examples of the derived models, we mention Tanaka’s (1987) Fuzzy Possibi-
listic Linear model and the Tseng’s et al. (2001) Fuzzy ARIMA model. Both seminal models
gave the decision-makers the capability to analyze the best and worst possible situations.

Since 1993, when Song and Chissom (1993a), (1993b), (1994) proposed the Fuzzy Time
Series using the elements of a stochastic process in terms of linguistic values, several studies
used them in diverse applications such as enrollment forecasts, Economics, Finance, and

others. In the vast majority of those papers, the Fuzzy Time Series (FTS) capture the under-
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lying uncertainty related to the stochastic process that generates the time series. The FT'S
methodology assumes that the time series is a fuzzy set, and thus, the analyst can explore
it using approximate reasoning expressed by a fuzzy relationship equation. The use fuzzy
equation is then a way in which we can measure the uncertainty and imprecise knowledge
behind the time series.

As abetterment of the FTS technique, Chen’s (1996) methodology strengthen the forecast
when the information is inaccurate. Furthermore, Chen et al. (2004) developed a new method
to forecast the time-variant Fuzzy Time Series by employing thirteen fuzzy subsets.

Tsaur (2012) developed a Fuzzy Time Series model combined with a Markov Chain to
forecast a stochastic process by transferring the matrix of elements to linguistic values and
then to fuzzy logic groups to generate a new fuzzy time series. Wo work opened a new way
to forecast variables as fuzzy time series, other examples of this technique are (Guney et al.,
2017) and (Silva et al. ,2019).

Other relevant work on the fuzzy time series topic is Pal et al. (2017); they forecasted
diverse sets of time series (some non-financial) using neural network analysis to modify
the adjustment of the weights under fuzzy models of type 2. Their results showed that their
model manages to understand the uncertainty of those different time series. Similar works
are (Popov et al. ,2005) (Yu and Huarng, 2010), (Xiao, 2017), (Han et al., 2018), (Egrioglu
et al., 2013), (Singh,2017) and (Souza and Torres, 2018).

Many academics have demonstrated the efficiency, adaptability, and accuracy of fuzzy
time series forecasts in high volatility environments. However, the clarity and applicability
of these techniques are not yet commonly known, and there is no agreement on the parameter
estimation method. Also, previous research does not propose a method to specify a member-
ship function that can successfully forecast financial variables. In this paper, we propose a
new hybrid fuzzy time series model to forecast the foreign exchange market. We argue that
combining fuzzy time series theory with the fuzzy ARIMA model; we can generate a fuzzy
forecast interval so that, with a possibility matrix, we can find the highest possible value. The
fuzzy forecast interval will provide a better forecast than traditional models.

To show the applicability and effectiveness of the proposed methodology, we forecasted
the MXP/USD exchange rate yield. Our results show that the proposed methodology achieves
a better forecast than other fuzzy and conventional models, in particular: ARIMA, E-GARCH,
PARCH, Chen’s technique, and Fuzzy ARIMA.

We organize the paper as follows: In section 2, we review the concepts of fuzzy time

series and fuzzy-ARIMA models. In section 3, we formulate the model that combines the
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hybrid fuzzy time series and the fuzzy ARIMA. We apply the model to forecast the MXP/
USD exchange rate yield and compare our results with other methodologies on section 4.

Finally, we present conclusions.
Fuzzy time series and fuzzy-ARIMA model review

This section presents the main ideas that support our model. We start by discussing the fuzzy
time series theory, and then we discuss the fuzzy ARIMA model. On the next section, we

combine both techniques to achieve a model that better adjusts to the time series realization.
Fuzzy Time Series

Song and Chissom (1993a) (1993b) (1994) states a fuzzy time series as a process
Y(t) (t = -, 0,1---), that is a subset of Z and the universe of discourse U/ on which fuzzy sets
p () (i=1,2,+),is defined. They let the fuzzy time series, F(t) be a collection of membership
functions, y, (t),p,(t)- Then, the fuzzy time series, F(¢), is called a fuzzy time series on
Yt) (t=--, 0,1---). The universe of discourse, U, is a fuzzy set, such that it contains the values

between the lower-bound and upper-bound of the time series.

U = [Lpg, Upa] 1)

Song and Chissom (1993a) stated the fuzzy logical relationship as F(t— 1) = 4; and
F(t) = A;, 4;, represents the fuzzified subsets of the yields of the exchange rate. The rela-
tionship between F(t — 1) and F(¢) is called a fuzzy logical relationship, A; — A;. Therefore,
the IF-THEN rule states that if F(t) is caused by F(t — 1) then this relationship is expressed
by F(t) = F(t — 1)°R(t,t — 1) or first-order model of F(t).

Furthermore, if R(t,t —1) = R(t — 1,t — 2) Vvt then F(¢t) is called a time-invariant fuzzy
time series; it is also called a time-variant process. So that, if the fuzzy time series, F(t) is
caused by its past realizations, F(t — 1), F(t — 2),+-+, F(t —n), then the structure is a high-order
model F(t—n),-, F(t—2),F(t—1) = F(t) (Song and Chissom, 1993a).

The previous definitions provide a way to recognize the elements of a Fuzzy Time Series
under the consideration of the fuzzy theory. In this paper, we propose an expert system to
define the intervals and fuzzy relationships that represent market variables such as the MXP/

USD exchange rate yields. Therefore, for the paper’s economic application of the fuzzy time
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series, the market is the expert mechanism that provides enough information to define the

“If-Then” rules associated with the variable analyzed.
Fuzzy ARIMA (p,d, q)

Most of the traditional econometric works study the time series under the assumption that all
the elements needed to explain them are within the same series. However, the fuzzy theory
approach incorporates membership functions in specific components of the models. As an
example, we regard the Tseng ef al. (2002) model (a linear regression model) that assumes

that its parameters belong to triangular membership function, this is:

Y, =1 -B)4Z - 2)
n p+q
y:z BiYei+te— Z ﬂl€t+pl
= i=p+1 3

where Z ; are observations, El,"-.ﬁpw are fuzzy numbers, and their membership

functions are:

- ler; — Bil
ug (i) = G

0, otherwise 4

a;—C < fi<a;+c

The membership function (4) represents the possibility of distribution associated with
the AR(p) or MA(q) process. Where U, (8;) is the membership function of the fuzzy set that
represents the parameter f;, ¢; is the width or spread around the centre of the fuzzy number,
and g; is the centre of the fuzzy number (Ishibuchi and Tanaka, 1992).

The fuzzy ARIMA model formulation includes three steps, Tseng et al. (2001):

1. Estimate the ARIMA (p, d, ¢): The input data is considered a crisp set. These results are
the optimum solutions for the parameters @* = (@, -, @p4q), and the residual &; are white noise.

2. Minimize the total vagueness solving (5) and the results found in the last step.
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®)
Then the fuzzy ARIMA model can be represented by:
Ve =(a,c)Ye i+ + {ap, CpWerp + 6 —{Qpur, Cpu1)Ee1 — - — (Apsa, Cpra)ei-d 6)

where Y, = (1 — B)4(Z, — 1) is the ARMA process of the time series Y,, t, is the time,
¢; is the width or spread around the centre of the fuzzy number, and «; is the centre of the
fuzzy number distribution. The autocorrelation function is ¢;; and the partial autocorrelation
function is p;_,. T

The restrictions of the problem (5) have two parts, the first represented as <=1 71"t
% Yk p+10i€eep-i is the ARIMA (p,d,q) model, and the second (1—H)(EF, ¢;lVi;| +
E?:pﬂ cilean-il) is the fuzzy forecast represented by a triangular membership function
where H is the h-level that allows determining the minimal fuzziness of the linear regression
model. And ¥; is the fuzzy ARIMA forecast that is equal a the AR(p) fuzzy (@1,¢;1)Y;-p and
the MA(q) fuzzy (@p+d, Cpd )et—a.

3. Finally, delete the data around the model’s upper bound and lower bound when the
fuzzy ARIMA model has outliers with widespread.

This method provides a “possibility forecast interval” that can identify the best and worst
possible situations in the behaviour present in a time series. However, it does not provide a
crisp forecast value to make decisions Egrioglu et al. (2009). The model produces a forecast

interval of the form:

u(Yy) = (¥, ¥+ C., ¥ — C} )
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We point out that there are two methodologies to obtain the fuzzy parameters of the
ARIMA model, and provides three forecast points, ¥ the traditional ARIMA Tanaka et al.
(1982), Y +C; the high ARIMA and low ARIMA Y, — €, Tseng et al. (2001).

Both methods provide a prediction interval that only differs when determining the level
of fuzziness, h. We show forecasts using both techniques, and use them to establish the crisp

prediction for the exchange rate yield according to the “if-then” rules.
Model formulation

The fuzzy time series is useful to forecast variables in high uncertainty environments. Accor-
ding to this method, fuzzy logic relationships between the different realizations of the time
series are defined based on a universe of discourse described by U. Previous research defines
the universe of discourse, U/, through the interval defined by the maximum and minimum
absolute values of the time series. In other words, determining the upper and lower bounds
for the predictions, U = [Lpg, Upa] -

In this paper, we propose that the universe of discourse is defined using the growth rate of
the time series and not by its absolute values. In this way, we avoid the limitations of forecast
associated with non-stationary time series, ensuring a better efficiency in the forecast than
the previous models.

Assumption 1. The probability of switching from one fuzzy subset to another is equal to

the probability of a previous phase.
Py (Al'r—l = jt) = Pt—l(AIt—Z — jt—l) ®)

where P, is the probability in the actual time and P,_; in a previous step, A;—1 is the
fuzzy subset in a last step and 4, in the actual step. Therefore A;:—1 — Aj; is the relationship
between fuzzy subsets that indicates how the time series changes from one subset to another.
And finally, A;, — Aj.—, represents the fuzzy logic relationship in the previous period.

Assumption one points out that the transition probability has only one-step memory; in
other words, the displacements between fuzzy subsets depends exclusively on the transition
between subsets on the previous step.

Assumption 2. The logical fuzzy relationship of the current period only depends on the

relationship of the previous period, this is:
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Re(Aj—q — Ajr) =Reo1(Appn = Ajr—l) 9

where R;(A;_1 — Aj;) is the logical fuzzy relationship of the current period with the one
on the previous stem, R,_;(4;—, — Aj;—;)- It is essential to point out that R, is the fuzzy
logical relationship symbol. The second assumption indicates that fuzzy logic relationships
have only one step memory. This second assumption means that the transition between the
subsets in the current phase is a function of the previous step.

Possibility matrix (PM). It represents the transition probabilities from one fuzzy subset
to another. We obtain the PM from the historical distribution of the data; this is by using the
assumption one. It is important to stress that the sum of the transition probability of each
subset to all other subsets is one.

(P(Auq = Ay) o P(Aye- = Age) )
PM = : i (10)
P(Agt—1 = A1) - P(Ape-1 = Ape)

Relationship matrix (RM): It presents the fuzzy logic relationship of any fuzzy subset to
another. We found it through the historical distribution of the variable. Each element in the
matrix will have a value of one if a fuzzy subset can shift to another (or the same) and a value

of zero if it does not have any possibility of transition.

R(Aje—1 = Age) = R(Aje-q = Air)
RM = : i
R(Age—q = Aye) o R(Apeoy = Ape) (11)
We can define the first fuzzy rule using the PM and RM,; this is:
IF there is a possible relation:
P(A, = Ay) >0 (12)

AND

A relationship relation, R(4, — 4,,) > 1

THEN: 1t is possible to predict the value of the time series as a function of the first and
second assumptions. Otherwise, the forecast is not viable.

The second fuzzy rule is: IF There is the possibility of the forecast; THEN: the prediction
is the maximum probability of the possibility matrix associated with the three estimated va-
lues in the FUZZY-ARIMA model (7). In other words, the crisp forecast of our methodology
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is the value with the highest probability of transition obtained form any of the three Fuzzy
ARIMA forecasts.

Figure 1 represents the membership function of an FTS-fuzzy ARIMA model, in which the
triangular function in black is the prediction of Fuzzy ARIMA (with three points), while the
grayscale triangular functions are the fuzzy subsets from the discourse universe, U, given in (1).

The Tanaka’s et al. (1982) triangular membership function generates three predictions,
given in (7), that can be associated with the transition probability of each subset of the fuzzy
time series. Because of the If-Then rules stated in (11), we can establish an algorithm that
allows us to find the most probable prediction between the possible ones. The model proposed
in this paper follows the next steps:

Define the universe of discourse, U associated with the historical data, similarly as Song
and Chissom (1993a), but taking the growth rate of the time series instead of the absolute

values of the time series, this is taking the maximum and the minimum of the yields.

Fuzzy ARIMA Forecast

A1 A2 A3 Ad A5 A6 A7

Lyg Upa

Figure 1. Memberships function of an FTS-fuzzy ARIMA model

Source: Own elaboration in Excel.

I. Partition of the universe of discourse, U, into several even intervals (seven in this
case), Chen and Hsu (2004). Each interval corresponds to a fuzzy subset, A;,, in which the
researcher must divide the two subsets with the highest frequencies in the time series into

several even intervals (seven in this case); being eighteen subsets of U.
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II.  Fuzzification of historical data: We associated each element of the time series growth
rate to a single fuzzy subset of de discourse universe, U.

III. Obtain the matrixes of possibility and relationships using the fuzzy time series
generated in the previous stage, in other words, to identify the fuzzy logic relationships and
transition probabilities of the eighteen fuzzy subsets.

IV. Define the “If-Then” rules in the fuzzy process or define the first and second fuzzy
rules to the defuzzification of the fuzzy time series.

V. Estimate the Fuzzy ARIMA Model by the methodology of Tseng et al. (2001) or
Tanaka ez al. (1982) and identify the fuzzy subset associated with each forecast.

VI. Defuzzification: We need to decompose this stage into three phases. The first one
identifies the fuzzy subset at the time ¢ and associates it with the three predicted subsets of the
fuzzy ARIMA model. In the second stage, we observe if there is a fuzzy logic relationship
(RM) and if this is the case, we must find the transition probability (PM) of the subset of the
fuzzified yields, A, to the prediction of the next fuzzified subset, 4j¢+1 of the fuzzy ARIMA
model (first fuzzy rule); and finally, we take the predicted value of the fuzzy subset with the
highest transition probability (second fuzzy rule).

Therefore, we can understand that the model proposed from the fuzzy logic relationship
(RM) and transition probability (PM) matrices, allows us to identify the most probable pre-
diction of the traditional ARIMA, high ARIMA, and low ARIMA. Finally, we obtain the
FTS-Fuzzy ARIMA forecast values. We provide a scheme of the proposed model in figure 2.

Step

ARIMMA Forecast

Figure 2. FTS-Fuzzy ARIMA process
Source: Own elaboration.

10
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Application to forecast the yield of the exchange rate of MX/USD

The exchange rate of the Mexican peso to the US dollar is a significant variable for the Mexican
economy. We applied the proposed method to perform an MXP/USD exchange rate forecast,
and then we compare it versus other forecasts to identify the model that best suits the actual
behavior of the time series. We used data from the FIX' exchange rate provided by México’s
Central Bank; Banco de México (2019); in a daily format from January 2, 2008, to December
29, 2017, (2514 observations). We added 26 observations to make the sample output test.
The black line in Figures 5 and 6 shows the behaviour of the exchange rate volatility. For
example, the periods of greatest variability are those in which the Mexican economy presented
environments of uncertainty motivated by electoral processes, economic crises and the fall in
oil prices. Therefore, the present investigation looks to identify these economic events through

the membership functions of the volatility of the exchange rate in table 1.
The fuzzy forecast

In this subsection, we apply the fuzzy ARIMA FTS model to the foreign exchange market,
using the time series of the Mexican peso/US dollar exchange rate. We describe each phase
of our proposed methodology below.

Step I: Define the universe of discourse, U, associated with the daily historical data
U=[-0.06,0.08] (13)

Where U is the universe of discourse of the growth rate associated with the exchange rate,
-0.06 is the lower-bound and 0.08 the upper-bound of the time series data.

Step II: Partition of the universe, (13), into seven intervals; Chen and Hsu (2004); each
interval corresponds to a fuzzy subset A;:. After that, we part; for a second time; the two
subsets with the highest frequency of outputs; being eighteen subsets of U.

Table 1 shows the eighteen fuzzy subsets of (13), highlighting that, unlike what was pro-
posed by Song and Chissom (1993a), not all subsets are of the same size because we divided

the two intervals with the highest number of observations into seven subsets, [0, 0.04] and

! The exchange rate (FIX) is determined by Banco de Mexico as an average of quotes in the wholesale foreign
exchange market for operations payable in 48 hours.

2 The “KPSS” statistic for the exchange rate in levels shows that there is no empirical evidence to say that the time
series is stationary, KPSS = 4.4429. On the other hand, obtaining the KPSS statistical value of 0.07752 for the
growth rate of the exchange rate concludes that this transformation satisfies the criterion of stationary.

11
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[-0.0171, O]; With this procedure, we generate the fuzzy time series of the growth rate. The
reason for the second partition is the excess-kurtosis in the time series. The fuzzy subsets

identified in Table 1 are those presented by the triangular membership functions in Figure 1.

Table 1
The Fuzzy Subsets of the Exchange Rate

Fuzzy Subset

A, -0.06 -0.04
A, -0.04 -0.02

A, -0.02 -0.0171
A, -0.0171 -0.0143
A, -0.0143 -0.0114
A, -0.0114 -0.0086
A, -0.0086 -0.0057
A, -0.0057 -0.0029
A, -0.0029 0.0000
A, 0 0.0029
A, 0.0029 0.0057
A, 0.0057 0.0086
A, 0.0086 0.0143
A, 0.0143 0.0171
A, 0.0171 0.0200
A, 0.0200 0.0400
A, 0.04 0.06

A 0.06 0.08

=

Source: Own elaboration in Excel with data from Banco of Mexico.

Step III: Fuzzification of historical data: We associate each element of the time series
yield to a single fuzzy subset of U.

Figure 3 shows the eighteen subsets of fuzzy time series (y-axis) associated with exchange
rate yield over time (x-axis). We use the database showed in the matrix (14) to create Table

2; this table is fundamental to calculate the matrix (15).

12


file:///Users/ctoapp108/Desktop/pendientes%20%20de%20marzo/cya%2066(3)/167_2019_ENG/numbering.xml

J. E. Medina Reyes, et al. | Contaduria y Administracion 66(3),2021, 1-23
http://dx.doi.org/10.22201/fca.24488410e.2021.2623

Exchange Rate Mx/Usa

.

ALT - -
- . . . * s s
Ars . - - - e
= - - . - - . - R L L .
o A3 DS S B e i i
FEE T TR FREEE P NI T RR SRR T R R 1§ SRR TR T TR S S
ED Al] e
E
5 A9 -
u -
E AT e B AT MRS HEES W SEER SEE W A D NAD NS
£ N LR T + e ow O RS HEEEHE R
AS - - - - . -ad +* -
s s . B . - s -
A3 - . - - -+ -
RL LR ] - Lol . - - - .
A1+ + -
ZALN08 16052009 2EARZ010 102202 24062015 DML 1724014 2052006 C2AOR201T
Time

Figure 3. Fuzzy historical data of rate growth of the rate exchange MX/US
Source: Own elaboration in Excel with data from Banco of Mexico.

Step IV. Obtain the matrixes of possibility and relationships using the fuzzy time
series generated in the previous stage.
We built the (14) and (15) matrices from the results of phase 3, using assumptions 1 and
2. Figure 3 shows the possible transition from one fuzzy subset to another. For example, if in
the period F( t- 1) the fuzzy exchange rate was A, there is a probability of 50% of changing
to the fuzzy subset A, or A .. In the next period F(t), we face the same odds. We show the
transition probabilities in (14).

Table 1
Fuzzy relationship groups

A1 = Asg, Ar7

Az — Az, As, Ag, Az, As, Ao, Ao, A11, Az, Aus

Az — A7, Ag, Ay, A1o, A1, A1z

Az — Az, Az, As, As, As, Az, Asg, Ao, Aro, A11, A1z

As — Az, As, A7, As, As, Aro, A1z, A, Als

As = Az, Az, As, As, As, Az, As, Ao, Aro, A11, A1z, Avz, Aig, Ats

A7 = Az, Az, As, A, A7, Ag, As, A1, A11, A1z, A13, A1g, Aas, Ats, Als
Ag = Az, Az, As, Ag, A7, As, Ag, Avo, A11, A1z, A1z, Ats, Ars, Ate, Arr
As = Az, Az, A4, As, As, Az, As, Ao, Aro, A11, A1z, Arz, Aag, Ars, Ate
Are — Az, As, A4, As, As, Az, As, As, A1o, A1, A1z, Ais, Arg, Axs, Are
A11 = Az, Az, Ag, As, As, A7, Ag, Ao, Ato, A1, Az, Arz, Ars, Ars, Ats
A1z — Az, A4, As, As, Az, As, As, Aro, A11, Az, A1z, Ars, Ass, Als
A1z — Az, As, As, A7, Ag, Ao, A1g, A1y, Aiz, A1z, Arg, Ars, Ass

Ars — Az, As, As, Az, As, Ag, A1o, A11, A1z, Az, Ars

Ais = Az, Ag, Ao, Ato, A11, A1z, A1z

A6 = Az, A4, As, Az, Ag, A, A1z, A13, Ats, Ats, Ais

A7 = A1, A, Ass

A1g — A1, A

Source: Own elaboration with data from Banco of Mexico.
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On the other hand, (15) shows the fuzzy logic relationships between several subsets.
Therefore, the 0’s in the matrix indicates no relationship between the subsets, and 1’s indi-
cates a fuzzy logic relationship. It is important to stress that the reader must read the matrix

in rows, from left to right.

S A Ay Az Ay A5 A Ay Ay Ag Ay A A Ay Ay Ay A Ay Aig ]
Ay 1] o (1] (1] 0 0 0 0 0.5 0 o 0 0 0 0 0 0.5 0
Az | 0 0041 © 0 00830125 0.166 0.0410.1660.0830.083 0120083 0 0 0 0 0
Az o 0o (1] 1] 0 0 0111 033 011 022 011 0.11 0 1] 0 0 1] 0
Ay 0 0.04 0.04 0.04 008 004 008 016 016 008 016 0 012 i} 0 0 0 0
45 00022 0 0 0045 0 D2 011020 018 0 0DI8 0 0022 0 002 0 O
4s | 0 0.009 0.009 0.019 0,019 0.028 006 022 02 014 012 0.0760.038 0.028 0 0009 0 0
A; 0 002 0005 © 002 0046 D1 018 0416 019 0.09 0,0720046 001 001 001 O 0005
Aa | 0 0.002 0.005 0.01 0.013 0.04 0.0750.142 021 022 0.14 0.0610.043 0.013 0.0020.008 0 0
PM = Aq 0 0.004 0.004 0.006 0,014 0.036 0073 0.148 021 021 0.14 0,063 0.05 0.006 0.006 0.0060004 0
A | 0 0004 0 000800140037 0043 016 022 020 012 0,083 008 0.004 0.004 0002 © 1]
A | 0 0.012 0.003 0.018 0.009 0.037 0.08 0135017 019 012 0.089 0.08 0.01 0.0090.006 0 0
A| 0 001 0005 001 0.0260041 0.093 0,145 016 013 0.18 0.083 0.06 002 001 0005 0 0
A| 0 0011 0 0.0050.0230.087 0.075 0.1 015 0.17 012 0.069 0.11 0.02 002 0.005 0 0
A | 0 0062 0 O 0.031 0062 0L.0310.093 009 021 003 (L0O6Z 0.28 0.031 0 (i} 1] 0
As| 0D 0 0o ¢ 0 0 02 005015 01 02 D15 01 0 0 005 O O
A | 0 0.045 0 0.09 0 0045 0.09 013 013 0 0 009 009 0 004 018 0 004
Ays 033 0 (1] (i} 0 0 0 ] 0 0.33 1] 0 0 1] 1] 033 0 1]
Agl05 0 o © o o o o0 0O 0o 0 0 0 0O 0 05 0 0
(14)
As the reader may see, there is an intense concentration of the subset A, to A, oscillating

between A, and A In this idea, A, Ag Ay, A
states (Tsaur, 2012).
ForA,A,, A, A, A and A these are the fuzzy subsets generated by good news, because

o Al and A, can be understood as attraction

they cause an appreciation of the currency, in the same manner, A ,, A ,,A , A , A and A,
are the ones caused by bad news, they produce a depreciation of the exchange rate.

The first relevant result is that the methodology of the fuzzy time series provides better
visualization of the exchange rate uncertainty because it identifies the appreciation and de-
preciation patterns in a graphical form.

A preliminary conclusion of this research is that the phenomena that profoundly impact
on the behaviour of the exchange rate are transitory because fuzzy sets show a reversion to
the state of attraction once the impact decreases.

Step V. Define the “If-Then” rules in the fuzzy process or define the first and second
fuzzy rules to perform the defuzzification of the time series. Until this point, all the databases

obtained are saved and combined with the results of the next step.
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Figure 4. Possibility distribution of fuzzy subsets of the exchange rate MX/US

Source: Own elaboration in Excel with data from Banco of Mexico.

15)

Figure 4 shows the fuzzy volatility areas, specifically denoting the possibility distribution

of the 18 fuzzy subsets of the exchange rate. Each of the subsets is understood to have a certain

level of possibility of transition to another fuzzy subset measured by an associated probabi-

lity. For example, the area of A, is the triangular membership function and it is composed by

the transition probabilities from A, to the other 18 fuzzy subsets, the sum of all probabilities

in A, is 1. The probabilities associated to each fuzzy subset can be seen in the matrix (14).

15
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Step VI. Estimate the Fuzzy ARIMA Model by the Tseng et al. (2001) or Tanaka et al.
(1982) methodology to identify the fuzzy subset associated with each forecast.

Table 3
Triangular fuzzy parameters of the Tanaka’s model

Lag B-ARIMA B-Upper p-Lower C
AR (1) -0.5504 %% 0.00018 -1.10110 0.55064
AR (2) 0.06132%** 0.12329 -0.00065 0.06197
AR (3) -0.0471%** 0.00025 -0.09459 0.04742
AR (4) -0.6149%** 0.00031 -1.23030 0.61530
MA (1) 0.6129%** 1.22593 0.00000 0.61296
MA (4) 0.5461%** 1.09464 -0.00227 0.54846
MA (6) 0.0478%** 0.09706 -0.00131 0.04918

Source: Own elaboration in Excel with data from Banco of Mexico.

We described the analysis of the fuzzy time series in the previous stages using the fuzzy
ARIMA model. We showed three predictions, one from the traditional ARIMA, other for the
high ARIMA, and the third for the low ARIMA (see table 5), and whereby we associate the
fuzzy subset with each forecast using the step III method.

Table 3 presents the fuzzy parameters of the Fuzzy ARIMA model using Tanaka’s esti-
mation methodology. We categorize the parameters into three points of the triangular mem-
bership function. The B-ARIMA is the mean estimation; the high forecast gives the 0-Upper
while the B-Lower represents the low prediction. In this case, C is the width of the triangle

membership function.

Table 4
Triangular fuzzy parameters of the Tseng’s model

Lag g-ARIMA p-Upper p-Lower C
AR (1) -0.5504%** 0.34650 -1.44742 0.89697
AR (2) 0.0613%** 1.01079 -0.88816 0.94948
AR (3) -0.0471%** 0.70908 -0.80341 0.75625
AR (4) -0.6149%** -0.30054 -0.92944 0.31445
MA (1) 0.6129%%** 1.40569 -0.17976 0.79273
MA (4) 0.5461%** 1.34047 -0.24810 0.79429
MA (6) 0.0478%** 0.54796 -0.45221 0.50009

Source: Own elaboration in Excel with data from Banco of Mexico.
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Using the Tanaka’s methodology (5) we can create a triangular membership function for
the AR(1) where the mean parameter is -0.5504, the upper is 0.34650, the lower is -1.44742,
and the width is 0.89697, see annexe in figure AS8.

We use bootstrap to generate ten thousand parameters for the high and low point of the
function. We estimated the points that correspond to the one that solves the linear programming
problem (5). The results showed that the set of high and low parameters include the optimal
estimate, and also, the distribution of the coefficients for Tanaka’s methodology follows a
normal distribution. The parameters in Table 4 illustrate the estimation of fuzzy ARIMA
through the Tseng’s methodology; the interpretation and results are as described above.

Step VI. Defuzzification.

In this step, We perform the association of the databases obtained in the previous steps
and the combination of the fuzzy ARIMA model and the fuzzy time series theory. This
step”’s goal is to build a forecast for the hybrid FTS-Fuzzy ARIMA model. Step VI shows
the forecasts associated with the FTS-Fuzzy ARIMA model for the Mexican peso against
the US dollar exchange rate.

= Growil Rale M/ Usa Fuon et

LIRS

006

ol M .
j w% MMWMWW“ kil

Time

Figure 5. Forecast of FTS-fuzzy ARIMA Tanaka’s model

Source: Own elaboration in Excel with data from Banco of Mexico.

Figure 5 illustrates the forecast for the proposed fuzzy FTS ARIMA model, based on
Tanaka’s methodology (grey line), and the actual exchange rate’s yield (black line). The
estimated values provide a better approximation of the analyzed time series compared to the
results of the models presented in table 5 in the annexes.

Figure 6 depicts the forecast of the proposed fuzzy ARIMA FTS model, based on Tseng’s
methodology (light grey line) and the exchange rate yield (black line). The predicted values
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represent a better approximation for the time series analyzed in comparison to the results
obtained from the models presented in Table 5.

Table 5 also shows the in-sample results for the four efficiency measurements performed
to verify our result’s accuracy tests; the tests were: Mean Absolute Deviation, Root Mean
Squared Error, Log-likelihood, and Jarque-Bera normality test. As the reader may see, the
main result of all these measures is that models based on fuzzy theory present the best accu-
racy values for each test.

In the case of the Mean Absolute Deviation test, the best model was FT'S-Fuzzy ARIMA
(Tanaka’s model) with an error 0.0012 points smaller the second-best performance. For the Root
Mean Squared Error and the Maximum likelihood measurements, the model best model is the
FTS-Fuzzy ARIMA (Tseng’s model). Finally, the Jarque-Bera test reveals non-normal errors.

i e Growth Rate Mx/Usa Forecast
0.6

i

* oMbt e o i
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024012008 D2aL2000 02012012 D20172014 2012016

Figure 6. Forecast of FTS-fuzzy ARIMA Tseng’s model
Source: Own elaboration in Excel with data from Banco of Mexico.

We show the out-of-sample forecast in table 6. On that table, we provide empirical evidence
of the better performance of fuzzy-based models when compared to the traditional methods.
Notably, the mean percentage daily error indicates that the FTS-Fuzzy ARIMA (the paper’s
model) is the one that best fits the exchange rate volatility.

The main difference between the models in table 6 and table 5 is that the Fuzzy-ARIMA
method can not provide out-of-sample values because it does not produce a crisp forecast. It

provides a prediction interval that we show in Figure 7, sections e.1 and e.2.
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Table 5
In-Sample test

Mean Absolute Root Mean

Model\Statistic Deviation Squared Eror Log-likelihood Jarque-Bera
ARIMA (4,1, 6) 0.005304 0.007714 8624.435 13063.41
PARCH (1,1) 0.005286 0.007748 8613.304 14637.83
E-GARCH (1, 1) 0.005279 0.007742 8615.262 15207.22
Chen’s methodology 0.013173 0.018420 6980.383 32712.22
High Fuzzy ARIMA Tseng’s 0.014248 0.020340 6201.501 19112.40
Low Fuzzy ARIMA Tseng’s 0.014330 0.020292 6212.230 6846.773
High Fuzzy ARIMA Tanaka’s 0.010308 0.014741 7003.695 12169.23
Low Fuzzy ARIMA Tanaka’s 0.010454 0.014715 7012.422 5165.949
FTS-Fuzzy ARIMA Tseng’s 0.005198 0.007595 8663.060 9931.244
FTS-Fuzzy ARIMA Tanaka’s 0.005156 0.007915 8559.667 101826.2

Source: Own elaboration in Excel with data from Banco of Mexico.

Figure 7 presents the out-of-sample forecasts. Section one (left side) shows the forecast
for each model and compares it with the real data, while section 2 (right side) contains the
graphs corresponding to the percentage evolution of the errors.

For instance, section f.1, (light grey), shows the out-of-sample forecast from FTS-Fuzzy
ARIMA (Tseng’s model) compared to the real volatility of the exchange rate (black line).
Section f.2 shows the error’s evolution throughout the study period. Remarkably, the
FTS-ARIMA (Tseng’s methodology) shows a stable deviation smaller than 1% from the
actual value. Its result is significantly better than other models (section a.2, b.2, c.2 and d.2)

because its result does not lose efficiency as the variable evolves.
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Figure 7. Out-Sample forecast
Source: Own elaboration in Excel with data from Banco of Mexico.
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Finally, the results presented in this section support the hypothesis and complement the
objective of the research. We provided empirical evidence of a better forecast by a fuzzy
time series models. We also showed that our model outperforms the Tseng’s or Tanaka’s

FTS-ARIMA.

Table 6
Out-Sample test

Model\Test Mean Percentage Daily Error
1 day 5 days 10 days

ARIMA 0.4172% 0.6199% 0.4782%
PARCH 0.3388% 0.6076% 0.4656%
E-GARCH 0.3884% 0.6077% 0.4662%
Chen’s methodology 0.8452% 0.3851% 1.3843%
FTS-Fuzzy ARIMA Tseng’s 0.2719% 0.5440% 0.4488%
FTS-Fuzzy ARIMA Tanaka’s  0.5814% 0.5694% 0.4714%

Source: Own elaboration in Excel with data from Banco of Mexico.

Conclusions

This paper’s main conclusion is that fuzzy time series models can better estimate the behavior
of variables characterized by high volatility, such as the exchange rate. We found that fuzzy
theory improves the analysis and prediction when compared to traditional econometric models.

We also showed that the two models proposed in this paper outperform traditional
models in high volatility environments, such as the MXP/USD exchange rate, both in out-
of-sample and in-sample accuracy tests. Therefore, they provide more accurate forecasts for
economic agents.

Along with the paper, we described the design and development of the FTS-Fuzzy ARIMA
model and applied it to de MXP/USD yield. The proposed method produced better in-sample
and out-sample forecast, even in high volatility environments. Our forecasts outperformed
the traditional ARIMA, EGARCH and PARCH models.

It is important to stress that the fuzzy logic was successful in identifying time-series pro-
cess volatility clusters or regime changes. The fuzzy methodology also mitigates the effect

of error propagation in the out-sample exercises.
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This research provides a new methodology to forecast the behavior of the exchange rate
with higher precision, thereby contributing to the effort to improve forecasting techniques in

support of decision making by economic agents in Mexico.
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