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Abstract

Paper aims: This paper analyzes the food aid supply and distribution for famine relief by the World Food Programme
(WFP) in Ethiopia. Food insecurity has increasingly affected people around the world. Furthermore, the characteristics
of the provision of humanitarian aid in insecure regions pose several additional challenges over traditional distribution
planning (e.g., corruption, losses in last-mile distribution, security escorts).

Originality: Most previous studies addressing famine relief are qualitative, with only a handful including mathematical
modeling as this work. Furthermore, we validate our mathematical model with data from a real problem setting.

Research method: We propose a stochastic transshipment network flow model to ensure the efficient allocation of limited
resources.

Main findings: The results show high potential for cost savings and offer managerial insights to humanitarian logisticians
on the food aid supply and distribution. Our findings indicate that policies in humanitarian logistics should focus on:
(a) relaxing legislation for customs clearance of humanitarian supplies; (b) strengthening local market to increase local
procurement; (c) implementing tools to enhance security; and (d) monitoring distribution to mitigate the impact of corruption.

Implications for theory and practice: The results suggest that optimizing food aid distribution in Ethiopia can save
millions of people vulnerable to malnutrition.
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1. Introduction

This paper addresses the problem of food insecurity. “More than 820 million people in the world are still
hungry today, underscoring the immense challenge of achieving the Zero Hunger target by 2030. Hunger is
rising in almost all subregions of Africa” (Food and Agriculture Organization, 2019). In 2015, the UN adopted
the 2030 Agenda for Sustainable Development, providing a blueprint for peace and prosperity. At its heart
are the 17 Sustainable Development Goals, from which Goal 2 states: “End hunger, achieve food security and
improved nutrition and promote sustainable agriculture” (United Nations, 2018).

This is an Open Access article distributed under the terms of the Creative Commons Attribution License, which
amm permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
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Food insecurity has many variants that relate to circumstances such as economics and poverty, the impact
of slow-onset (as drought and refugee crisis), and sudden-onset disasters (as hurricanes and earthquakes).
Food insecurity nature and magnitude, for example, significantly differ in high-income countries from that in
developing countries as the latter include extreme or chronic undernutrition. Providing humanitarian aid to any
of those variants is a commonly used and broadly understood solution to the food insecurity problem, as food
assistance in several low-income countries could make the difference between life and death (Gentilini, 2013).

This paper focuses on the challenges associated with the planning of food aid distribution in insecure
regions in low-income countries. Humanitarian organizations engaged in delivering food aid to insecure areas
face challenges such as uncertainty in demand, low-quality information (Mete & Zabinsky, 2010), lack of
systematic and reliable field data on route rates, route conditions, and capabilities that prevent organizations
from optimizing last-mile distribution (Whybark, 2007; Balcik et al., 2008; Noyan et al., 2015), inaccessible
roadwork, inadequate infrastructure, corruption, theft, hijacking, looting, political instability, and rebel activity
(Chander & Shear, 2009).

This research investigates the impact of planning decisions related to food purchasing, stock, prepositioning,
and distribution in insecure areas affected by famine for the annual planning of a humanitarian organization.
We propose a stochastic model for food aid supply and distribution annual planning based on a transshipment
network flow model. Transshipment network flow models have been broadly applied for sudden onset disasters
(Rottkemper et al., 2011; Barbarosoglu & Arda, 2004; Caunhye et al., 2016; Clark & Culkin, 2013, Baskaya et al.,
2017), but in this paper, we cover a type of slow-onset disaster (famine).

We address uncertainty from a two-stage mathematical programming modeling due to the two-stage nature
of disaster management (Mete & Zabinsky, 2010). The first stage decisions encompass disaster preparedness -
food supply and stock level. The second stage is made after the disaster occurs and is represented by the food
aid distribution plan. We offer a transshipment model that minimizes food aid supply and distribution costs,
considering limits for unmet demand, shortages, and human deprivation.

The model captures the physical transportation reality of providing food aid (e.g., distances traveled,
available routes) and its inherent uncertainty. The uncertainty associated with “last mile” distribution impact
the ability to reach beneficiaries, including issues such as lack of access to roads and hubs in flooded areas;
inadequate distribution in hostile territories; high setup costs to establish new routes; and corruption payoffs
in humanitarian logistics.

This work extends and updates the work by Gongalves et al. (2013) and pays homage to the World Food
Programme (WFP), the institution that won the Nobel Peace Prize in 2020 for its role in combating hunger
worldwide. We collect and analyze data for WFP operations in Ethiopia’s food aid distribution network, a country
with constant food insecurity (Dufour et al., 2018). The WFP, the United Nations food-aid agency founded in
1961, is involved in the food movement, aid distribution, and information management in insecure regions.
On average, WFP reaches more than 80 million people with food assistance in 75 countries each year (World
Food Programme, 2015).

The following section presents the relevant literature. Section 3 discusses the challenges of food aid supply
and distribution. Section 4 details the problem model. Section 5 provides case-specific information, describes
the model application, and discusses the results. Finally, Section 6 presents our conclusions and opportunities
for future research.

2. Theoretical foundation

Uncertainty has been addressed in mathematical programming models in various approaches (as in Dantzig,
1955; Birge & Louveaux, 2011), among which two-stage stochastic programming is the most widespread method
as it can deal with uncertainty in any one of the model parameters (Barbarosoglu & Arda, 2004).

Two-stage models have increasingly been applied to humanitarian operations contexts (Grass & Fischer, 2016),
Hoyos et al. (2015) - for example for emergency relief distribution (Barbarosoglu & Arda, 2004; Chakravarty,
2014; Alem et al., 2016; Rath et al., 2016), relief supplies prepositioning (Salmeréon & Apte, 2010; Falasca &
Zobel, 2011; Rawls & Turnquist, 2012; Noyan et al., 2015; Charles et al., 2016; Condeixa et al., 2017), facility
location (Murali et al., 2012; Brito Junior et al., 2020), and facility location considering vehicle routing (Mete
& Zabinsky, 2010; Li et al., 2012; Caunhye et al., 2015). However, the majority of the studies consider natural
and sudden-onset disasters.

Most of the works regarding famine relief are conceptual (Long & Wood, 1995; Belgasmi, 2007; Doocy et al.,
2011; Maxwell et al., 2011). Few of them consider mathematical modeling. Benini (1993) presents a humanitarian
assistance simulation model and uses data from Mali; Hwang (1999) offers a hypothetical application of a food
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distribution model in North Korea; whereas Paul & Wang (2015) propose a Mixed-Integer Programming (MIP)
and robust optimization model to guide USAID food supply considering logistic costs. Rancourt et al. (2015)
develop location-covering models to determine a set of distribution centers where the food is directly distributed to
beneficiaries in Kenya. Ferrer et al. (2018) built a compromise programming model for multi-criteria optimization
in last-mile distribution using Niger 2004 famine data to illustrate the model application. Peters et al. (2021)
developed a mixed-integer linear programming model to optimize the sourcing plan, the transfer modality, and
the delivery of food for WFP headquarters located in Rome.

Some famine studies are focus on food banks that provide food to charities and other organizations for
donating to vulnerable populations (Gentilini, 2013). Balcik et al. (2014) develop a multi-vehicle sequential
allocation problem for nonprofit operations food banks in the Chicago region. Lien et al. (2014) analyze
equitable and effective service in food banks. Orgut et al. (2016) create a framework for decision-making at
the operational level to identify open and critical food bank aid distribution problems for more than 200 food
banks in the United States. They develop deterministic capacity-constrained network flow models for maximizing
effectiveness in food distribution. Davis et al. (2014) developed a covering model that enables food banks to
collect donations from local sources and then deliver food to charitable agencies. They create an integrated
linear programming model to minimize the total transportation cost for a scheduling and routing problem that
simultaneously selects a visit combination for a food provider and charitable agency in Sydney.

Most of the famine relief literature provides theoretical models applied to synthetic data. Exceptions include
simulation of the effectiveness — the degree of goal attainment - of Red Cross protection and assistance for
victims of armed conflict in Mali (Benini, 1993), bidding process to procure food aid for US Department
of Agriculture — USDA (Paul & Wang, 2015), air-cargo routing in WFP Angola (Angelis et al., 2007), fleet
management for IFRC (Pedraza-Martinez & Van Wassenhove, 2013), food aid distribution form WFP and Red
Cross in Kenya (Rancourt et al., 2015), and warehouse location in East Africa for United Nations Humanitarian
Response Depot (UNHRD) (Dufour et al., 2018). In this context, as we use actual data from WFP Ethiopia, this
paper also increases the availability of case studies in humanitarian logistics.

3. Problem statement

Humanitarian organizations (HOs) distribute donated humanitarian aid. Donations can be gifts-in-kind
made by third parties and cash donations made by donors. Gifts-in-kind donations are challenging due to
mismatches between beneficiaries’ needs and the items donated. In contrast, cash donations allow HOs to purchase
commodities through local or global suppliers (Lamenza et al., 2019). Local purchases have the advantage of
stimulating the local economy, enjoying lower transportation costs and shorter cycle times; however, they may
suffer from low quality, lower availability, and higher prices (Duran et al., 2013).

To deliver humanitarian aid in multiple demand points, HOs must decide on supply and prepositioning
levels, considering uncertainty sources, warehouse capacities, and accessibility along the year, security issues,
setup and distribution costs, and corruption payoffs.

HOs may operate in highly complex distribution networks, including primary and secondary transport challenges.
Primary transport includes surface transport (usually by road) between an overland country and a recipient.
HOs transport humanitarian aid from ports to hubs strategically located around a country. Secondary transport
focuses on from one point to another in-country transportation. The distribution challenges typically include
road infrastructure, port congestion, availability of overland transport, inland registered trucks, warehousing
access due to road conditions, transport costs, and insecurity.

Insecure regions have a history of theft, hijacking, and looting, requiring military escort for aid distribution.
The need for security escorts retards the delivery process significantly as trucks travel in convoys, changing the
frequency of deliveries and increasing transportation costs. The need for military escorts in the Somali region
of Ethiopia, for example, impacts transportation costs by 46% (Chander & Shear, 2009).

Corruption in trucking operations is a relatively common additional challenge within the humanitarian
sector. Corruption may also include drivers selling the food for profit, keeping rations for themselves, or; using
gasoline or food as a bribe to ward off the threats, or diverting aid to rebel forces (Chander & Shear, 2009).

Longer lead times at customs are also symptomatic problems for HOs, generating further delays.

4. Modeling food aid supply and distribution

We propose a two-stage stochastic linear program model to minimize the total cost of aid supply,
prepositioning, and distribution. The objective function contains a deterministic term (first-stage) and the
expectation of the second stage taken over all realizations of the randon event . First-stage decisions must
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hold the costs associated with all scenarios considered, and the expected costs of the second-stage decisions
are optimized (Birge & Louveaux, 2011). Uncertainties are represented by a set of discrete scenarios @, where
o]

o (we).P (P >0, Z}Pm =1 represents the probability of the occurrence of the w-th scenario. Many papers

have discussed scenario representation in different contexts (see, for example, Ribas et al., 2012; Dillon et al.,
2017). Further detail on methodologies for scenario generation can be found in Kouwenberg (2001).

First stage variables (i.e., here-and-now decisions) capture supply (si) to be delivered in ports and hubs - i.e,
international and local purchases, s and s, respectively - and prepositioning stock decisions (e,), while second
stage variables (i.e., scenario-dependent decisions) capture distribution flows from an origin to a destination
(xZ’il) as well as the level of unmet demand in a hub or final destination point (yi”). We consider demand
variability (which defines DM, UD?, PT,), route availability and hub accessibility due to flooding during the
rainy season (which defines 4°, CT” CSei‘j’il) as uncertainty sources.

iil?
Table 1 present the sets, parameters, and variables of the model. Next, the model is described.

4.1. Model nomenclature

Table 1
Table 1. Index sets, parameters, and variables.
Indices and sets
] Nodes; (i, i1) € I (Ports, Hubs and FDPs are nodes / = P U J U K)
P Ports; pe Pc |
K Hubs and delivery points (extended); k€ Kc /
J Final destination points - FDPs; j€ Jc ]
Q Scenarios; w € Q
Scenario-nondependent parameters and units
CF, Purchase cost of food supplies to be delivered at node 7; 7 € P U Kin USD/t.
FC Cost of corruption of food supplies to be delivered at node i; i € P U K in USD/t.
CP, Cost of prepositioning of food supplies (holding cost) at node k; k € Kin USD/t.
LP, Upper limit for purchases of food supplies in local market to deliver at node k € K'in t (metric-tons).
SC, Capacity of storage at node k; k € K'in t (metric-tons).
Scenario-dependent parameters and units
DM? Node 7 demand under scenario w; i € K U Jin t (metric-tons).
UD,-W Unmet demand upper limit for at node 7 under scenariow; 7 € K U Jin t (metric-tons).
CT““/,’l Cost of transportation from origin node 7 to destination node 77 under scenariow; i € P U Kand i7 € K U Jin USD/t.
CT =C/", x D : The cost of transportation is given by the product of the transport rate C, in USD/(km x t) and
the distance Df;, in km - from 7 to /7 under scenario w.
Cse,-{i-l Security cost from origin node 7 to destination node 77 under scenario w; 7€ P U Kand i7 € K U Jin USD/t.
A[w Binary parameter indicating 1 if node 7is accessible by any route under scenario w, 0 otherwise; i€ K U Jand A € {0,1}
Pﬂm Penalty for unmet demand at node 7 at scenario w, 7 € K U J in USD/t.
P Scenarios w probabilities
First-stage decision variables and units
s, The quantity of food supplies to be delivered at node 7; i € PU Kin t (metric-tons).
e The quantity of food supplies prepositioned at node k; k € K'in t (metric-tons).
Second-stage decision variables and units
xi“’” The quantity of food supplies transported from origin node 7 to destination node 77 under scenario w; i € PU Kand
’ i1 € KU Jin USD/t.
yl.”’ The unmet demand for food supplies at node 7; under scenario w; i € KU Jin t (metric-tons).
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4.2. Model description

HOs receive food aid through ports (p € P < ]) and transport to final destination points (FDPs - j€ Jc ]) or
extended delivery points (EDPs or hubs - k € K c J). Local demand can also take place at EDPs. Local purchases
in some EDPs can complement the HOs supply but are limited to local market conditions (LP). Stocks can be
prepositioned in EDPs, conditioned on available warehouse capacity (SG), to address uncertainties in route
availability and FDP accessibility during the rainy season. We assume that there are no cross flows between
final destination points. Food aid deliveries to FDPs are routed to meet local beneficiary demand. We model the
food aid supply and distribution system as a transshipment model with ports as sources, EDPs as intermediate
transshipment nodes, and FDPs as destinations as follows:

|PUK| K| | |Puk] |KuJ|
Min Y ((CF+FC)s,)+Y.(CRe, )+ Y. > 3 P*((CT +CSe )xt + PTOw?) ()
iePUK keK weUnePUKileKUJ

The objective function minimizes the total supply and distribution cost (1) and contains a deterministic
term (first-stage), which models the supply purchase and corruption payoffs ((CE. +FC,)s, ), plus the stock
decisions (CPRe,). The stochastic term of the Equation 1 contains the expected value of the second-stage

objective P ((CT‘” +CSe; ll)x +PT?y? )whlch models the total cost of the stochastic network flow decisions

i,il i,il
(transportation, security, and penalty costs for unmet demand) under the first-stage decisions.

The total cost minimization is subject to the prepositioned stock limit to the capacity of the EDPs
(e, <L, VkeK) (e <SC V ke K and local purchases limit at EDPs (s, < LP, V k € K).

Uncertainty arises from beneficiaries’ demand for food aid and the effects of flood in some areas, leading
to inaccessible routes or regions. As a consequence, unmet demand or demand not met immediately may exist.
We consider demand variability (which defines DM?, UD?, PT{,‘”), route availability and hub accessibility due to
flooding during the rainy season (which defines 4°, CT?s CSejfil) as uncertainty sources.

We assume that the HO distributes all sourced supply; consequently, the constraints capturing the
balance-of-flow rule for ports have an equal sign. Constraint (2) states that for each port p and scenario w, the
sum of all outflows equals the available internationally purchased supply (s), considering if node 7is accessible
by any route under scenario (4°).

[KuJ| [PUK|
Yo(Axp )< s e+ Y (Ax ) VhekoeQ 2)
ieKuJ iePUK

[KuJ|

Constraint (3) determines that, for each hub k and scenario w, the sum of all outflows ( z (A:)x;:i) have to
ieKuJ
|PUK]

be smaller than local purchases (s ) plus the prepositioned stock (e,) and the sum of all inflows ( Z (Alf) X7 )) ).

iePUK

|KuJ| |PUK|
o(Ax)<sre + Y (A0x0 ) Vkek.oeQ 3)
ieKuJ iePUK

Constraints (4) and (5) calculate the unsatisfied demand for food in EDPs and FDPs, respectively. Constraint (6)
limits the unmet demand at EDPs and FDPs (UD?). As it is known that the problem has “unavoidable shortages”
that need to be captured to ensure viability, unmet demand costs have the role of making the problem feasible
while absorbing disparities between supply and demand. The value of penalty for unmet demand is selected to
ensure that such shortages are unavoidable.

|PUK]| |KuJ|

v, =DM —|s, +e, + Z (A,f’xl.‘f’k)— Z (Af’xf’,i) Vkek,wmeQ (@)
iePUK ieKuJ
[Tuk|
y; =DM? - z (A_” “’)V]eJ weQ (5)
nel UK
=UDVie KUJ,0eQ (6)
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Finally, the non-negativity constraints: (s;,€, , X5, y;" € R

5. Problem setting at WFP Ethiopia

While WFP operates in Ethiopia since 1968, the funding available is typically insufficient to meet all beneficiary
demands (World Food Programme, 2016). WFP makes food supply, prepositioning, and distribution decisions
to meet beneficiary demand in multiple points, considering uncertainty in beneficiary demand, warehouse
capacities, and limited hub accessibility during the rainy season.

Ethiopia, located in the eastern part of Africa, is the second-most populous country in Africa, with 82 million
people. High population growth and density coupled with uneven rainfall, severe land degradation, and low levels
of investment in agriculture and livestock, drive Ethiopia’s food insecurity. Notwithstanding continued efforts,
such as biofortified drinks or crops for eliminating malnutrition (Yigezu & Sanders, 2012), the government of
Ethiopia needs external support to combat hunger in the country, and the WFP has collaborated in providing
humanitarian aid. However, food distribution in Ethiopia poses significant logistics challenges. Ethiopia is a
land-locked country bordered by Eritrea and Djibouti in the North, Somalia in the East, South Sudan and Sudan
in the West, and Kenya in the South. The country is divided into nine ethnic-based regions, plus the capital,
Addis Ababa, and the city administration of Dire Dawa (Figure 1). WFP operates mainly in the Somali region of
Ethiopia, the most eastern of nine regional states of Ethiopia and heavily influenced by Somalia.

With no direct access to the sea, Ethiopia relies on neighboring countries’ ports for international shipments.
The main access port in Djibouti faces high port congestion due to competition from commercial and governmental
cargo. The main rail transport to Ethiopia covers only 680 km, connecting Djibouti to Dire Dawa. Still, inadequate
maintenance and management make it a poor logistic choice for food aid distribution. In addition, Ethiopia
struggles with poor road infrastructure, limited availability of overland and inland transport, and high transport
rates due to insecurity and poor conditions in the Somali region of Ethiopia. Furthermore, when a drought occurs,
the arid Somali region is more affected than the rest of Ethiopia. A significant amount of rain also adversely
affects the Somali region, often leading to flooding, making it difficult to distribute food aid. The Somali region
also has multiple crop cycles and thus a few different harvest periods. Nonetheless, they do not overlap, and
the three months between June and September is considered the “hunger period” (Chander & Shear, 2009).

Our model focuses on primary and secondary transportation. The primary transportation includes transporting
humanitarian supplies from the three origin ports (Berbera, Djibouti, and Sudan) to several locations in Ethiopia.
The secondary transportation encompasses transport to the Somali Region, where WFP is responsible for the
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Figure 1. Horn of Africa region. Source: Adapted from Gongalves et al. (2013).
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supply chain and in-country transportation operations. While distributing food aid, WFP faces political instability,
poor infrastructure, inclement weather patterns, security concerns, and the need for military escorts, all of which
endanger and delay the flow of commodities.

5.1. Case description

To implement our model, we use actual data from WFP Ethiopia’s operations. One of the authors, a logistics
officer of WFP Ethiopia, engaged in strategic discussions with colleagues in the WFP logistics department, made
several field site visits to hubs and final delivery points (FDPs) in the Somali Region, and met with logistics
vendors and implementing partners. Discussions with WFP Ethiopia logistics experts helped us better understand
the complexity of WFP’s humanitarian operations. We also reviewed the relevant WFP documents available.

The collected data encompass all food aid delivered by WFP Ethiopia for one year. WFP’s logistics operations
included food received in 3 ports, 13 transshipments nodes (hubs or extended delivery points - EDPs), and
54 weredas (sub-districts) that supply to more than 300 (kebeles) final destination points (FDPs). For this
study, we consider the costs of food commodities (CF) and prepositioning (CP) are equal to 371.2 USD/t and
44.5 USD/t, respectively, and the average food demand was 970.000 t. Prepositioning costs accounted for 12%
of supply costs. Local purchases for each hub were limited up to actual supply purchases to such locations.
Total local purchases were limited to up to 30% of international purchases. Unmet demand was limited up to
30% of the demand at each node. The penalty cost was set to USD 100/t. A sensitivity analysis for this value
and the impact of deprivation are discussed in the next section.

The need for military escorts in the Somali region impacts transportation costs by 46% and changes the
frequency of deliveries. As the aid vehicles must wait for the convoys, infrequent deliveries increase cycle
inventory. Limited storage at the FDPs often results in informal town distributors, who store and distribute the
unpicked-up food from their homes and take a portion of the food aid as “payment” for this position, which
results in an overall 16% loss of food - a corruption payoff (Chander & Shear, 2009).

We define the real problem setting scenarios based on the collected primary and secondary data. The scenarios
(15) represent seasonality effects throughout the year (such as the rainy season or “hunger period”) that affect
hub accessibility and beneficiaries’ demand . Both scenarios and associated probabilities were discussed and
validated by WFP Ethiopia’s logistics experts in an expert panel, as suggested by Salmerén & Apte (2010) and
Brito Junior et al. (2020). Table 2 presents the possible realizations and the associated probabilities of the
stochastic parameters assuming that the random variables (demand and hub accessibility) are independent.

High and low demand scenarios consider 20% of deviation from the average demand. Given the regional
topology, seasonal rains and flooding may also affect the accessibility of hubs in two different regions. In region
1, flooding may limit access to two locations (Addis Ababa and Legetafo); in region 2, it may restrict access
to Gode and Kebri Dehar. We consider both cases where (a) roads reaching regions 1 and 2 from the North are
not accessible during the rainy season, requiring access by alternative routes, and (b) all roads reaching these
regions are not accessible, requiring the hub to shut down. In a hub shut-down, the demand traditionally met
by shipments from that hub could be met by a nearby hub (e.g., Dire Dawa can substitute for hubs in region
1 and Degehabur for those in region 2).

5.2. Results and discussions

The model was implemented using the AIMMS 3.13, CPLEX solver 12.5.1 and solved in 0.06 seconds in an
Intel Core i7® 2.6GHz, 8 Gb RAM, 64-bit Windows10® machine, considering 13,630 variables; 2,258 constraints;
and 65,927 nonzeros. The reduced time is because the reduced number of nodes and shortages do not occur
in all scenarios.

The optimal solution in Table 3 shows that WFP Ethiopia can significantly reduce current supply procurement,
stock, and distribution costs.

WEFP Ethiopia handled over 970,000 metric tons (t) of food aid in one year, with an associated supply
cost of USD 360 million, a stock cost of USD 43 million, and a distribution cost of over USD 65 million for
transportation from ports to final delivery points. Taking the demand at hubs and final destination points as
inputs to our model, the deterministic solution shows stock costs of USD 77 million and distribution costs of
USD 43 million, without affecting service level. Hence, the optimal supply and distribution of commodities
would lead to potential cost savings of USD 68 million (14.1% of the total USD4 90 million program cost).
These savings would allow WFP to feed an additional 127,751 people for an entire year (considering food basket
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Table 2. Possible realizations and probabilities of the stochastic parameters.

Demand
(define DMI.‘",UDf’and P];w)
Parameter Seasonality effects Base High Low
(5009) (30%) (20%)
Normal conditions (no flooding) (40%) P! (20%) P 6 (12%) P! (8%)
Hub accessibility (define Aa, ’ Region 1 withoutA acces‘s by North (20%) P 2 (10%) P 7 (6%) P @12 (49)
n Hubs shut down in Region 1 (109%) P 3 (5%) P 8 (30)) P (20)
TCZ;;]’ and Sec:jnl) Region 2 without access by North (20%) P * (10%) P« (6%) P 1% (49%)
Hubs shut down in Region 2 (10%) P 5 (5%) P 10 (30/0) P 15 (200)
Table 3. Model Results x Actual Data (USD x 106).
Costs Deterministic Solution Stochastic Solution Actual data
Supply 291.44 329.25 360.15
Corruption 4.54 7.33 18.00
Stock 76.95 76.95 43.22
Transportation 43.33 39.35 65.16
Security 1.56 0.68 -
Penalty - 30.00 -
Total 417.83 483.57 486.53
Savings 68.71 2.97

costs equal to USD 44.82/person/month) or provide meals for 1,374,000 children (considering the cost of USD
50 to feed a child for an entire school year).

Table 3 also presents the stochastic solution considering the 15 scenarios of our case study. Compared to the
deterministic solution, the stochastic solution increases total costs by 16% (USD 66 million). While transportation
costs decrease in both instances and stock costs are the same, a total increase comes from supply and penalty
costs arising from addressing the uncertainty in demand and hub accessibility in the model.

In addition, corruption and security costs affect distribution in Somali Region. To consider these costs as
separate terms in the objective function may highlight the need to invest in policies to decrease the effects of
corruption and local insecurity in the results of the WFP. Monitoring food aid distribution may be an effective
way to mitigate the impact of corruption, whereas implementing tools such as Radio Frequency ldentification
(RFID) or Global Positioning Systems (GPS) may enhance the security of humanitarian operations (Chander &
Shear, 2009).

The presented savings are reached by optimizing purchasing and prepositioning stock decisions to use of
food aid available in local markets and hubs storage capacities, as shown in Table 4.

In the deterministic model solution, local supply (supplied to nodes that are not the ports Berbera, Djibouti,
and Sudan) and prepositioned stocks represent 34% (331,889 t) of the total supply and stock costs. As a
result of using locally available food aid and carry-overs, the total amount transported decreases, leading to
savings in transportation costs. Furthermore, the optimal solutions also suggest that WFP can shut down some
hubs (e.g., Shinile and Sudan) while maintaining the effectiveness of its operations. Table 4 also presents the
stochastic model first-stage decisions, highlighting that the total stochastic solution is 10% higher than the
deterministic ones. These additional amounts are needed to minimize unmet demand in the scenarios with
high demand and act as a food prepositioning policy to deal with the impact of the rainy season. However, the
total amount locally purchased and stocked follows a similar profile of the deterministic solutions of the entire
supply and stock costs. The supply in Djibouti and Dire Dawa contribute to the main differences between the
stochastic and deterministic solutions. These differences total 108,908 t and represent 13.9% of the value of
the deterministic solution.

Reducing lead times at customs may also contribute to decreasing prepositioned stocks. Turner (2013)
proposes policy recommendations for reductions in customs lead times. Local policy actions such as human
resource task allocation and better planning for overtime working schedules can increase the local customs
capacity. Automating customs approval processes can make great strides in reducing the approval time. Other
policy actions that can reduce customs’ lead times include reducing bureaucracy, improving paperwork quality,
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proper documentation, preparing a local consignee, and better information sharing between different customs
offices. International organizations can also ensure they are correctly registered as tax-exempt organizations
in the country to which they wish to ship relief consignments. Relaxing legislation for customs clearance of
humanitarian supplies is also a practice followed by several countries in the aftermath of disasters (World
Customs Organization, 2015).

WEFP can experience significant savings in primary and secondary transport costs with optimal supply and
prepositioned decisions, as shown in Table 5. Considering the deterministic solution, most savings (66% of
the total or USD 14 million) come from optimized primary transportation. Savings in secondary transportation
account for 34% or USD 7.4 million.

In the stochastic model, the flow variables are scenario-dependent. As a result, primary and secondary costs
vary according to each scenario. However, the weighted average of primary costs equals USD 29.82 million
(75.8%), and secondary costs equal USD 9.54 million (24.2%).

Supply availability is affected by weather conditions, which may cause drought or flooding. Table 6 presents
a sensitivity analysis of the original local supply limit (30% of international purchases). The sum of total
supply and stock are the same for the three cases (1,072,235 t), but the supply and stock levels vary for each
case, causing a slight variation in total cost. 1f the local purchases limit increases, the stock level decreases
(decreasing prepositioning expenses). Thus, the results may encourage the organization to invest in policies
to strengthen the local market. 1t is well understood that stable local economies are better in logistics because
local procurement results in faster distribution. Moreover, local procurement is a strategy that goes in line with
long-term development in affected regions.

Table 7 shows the unmet demand according to scenarios, and the fractions of demand served, representing
the met demand. The fraction of demand served is the weighted average from the scenario probabilities and
the demand served. Unmet demand occurs only in high demand scenarios, that exceeds Supply + Stock from
Stochastic Solution (Table 4: 1,072,235).

Table 4. Deterministic and Stochastic model decisions for supply and stock allocation.

Deterministic Solution Stochastic Solution (First Stage Decisions)
Node Supply (t) Stock (t) Supply (t) Stock (t)
Addis Ababa 22,364 22,364
Awassa 5,970 500 5,970 500
Berbera 109,171 105,876
Degehabur 25,505 5,700 25,505 5,700
Dire Dawa 56,500 42,647 56,500
Djibouti 528,790 591,539
Dukem 5,440 5,440 500
Gode 25,489 5,200 25,489 5,200
Hartichek
Jijiga 16,500 16,500
Kebri Dehar 10,030 5,725 10,030 5,725
Kombolcha 1,376 19,450 1,376 19,450
Legetafo 5,011 500 5,011 500
Mekele 2,925 20,500 2,925 20,500
Nazareth 42,942 54,045 42,942 54,045
Shinile 217 500
Sudan
Total 785,230 185,120 887,115 185,120
Supply + Stock 970,350 1,072,235

Table 5. Delivery Costs Results x Actual Data (USD x 106).

Costs Deterministic Solution Stochastic Solution Actual data
Primary 33.92 29.82 48.35
Secondary 9.41 9.54 16.81
Total 43.33 39.35 65.16
Savings 21.83 25.81
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As penalties arise from uncertainty, the penalty costs are only present in the stochastic solution. King &
Wallace (2012) recommend a parametric analysis of penalty values. With the penalty cost set to USD 100/t,
the total unmet demand is concentrated in the final destination points for the scenarios with high demand.
1t equals 92.18 t for each scenario 6, 7, and 9 (Table 7). For scenarios 8 and 10, we consider a high demand
and that hubs in regions 1 and 2 shut down, respectively. As a result, there is no unmet demand in scenario 8;
for scenario 10, the unmet demand reaches 31.76 t.

Studies about deprivation estimates functions for water (Pérez-Rodriguez & Holguin-Veras, 2016; Holguin-
Veras et al., 2016). An analysis to establish an exact penalty value could not be made, but an order of magnitude
assessment for a possible deprivation was possible using these water-related functions. Two situations were
analyzed: (1) considering the water deprivation function proposed by Pérez-Rodriguez & Holguin-Veras (2016);
and (2) changing the functions proposed by Holguin-Veras et al. (2016) and the number of days of water
deprivation (5 days) considered by Holguin-Veras et al. (2013). In both cases, food consumption of 550g per
person/day (World Food Programme, 2011) and 14 days the survival time without food (LaMont-Gregory et al.,
1995) were also considered. Considering the two situations, the minor order of magnitude obtained was
according to the adjusted Holguin-Veras et al. (2016) functions, and it was 5 x 10° USD/t, showing that, if the
deprivation costs are considered, the situation with a penalty above 136 USD/t (Table 8) is applicable, and the

Table 6. Sensitivity analysis of local purchases.

Instance Total Cost (USD x 10°) Total Supply (t) Total Stock (t) Unmet demand FDPs (t)
Original local supply limit 483.57 887,115 185,120 308,317
50% reduction 486.93 882,115 190,120 306,438
100% increase 481.06 962,160 110,075 308,317

Unmet demand at Hubs are zero.

Table 7. Unmet demand according to scenarios and fractions of demand served.

Scenario Probability Demand (t) Unmet demand (t) Demand served
1 20% 970.35 100.00%
2 10% 970.35 100.00%
3 5% 776.42 100.00%
4 10% 970.35 100.00%
5 5% 920.00 100.00%
6 12% 1,164.42 92.18 92.08%
7 6% 1,164.42 92.18 92.08%
8 3% 931.70 100.00%
9 6% 1,164.42 92.18 92.08%
10 3% 1,104.00 31.76 97.12%
1" 8% 776.28 100.00%
12 4% 776.28 100.00%
13 2% 621.13 100.00%
14 4% 776.28 100.00%
15 2% 736.00 100.00%
Fraction of demand served 98.01%

Table 8. Solution sensitivity to changes in the penalty for unmet commodities demand (t).

Hubs FDPs
Penalty (USD/t)
Unmet demand Scenarios Unmet demand Scenarios
5 1,255,950 1,2,4,5/6,7,9, 10 1,027,352 1-15
10 1,255,950 1,2,4,5/6,7,9, 10 828,609 1-15
20 857,613 6,7,9, 10 606,111 1-2, 4-10
25 543,836 6,7,9, 10 368,740 6,7,9, 10
30 231,316 6,7,9 319,850 6,7,9, 10
31 308,317 6,7,9, 10
100 308,317 6,7,9, 10
136
145
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model results present no unmet demand. Table 8 shows a sensitivity analysis exploring the impact of penalty
costs on unmet beneficiary demand. We assume a penalty cost of USD 100/t, the highest cost in which the
scenarios still present some unmet demand in FDPs. Hence, we report conservative results of our model since
we maintain the service level to beneficiaries while addressing the available uncertainty. The penalty costs of
USD 136/t, allows us to avoid any unmet demand.

6. Conclusions and future research

We analyzed the food aid supply and distribution planning of the WFP operations in Ethiopia through a
two-stage stochastic linear programming model, considering uncertainties in demand and road/ hubs accessibility
in flooded areas during the rainy season. Our results suggest that WFP Ethiopia can significantly improve its food
aid supply and distribution system, saving millions of dollars every year. As deterministic solutions may become
infeasible when nominal data changes, higher costs in the stochastic solutions reflect optimal decisions under
uncertainty scenarios. The analysis was presented to and the insights discussed with the WFP logistics team.
The results may help WFP plan future food aid movement; to identify optimal routes and load point locations
(ports, hubs, and final delivery points); and prepare budget forecasts for food aid transportation.

This work also highlighted the importance of the systematic collection of distribution rate data and mapping
road and security conditions. The data requirements necessary to implement even simple optimization models
are huge and frequently met with skepticism. Ad hoc data collection is complex and would yield limited results;
hence, more systematic approaches are required. By making additional information available and accessible
to their logisticians (e.g., food aid pipeline reports, project activity, delivered tonnage, delivery time frames,
transportation schedules, transportation rates, and warehouse location), humanitarian organizations could
improve opportunities for the planning of food aid deliveries.

Besides the focus on the WFP case study, we believe that the model may be a helpful decision support tool
to other humanitarian organizations in similar situations. The model may also bring managerial insights for
humanitarian logisticians to discuss humanitarian relief policies, such as corruption payoffs, security, setup costs
of new routes; limited local market; and funding levels. Through a cost-based analysis, the organization may
decide to invest in implementing tools to enhance security, monitoring food aid distribution to avoid corruption,
improving regularity in funding levels, and strengthening the local market to increase local procurement.

Short-term horizons and project-specific funding often characterize humanitarian operations. Both factors
create a preference for short-term emphasis. Such a myopic focus prevents organizations from harvesting many
opportunities for improvement. Instead, the focus remains on ad hoc food allocations, last-minute requests, and
changes, poor coordination of port arrivals, port congestions, lack of truck capacity, inaccessibility of regions due
to seasonal rains, poor road infrastructure, exposure to high transportation rates, collusion by transporters, etc.
While these problems challenge the distribution of food aid, further investment in understanding their causes
and collecting data will provide opportunities to address them in future models adequately. As humanitarian
logistics typically exhibit limited relief aid capacity, it becomes critical to optimize the allocation of available
resources effectively and equitably. Future studies could also include equity concerns, when there is a shortage
of relief aid. Lien et al. (2014), for example, use an objective function that maximizes the expected minimum
fill rate among customers to maintain a specified level of equity. Multi-criteria methods can also be used when
considering qualitative criteria in the decision-making process (Brito Junior et al., 2020).

7. Plain language summary

This research analyzes the food aid supply and distribution by the World Food Programme (WFP) in Ethiopia
using a two-stage stochastic transshipment network flow model that considers the challenges of providing
humanitarian aid in insecure regions (e.g., corruption, losses due to last-mile distribution, security escorts).
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