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Abstract

Paper aims: This paper studies the influence of process variation on deviation from nominal control chart performance
and proposes some adjustments on the control limits to make it enable on small batches.

Originality: Specific methods were developed to monitor small batches, mainly due to unavailability of data for precise
parameters estimation, like the deviation from nominal control charts. However, Montgomery (2014) highlights some
essential aspects, such as the influence of process variation on its performance.

Research method: The method used was mathematical modeling and computer simulation.

Main findings: The results validated that there is a significant influence of the process variation on the control chart
performance. It has been demonstrated that small adjustments on the control limits can make it enable on lean environments.

Implications for theory and practice: The main contribution is demonstrating the use of deviation from nominal control
chart, through the valid control limits definition regardless of the samples size.
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1. Introduction

The control charts, originally proposed by Shewhart, were intended solely to monitor the variation of processes
in order to detect the occurrence of special causes as soon as possible. Later, new versions of Shewhart charts
emerged, such as Cumulative Sum (CUSUM) charts, moving average and acceptance charts (Woodall, 1985;
Baker & Brobst, 1978; Chakraborti, 2006; Jensen et al., 2006; Castagliola et al., 2009; Yu & Liu, 2011). Such
charts had as fundamental assumptions that the monitored characteristic was a normal probability distribution
and that the extracted samples had homoscedasticity and were independent. That is, the samples collected over
time must come from a population of Independent, 1dentically and Normally Distributed (IIND) data (Alwan,
2007; Korzenowski & Werner, 2012; Montgomery, 2014; Gu et al., 2014).

The implementation of control charts has two phases: phase 1 for calculating the control limits, and phase
11 for monitoring the process. There are many publications reviewing the methods for phase 1 and phase 11. For
example, in phase 1, new calculations of control limits were developed that minimize a false positive. The same
for the phase 11 (Chakraborti, 2006; Jensen et al., 2006; Castagliola et al., 2009; Yang et al., 2012; Castagliola &
Wu, 2012; Oprime & Ganga, 2013; McCracken & Chakraborti, 2013; Oprime & Mendes, 2017). Other examples
of charts developed from Shewhart charts are multivariate charts, modified charts, use of non-parametric
methods, charts for multiple flows, charts that simultaneously control mean and standard deviation, and joint
monitoring of capability and variance (Ahmad et al., 2016; Oprime et al., 2019).
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The current manufacturing scenario requires flexibility and reconfigurability of the production system to
meet small batch production. Thus, according to Celano & Chakraborti (2021), problems such as: immediate
monitoring without preliminary studies on the process; the distribution of the current quality characteristic is
unknown due to constant process reconfigurations; and difficulty in evaluating the performance of control
charts due to small batch production.

Therefore, while known to be effective in large-scale production systems, the use of Shewhart control charts
in lean production environments may not be an appropriate option. This is because the lack of process data can
violate its fundamental assumptions, leading users to misinterpret the results (Hillier, 1969; Mood et al., 1974;
Cullen & Bothe, 1989; Crowder, 1992; Sower et al., 1994; Kim & Schniederjans, 2000; Chakraborti, 2006; Ho
& Trindade, 2009; Celano et al., 2010; Gu et al., 2014; Wiederhold et al., 2016; Aykroyd et al., 2019).

The Deviation from Nominal (DNOM) control chart is one of the specific alternatives found in the literature
for monitoring small-scale production such as those found in lean manufacturing environments. According to
Montgomery (2014), the DNOM control chart is easy to use, so they are the most recommended for monitoring
small batches. However, the use of this type of chart demands some conditions.

The DNOM control chart is applied to small processes, where the process and not the products are controlled
(Montgomery, 2014). 1t does not monitor the quality characteristic of a particular product, but the difference
between the nominal measure, or target value, and the found value. That is, it does not monitor measurement,
but the difference between two values, so it can be applied in processes and machines that produce a large
variety of products with a small production volume.

However, according to the literature, it is recommended to apply the DNOM control chart in cases where
the process variation, measured through the standard deviation, has to be the same, or close, for all products
manufactured by the monitored equipment (Cullen & Bothe, 1989; Crowder, 1992; Sower et al., 1994; Ho &
Trindade, 2009; Celano et al., 2012; Capizzi & Masarotto, 2012).

This condition restricts the use of DNOM control chart and the literature does not specify an acceptable
range of variability for its use, which seems to be a theoretical gap to be filled. The questions still unanswered
regarding the use of the deviation from nominal control charts are the following:

® What is the magnitude of the standard deviation between products that go through a particular process where
the DNOM control chart can be used?

® Assuming that there is a tolerable difference in the standard deviation difference between the products, could the
control limits be adjusted to compensate for the effects of the difference between the standard deviations of the
products manufactured in the same manufacturing process?

This article aims to answer the two questions presented, through the analysis of the performance of the
DNOM chart considering different possible scenarios for the deviations of different products in the same process.
The performance of the charts will be evaluated by Average Run Length (ARL), which, according to Li et al.
(2014), is a measure recommended and widely used in the literature, to verify the influence of process variation
on the performance of the control charts, and thus propose adjustments to the control limits in cases where
the standard deviations are different between the products.

For this purpose, some steps were established: i) calculate the ARL of a control chart constructed under
ideal conditions, that is, with known mean and standard deviation; ii) determine the ARL of a control chart of
the deviation from the nominal with estimated parameters, without changing the standard deviation of the
products; iii) determine the ARL of the same control chart with a gradual variation of 0.5, 1, 5 and 10% in the
standard deviation of the products; iv) compare the ARL obtained from each chart with the ARL of the ideal
control chart; v) identify the influence of process variation on the chart’s ARL; vi) propose adjustments to the
value of k to calculate new control limits.

2. Literature review

2.1. Quality management movement overview and use of control charts

The Quality Management (QM) movement, as we know it today, began in the 1920s, when Walter Shewhart
of Bell Laboratories developed a system, known as Statistical Process Control (SPC) to measure variability in
production systems for the purpose to diagnose problems. Later, during World War 11, the US War Department
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hired Dr. W. Edwards Deming, a physicist and researcher at the US Census Bureau, to teach statistical process
control to the defense industry. Quality control and statistical methods were considered critical factors in a
successful war effort (Woodall, 2000; Michel & Fogliatto, 2002; Montgomery, 2014). Unfortunately, most
companies in the United States stopped using these statistical tools after the war. US occupation forces in
Japan invited Deming to help Japan with the postwar census. He was also invited to present lectures for
business leaders on statistical process and quality control.

Quality is a subjective term that is related to the characteristics of the product or service that influence
its ability to satisfy the stated or implied needs of users, or simply to products or services that are free
from defects and deficiencies (Juran & Gryna, 1988). From a technical point of view, quality can be seen
from several dimensions (Garvin, 1993), such as: reliability, durability, ease of maintenance and availability,
aesthetics and design. From the point of view of organizational management, quality is a broad approach that
involves principles, methods and techniques, when effectively use, reduces losses, increases productivity and,
consequently, the effectiveness of organizations (Shewhart, 1931; Smith, 1947; Juran & Gryna, 1988; Kanji,
1994; Kim et al., 2003; Samohyl, 2009; Ryan, 2011; Montgomery, 2014; Toledo et al., 2013; Lizarelli et al.,
2016).

As for quality planning, according to Garvin (1993), it is the process of developing actions linked to
organizational strategy, including key requirements, performance indicators and operational procedures that
ensure standardization and compliance with project requirements. In addition, Deming (1986), supported by the
works of Shewhart, introduced, in addition to its 14 points that define the guidelines for the implementation
of QM, the PDCA (Plan, Do, Check and Act) and the motivation for the use of statistical methods in support
of problem solving. The PDCA is a cyclical model for planning and implementing actions aimed at solving
problems and continuously improving processes.

A modern term that defines QM is Total Quality Management (TQM), which raises the scope of quality,
with an emphasis on the organization’s strategic aspects, and its principles are continuous improvement,
involving everyone in quality problems, the use of methods and techniques in problem solving and motivational
programs (Garvin, 1993). The methods for solving problems stand out in TQM, especially the SPC.

2.2. SPC fundamentals

SPC is a broad set of quality tools known to industrial organizations, whose purpose is to improve
processes. One way to do this is to verify that processes are operating in a state of control or meet design
specifications. 1t is also used in initial studies of machine and equipment capability, or even in the choice
of a new process, to ensure that it performs better than the old (Woodall, 1985; Baker & Brobst, 1978;
Graves et al., 1999; Qin, 2003; Chakraborti, 2006; Jensen et al., 2006; Elg et al., 2008; Castagliola et al.,
2009; Samohyl, 2009; Yu & Liu, 2011; Castagliola et al., 2013).

1t was Shewhart and Deming who developed the first statistical tools to help correct and improve quality.
Later, the Japanese began using these tools, guided by Kaoru Ishikawa, head of the Japanese Union of
Scientists and Engineers (JUSE), and expanded them worldwide. For more than half a century, SPC has
played a key role in controlling and improving the quality of industrial processes, initially based on Shewhart
control charts. The primary issue regarding control charts is to understand the variability of a particular
quality characteristic, establish process control, and promote improvement actions (Sower et al., 1994; Baker
& Brobst, 1978; Graves et al., 1999; Woodall, 2000; Kim & Schniederjans, 2000; Chakraborti, 2006; Duarte
& Saraiva, 2008; Ho & Trindade, 2009; Celano et al., 2013; Wiederhold et al., 2016; Aykroyd et al., 2019).

According to Woodall (1985) and Woodall & Montgomery (2014), control charts are used to distinguish
between two types of variation. One is the variation of common causes, which is inherent in the process
and cannot be changed without changing the process itself. The other type are special causes of variation
that generate interruptions with significant effects on the process and must be removed.

The general knowledge is that the process is considered stable or In Control (1C) if the successively
observed chart statistics are plotted within the control limits, that is, if the process is being influenced
only by common causes. However, when chart statistics are plotted outside the control limits, this may be
a sign that the process may be Out of Control (OC) and corrective action in the process may be required,
as suggested by Jensen et al. (2006). When a special cause is detected, the normal action is to stop the
process to eliminate it. This will bring stability to the process, but sometimes they also require financial
resources, time and opportunities.
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2.3. Shewhart control charts limitation on small batches

One of the limitations of Shewhart charts is that they address the problem of monitoring and controlling
small batches. Another limitation is that if the purpose of a process control system is to make economic decisions
about the process, it is possible to balance the consequences of two situations: taking action when it is not
necessary (overreaction) versus not taking action when it is required. Thus, it is possible to make economically
viable decisions about the condition of the process. According to Woodall (1985) there is a need to react, however,
only when a cause has sufficient impact for it to be practical and economical to remove it to improve quality.
Literature has investigated the development of economic models for process control (Woodall & Montgomery,
2014; Garcia-Diaz & Aparisi, 2005).

Moreover, production systems have undergone significant changes. Large scale gave way to lean and
customized production, bringing smaller and diversified production plans. According to Castillo et al. (1996),
this trend is strongly related to the use of Just In Time (JIT) manufacturing techniques to reduce costs related
to intermediate and finished product inventories.

Some doubts about how to statistically evaluate these processes through traditional methods arose from there.
Strictly speaking, Shewhart control charts were proposed for monitoring large volume production processes. In
these systems, the implementation of charts is not a big problem, as process information is always available,
unlike JIT or job shop type production systems, for example (Hillier, 1969; Cullen & Bothe, 1989; Crowder,
1992; Sower et al., 1994; Castillo et al., 1996; Castillo & Montgomery, 1996; Khoo et al., 2005; Celano et al.,
2010; Gu et al., 2011,2014; Wiederhold et al., 2016).

The first was to establish control limits to retrospectively test whether the process was under statistical control
when reference samples had been collected for plotting during phase 1. For each initial subgroup, the X and R
observations should be plotted on the charts. If values were outside the control limits, then the subgroup should
be discarded and the control limits recalculated. In the second stage, new control limits should be defined to
verify the permanence of the process in this same stability condition. The probability of type 1 errors should
also be considered at this stage.

Later, Quesenberry (1991) proposed the use of the Q chart to deal with the observed problems. However,
the chart had the same problem as Hillier (1969). While the occurrence of errors type 1 was low, trend detection
was not as satisfactory as desired.

Shepardson et al. (1992), studied the inefficiencies of the Q chart and proposed the use of a control chart
based on the Kalman filter, specifically when the process standard deviation was known and the mean was not.
Castillo & Montgomery (1996) proposed adaptations that allowed the use of the chart in inverse situations,
that is, when the mean was known and the standard deviation of the process was not.

Wasserman (1994) proposed the use of the Exponentially Weighted Moving Average (EWMA) chart based
on a first order dynamic linear model with constant variation. According to Lucas & Saccucci (1990), the
interpretation and implementation of the EWMA chart was reasonably easy.

The CUSUM chart, was initially presented by Page, in England, with the purpose of quickly detecting small
changes in the process (Page, 1954; Barnard, 1959; Kemp, 1961; Brook & Evans, 1972; Singh & Prajapati,
2013; Celano et al., 2012; Montgomery, 2014; Abbasi & Haq, 2019).

Hawkins & Olwell (1998) proposed the use of an adapted chart called self-starting CUSUM for a small number
of subgroups. The idea of this chart was to use regular process measurements for self-tuning and maintenance.
Each successive observation should be standardized using the mean and standard deviation, not from a special
fit sample, but from all observations accumulated up to the time of inspection. As the process proceeded and
produced new observations, the mean and standard deviation estimates the true values (Hawkins & Olwell, 1998).

Unlike Shewhart control charts and EWMA chart, the use of the CUSUM chart was considered more complex,
however, its implementation became easier with the availability of numerous statistical tools and software on
the market (Kemp, 1961; Brook & Evans, 1972; Hawkins & Olwell, 1998; Castagliola & Maravelakis, 2011).

Nenes & Tagaras (2007) presented charts based on Bayes’ theorem for monitoring small production batches.
Celano et al. (2013) proposed the use of control charts based on the t student distribution as an alternative as
efficient as traditional charts with known parameters.

2.4. Deviation from nominal control chart

This work studies the proposal of Cullen & Bothe (1989). The authors presented a chart where the difference
between the measure found of the quality characteristic with its nominal measure, or with a target value, should
be plotted on traditional control charts X and R and called it the target value control chart.
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The DNOM control chart can be used in the manufacturing process of more than one product sequentially. 1t
represents a change in traditional CEP techniques, as it provides the means to monitor and control processes that
would otherwise be considered inadequate (Cullen & Bothe, 1989; Crowder, 1992; Farnum, 1992; Sower et al.,
1994; Montgomery, 2014). Montgomery (2014) presents three important conditions for the proper use of this
chart:

® The variation in the process must be the same for all parts, or as close as possible;
® The procedure is more efficient when the size of the samples collected is the same for all products;

® The charts have an intuitive appeal when the nominal measure of the characteristic is its own target value.

As with the other control charts, when the statistical parameters of the process are unknown, the constructive
procedure of the chart of the deviation from the nominal is carried out in two phases. In phase 1, samples of the
process are used to estimate the parameters and calculate the control limits used in the next phase. In phase
11, also called the monitoring phase, new samples are extracted and verified. If the observations are not located
within the control limits, the process is considered out of control and a probable special cause must be identified
(Grant, 1965; Castillo & Montgomery, 1996; Woodall & Montgomery, 2014; Chakraborti, 2000; Jensen et al.,
2006; Chakraborti, 2006; Samohyl, 2009; Ryan, 2011; Montgomery, 2014; Jones-Farmer et al., 2014).

Psarakis et al. (2014), clarify that the good performance of the control charts depends on an accurate estimate
of parameters performed during phase 1 of the implementation of the charts. During this phase, it is important
that special causes are eliminated so that samples for defining the control limits used in the monitoring phase
are collected from a stable process.

Jensen et al. (2006) highlights that the use of control charts with estimated parameters is a potential weakness.
The unavailability of data, as a consequence, calculation of invalid control limits, can cause a significant rate
of false alarms in the process, in addition to reducing the Detection Power (PD) of the control chart. For that
reason, Chakraborti et al. (2008) reinforce the importance of defining an adequate number and sample size
during phase 1 so that the performance of the control chart is as close as possible to the ideal.

2.5. Method for measuring the performance of the DNOM chart

To simulate the use of the nominal deviation control chart in any production process and analyze its
performance, mathematical models were developed in the Maple 2016 software. The first model was created to
calculate the ARL of the control chart built with known parameters, or KK chart, seen in Appendix 1. The chart’s
ARL is calculated in the same way as the mean chart, as both are based on a Normal probability distribution.

If Xi is calculated from a sample n = {x, x5, ..x,}, the probability of error type 1is o = P (X ¢ (LCL,
UCL) ora=1-P (X ¢ (LCL, UCL)). Considering known parameters, it is possible to say that the process is
in control when:

Xie(LCL = po- 270/ UCL = g + 3% /J;) (1)

Considering an out of control process p + 5o, if 8 # 0 and k= 3/+/n, UCL and LCL are calculated
according to Equations 2 and 3:

UCL = p,y+koy (2)

LCL = po - ko (3)

1t is possible to write P(LCL < X< UCL), according to Equations 4 to 7:

P((LCL ~Ho —560)\/%0 <Z<(UCL —p, —500)\/%()) 4)
P((Ho —koy —1g *500)\/%0 <Z< (g +kop g *500)\%0) (5)
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P((Ho ~Acy —(k+38)ay *“0)\/%0 <Z<(py + A0y +(k =8) oy 7”0)\/%0) )
P((fk 3oy <2<k 76)60‘%0)j (7)

If k=3/vn e P(LCL<X<UCL) = P(-— 3 - 8n<z<3 SJH),the probability is obtained from Equation 8:

P(LCL <X <UCL)=0(3-8Vn)-o(-3-8vn) (8)
1t can be write:
P(LCL <X <UCL)=0((A~8)vn+3)-o(~(A-8)vn -3) (9)

1f the process is in control when §=0, therefore, the Run Length (RL) is geometric with probability P(5,n),
then, the ARL of control chart KK is calculated according to Equation 10 bellow:

=1 -
ARL /7 P(LCL<X<UCL) (10)

A model was created to simulat]? the ARL of a deVlaUOH from nominal control chart with both parameters
estimated, seen in Appendix 2. If 1> ¥ Xaf i=12m eviracted during phase 1, *0 and ©° can be

estimated according to Equation 11:

i:ymnﬁlilxij (1)
j=li=
Being:
8=V isf (12)
Where:
=Y n) 13)

Considering an in-control process with parameters and control limits estimated:

ie[):(736%ﬁ;):(+36%5] (14)

It is possible to say that the process is in control when:

p(“%/a—w—a&szsv%ﬁuu—s&) (15)
Being:
m[il(-uo] (16)
W= -

The probability function of U is f(u)=m(n-1)f _.(m(n-1)u), and if RL is geometric with probability
P(W,U,A, 8,m,n), the ARL of control chart UU is calculated according to Equation 17:

ARL:Ii’fooo%I—P(W,U,S,m,n)]f(u)du (17)
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3. Comparative analysis of DNOM charts

To calculate the ARL of the KK chart, the displacement between means & was considered, ranging from 0
to 2. Table 1 shows the ARL of the graph calculated for n, varying in 5, 10, 15, 20 and 25 observations.

Table 1. ARL of KK control chart with k = 3.00.

ARL
3

n=5 n=10 n=15 n =20 n=25
0.00 370.40 370.40 370.40 370.40 370.40
0.50 33.40 14.97 6.95 4.49 3.24
1,00 4.49 2.00 1.23 1.08 1.02
1.50 1.56 1.07 1.00 1.00 1.00
2.00 1.07 1.00 1.00 1.00 1.00

From: Authors (2021).

When 6 = 0, the ARL of the control chart equals 370.40, and, consequently, the probability of type 1 error is
0.27%. Confirming what the literature says about the low sensitivity of control graphs to small displacements,
it is noted that, as & moves away from 0, the faster is the detection of an out-of-control point.

Then, the ARL of a control chart of the deviation from the nominal UU without variation in the standard
deviation was simulated. 1t was considered k = 3.00, m ranging from 10 to 85 and n ranging from 5 to 25
observations, as shown in Table 2.

Table 2. ARL of UU control chart without standard deviation alteration and k = 3.00.

ARL

m

n=5 n=10 n=15 n =20 n=25
10 196.80 213.70 215.50 238.10 250.00
25 242.70 245.10 247.10 284.10 290.70
40 271.70 312.50 337.80 373.10 396.80
55 287.40 290.40 312.70 342.50 357.10
70 328.90 337.80 352.10 362.30 364.60
85 333.33 342.50 357.10 360.80 384.10

From: Authors (2021).

Note that the mean ARL of the control chart is greater for a greater number of observations. For example,
for m =70 and n = 25, the ARL on the chart is 364.60, close to 370.40. Small subgroups with smaller sample
sizes have a smaller ARL compared to the ARL of the ideal control chart.

ARL simulations of the same control chart were performed with changes in the standard deviation of the
products. The purpose of the simulations is to identify the influence of process variation on chart performance.
For the same products, the following standard deviations were considered, 0.584, 0.586, 0.589 and 0.592,
respectively, which corresponds to a variation of 0.5%, as shown in Table 3.

Table 3. ARL of UU control chart, 0.5% alteration on standard deviation and k = 3.00.

ARL

m

n=>5 n=10 n=15 n =20 n=25
10 152.40 172.40 200.00 211.90 219.30
25 222.10 224.70 246.40 257.10 260.40
40 224.70 237.80 287.40 301.20 337.80
55 268.80 287.40 312.50 316.50 352.10
70 284.10 290.70 312.50 333.33 357.10
85 322.00 333.33 340.60 357.10 366.66

From: Authors (2021).
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Comparing the two previous tables, it can be seen that the ARL values decrease with a variation of only
0.5% in the standard deviation of the products. For the same condition, m = 70 and n = 25, the ARL of the
chart, which was 364.60, becomes 357.10. Continuing the study, the standard deviation values of the products
were changed to 0.584, 0.589, 0.595 and 0.601, which corresponds to a variation of 1%. Table 4 presents the
average ARL.

Table 4. ARL of UU control chart, 1% alteration on standard deviation and k = 3.00.

ARL

m

n-= n=10 n=15 n =20 n =25
10 159.20 181.20 188.00 195.20 201.50
25 200.00 206.60 233.33 247.60 250.00
40 229.40 260.40 271.80 290.00 301.20
55 277.80 297.60 304.90 316.50 328.90
70 290.60 301.20 316.50 324.70 347.20
85 290.70 316.50 308.60 312.50 357.10

From: Authors (2021).

New simulations were performed with product standard deviation values of 0.584, 0.613, 0.643 and 0.676,
which corresponds to a 5% change in the previous values. Average ARL values are shown in Table 5.

Table 5. ARL of UU control chart, 5% alteration on standard deviation and k = 3.00.

ARL

m

n=>5 n=10 n=15 n =20 n=25
10 119.00 145.50 172.40 185.20 191.00
25 167.80 206.60 210.00 217.40 242.70
40 172.40 213.60 245.10 2717.80 284.10
55 227.30 238.1 257.80 2717.80 312.50
70 238.10 250.00 263.20 312.50 333.33
85 263.20 277.80 294.10 333.33 350.00

From: Authors (2021).

Finally, the standard deviation values have now been changed to 0.584, 0.642, 0.706 and 0.777, which
corresponds to a 10% variation, as shown in Table 6.

Table 6. ARL of UU control chart, 10% alteration on standard deviation and k = 3.00.

ARL

m

n=5 n=10 n=15 n =20 n=25
10 80.65 83.33 92.59 125.00 142.90
25 122.00 135.10 156.20 185.20 192.30
40 166.70 178.60 185.20 192.30 250.00
55 172.40 185.20 250.00 275.20 282.00
70 217.40 227.30 250.00 277.80 294.10
85 227.30 250.00 263.20 284.60 312.50

From: Authors (2021).

Observing the tables, it is noted that the ARL in the graph approaches 370.40 only when m = 85 and n = 20,
considering a process without variation in the standard deviation of the products. In subsequent simulations, with
a change in the standard deviation, it appears that the average ARL of the control chart is less than 300 in most
cases, that is, at least 2,000 pieces would be needed for the chart to perform similar to the ideal control chart.

The same models were used with k value adjustment to calculate new control limits. By increasing the
displacement of the control limits in relation to the center line, the probability of false alarms in the process
is also reduced. For example, changing the value of k to 3.15, the probability of type 1 error becomes 0.16%.
Table 7 presents the average ARL for the KK control chart.
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Table 7. ARL of KK control chart with k = 3.15.

]
0
:DUCTION

ARL
3

n=5 n=10 n=15 n =20 n =25
0,00 612.40 612.40 612.40 612.40 612.40
0.5 47.42 17.14 8.88 5.54 3.87
1,00 5.54 1.98 1.30 1.10 1.03
1.5 1.72 1.05 1.00 1.00 1.00
2,00 1.10 1.00 1.00 1.00 1.00

From: Authors (2021).

New simulations were performed, considering the same standard deviation, initially, and then the same variation
as before. Tables 8 to 12 present the mean ARL values, obtained from a run of 10 simulations, for k = 3.15.

Table 8. ARL of UU control chart without standard deviation alteration and k = 3.15.

ARL
m
n=5 n=10 n=15 n =20 n=25
10 217.40 250.00 263.20 294.10 333.33
25 277.80 294.10 312.50 325.00 348.20
40 312.50 325.00 352.10 367.60 378.80
55 333.33 350.00 378.80 384.60 396.80
70 357.10 367.60 378.8 396.80 416.70
85 416.70 454.30 500.00 555.60 625.00
From: Authors (2021).
Table 9. ARL of UU control chart, 0.5% alteration on standard deviation and k = 3.15.
ARL
m
n=5 n=10 n=15 n =20 n =25
10 247.50 260.40 297.60 304.90 367.60
25 352.10 362.30 373.10 423.70 543.50
40 384.60 431.00 438.60 463.00 471.70
55 409.80 471.70 500.00 510.20 543.50
70 416.70 500.00 510.20 568.20 581.40
85 454.50 490.20 500.00 555.60 595.20
From: Authors (2021).
Table 10. ARL of UU control chart, 1% alteration on standard deviation and k = 3.15.
ARL
m
n=>5 n=10 n=15 n =20 n =25
10 178.60 206.60 231.50 257.70 263.20
25 324.70 373.10 378.80 454.40 471.70
40 378.80 416.70 471.70 492.80 500.00
55 423.70 450.00 463.00 471.70 520.80
70 500.00 510.20 531.90 543.50 612.00
85 520.80 609.80 625.00 712.70 735.00
From: Authors (2021).
Table 11. ARL of UU control chart, 5% alteration on standard deviation and k = 3.15.
ARL
m
n=5 n=10 n=15 n =20 n=25
10 150.60 211.90 215.50 242.70 284.10
25 324.70 378.80 390.60 396.80 409.80
40 308.00 416.60 423.70 431.00 500.00
55 373.10 480.80 490.20 543.50 581.40
70 396.80 490.20 543.50 568.20 625.00
85 416.60 500.00 568.20 625.00 714.30

From: Authors (2021).
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Table 12. ARL of UU control chart, 10% alteration on standard deviation and k = 3.15.

]
0
:DUCTION

ARL

m
n=5 n=10 n=15 n =20 n =25

10 162.30 170.10 177.30 223.20 245.10
25 219.30 233.60 235.80 274.70 312.50
40 320.50 333.33 347.20 352.10 396.80
55 337.80 362.30 375.00 431.00 446.40
70 357.10 367.60 378.80 438.60 471.70
85 373.10 423.70 438.60 446.40 568.20

From: Authors (2021).

Finally, new simulations were performed by adding the value of k to 10%. Table 13 presents the average

ARL calculated for the KK control chart with k£ = 3.30.

Table 13. ARL of KK control chart and & = 3.30.

ARL
3

n=5 n=10 n=15 n =20 n=25
0,00 1034.00 1034.00 1034.00 1034.00 1034.00
0.5 68.68 23.35 11.58 6.95 4.7
1,00 6.95 2.24 1.39 1.13 1.04
1.5 1.91 1.08 1.00 1.00 1.00
2,00 1.13 1.00 1.00 1.00 1.00

From: Authors (2021).

Tables 14 to 18 present the mean ARL values, obtained from a run of 50 simulations, considering the same
standard deviation initially and then the same variation in the standard deviation of the products.

Table 14. ARL of UU control chart without standard deviation alteration and k = 3.30.

ARL
m
n=>5 n=10 n=15 n =20 n=25
10 384.50 416.70 454.50 500.00 625.00
25 520.80 543.50 625.00 641.00 675.70
40 555.60 657.90 694.00 781.20 892.90
55 595.20 694.00 785.00 824.00 925.90
70 675.70 735.30 862.10 925.90 961.50
85 781.20 806.50 892.90 950.00 1190.00
From: Authors (2021).
Table 15. ARL of UU control chart, 0.5% standard deviation alteration and k = 3.30.
ARL
m
n=5 n=10 n=15 n =20 n=25
10 266.00 297.60 312.50 357.10 384.60
25 489.00 555.60 581.40 595.20 657.90
40 641.00 714.30 735.30 781.20 1190.00
55 625.00 675.70 694.40 806.40 1042.00
70 781.20 892.90 1000.00 1087.00 1316.00
85 862.10 1000.00 1087.00 1136.00 1412.00
From: Authors (2021).
Table 16. ARL of UU control chart, 1% standard deviation alteration and k = 3.30.
ARL
m
n=>5 n=10 n=15 n =20 n =25
10 245.10 290.70 320.50 378.80 409.80
25 480.80 609.80 625.00 735.50 781.20
40 500.00 641.00 675.70 735.30 1000.00
55 675.70 714.30 806.50 862.10 1190.00
70 735.30 781.20 862.10 1000.00 1136.00
85 806.50 862.10 925.90 1136.00 1204.00

From: Authors (2021).
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Table 17. ARL of UU control chart, 5% standard deviation alteration and k = 3.30.

ARL

m

n=5 n=10 n=15 n =20 n =25
10 196.80 308.60 337.80 357.10 431.00
25 471.70 543.50 568.20 600.00 625.00
40 581.40 625.00 714.30 735.30 806.50
55 625.00 657.90 735.30 892.90 1024.00
70 657.70 714.30 833.30 961.50 1042.00
85 694.40 735.30 862.10 1000.00 1136.00

From: Authors (2021).

Table 18. ARL of UU control chart, 10% standard deviation alteration and k = 3.30.

ARL

m

n=5 n=10 n=15 n =20 n=25
10 250.00 252.50 316.50 347.20 352.10
25 290.70 316.50 337.80 342.50 454.50
40 471.70 500.00 555.60 675.70 735.30
55 480.80 581.40 595.20 735.30 757.60
70 490.20 609.80 625.00 694.40 833.33
85 543.50 694.40 735.30 781.20 862.10

From: Authors (2021).

For m = 25, it is noted that the ARL does not approach the ideal, even with no change in the standard
deviation of the products. ARL is close to ideal for situations with process variation of up to 3% for k = 3.15.
For k = 3.30, ARL is higher than 370.40 even with 10% variations in the standard deviation of the products.

4. Conclusions

The results of the simulations presented in the present work proved that the performance of the DNOM
control chart is compromised when constructed with estimated parameters, as well as any other control graph.
However, the greater the number of observations, the closer the ARL of the chart is to the ARL of the KK control
chart. Therefore, it was concluded that the sampling strategy chosen to build the chart during phase 1 has to
be carefully analyzed, as the good performance of the control chart depends on an accurate estimation of
parameters or a relatively high number of samples.

The results found also validated the proposition of Montgomery (2014) regarding the influence of process
variation on the performance of the control chart. There was a better performance of the graph constructed
without variation in the standard deviation compared to the others. The greater the variation, the lower the
performance of the graph observed in the simulations. Variations greater than 1% in the standard deviation of
the products, for k = 3.00, make it impossible to use the chart for smaller numbers of samples.

However, with adjustments in the value of k, it is possible to use this graph in lean environments, since
ARLs close to the ideal value are observed even with variations in the standard deviation of the products. For
example, considering a variation of 0.5%, for m = 25, n = 5 and for k = 3.15, an average ARL of 362.30 is
expected. Considering a 10% variation, for m = 10, n = 10 and for k = 3.30, an ARL of 373.10 is expected.

1t is concluded that, in fact, the use of the chart can be viable even in groups of different products subjected
to the same manufacturing process, as it is expected that the standard deviation value of each product is
approximate and not necessarily the same.

The proposed graph assumes that data are normally distributed, this concern should be considered as a
limitation of the study. In this way, future researches can evaluate the effect of non-normal distributions of the
data considered in a DNOM control chart and, also, it is possible to investigate the use of methods based on
Bayesian statistics and Fuzzy logic in this case.

In addition, as another future research, it is suggested the development of a new mathematical model
to simulate the ARL of the DNOM control chart, also built with estimated parameters, with a change in the
number and size of subgroups to verify the other propositions made by Montgomery (2014). 1t is also possible
to analyze the performance of the graph for 8 # 0 and when the quality characteristic has a measure with
unilateral variation, or even study the application of the graphs in real situations.
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Appendix 1. Maple code for calculating the ARL of the DNOM chart considering known parameters.

RRcasol :=proc(n, &) locali, fu, v, pnl, Beta, F, L, S, fv, ARL, ARL2, pn2, pn, u; pn/
= CDF(Normal(O 1),3—38n, .'mmenc) pn2 == CDF(Normal 0,1),-3 —8n,
numertc), pn = pnl-pn2; fit := PDF(Normal(0, 1), u, numeric); Beta :== 1

- evalf (int( pn-fu, u=- ..o, numeric, digits =6) ); ARL = evalf( ﬁ, 3); ARL2

= evaU‘{ 1 1 4} ;print(ARL2);end proc

RRcasol := proc(n, §)
local i, fi, v, pnl, B, F, L, S, fv, ARL, ARL2, pn2, pn, u;
pnl = Statistics:-CDF(Normal(0, 1), 3 — 8*sqrt(n), numeric);
pn2 = Statistics:-CDF (Normal(0, 1), — 3 — 8*sqrt(n), numeric);
pn = pnl —pn2;
fit == Statistics:-PDF(Normal(0, 1), u, numeric);
B =1 —evalf(int(pn*fu,u= — oo .0 numeric, digits = 6));
ARL = evaif(1/B,3);
ARL2 = evalf(1/(1 — pn), 4);
print(ARL2)

end proc

Appendix 2. Maple code for calculating the ARL of the DNOM chart considering estimated parameters.

RRI :==proc(w, j, k, m,n, 7y, B, a, b) lecal X, ARL, M, DV, z, T, s, p, i, g, Y, C, MX, EP, LIC,
soma, t, &, LSC, VR, r, MM, Prob, SM, N, LDV, DP, SVR, MVR, STotal, MDV, L, AM,

50 50 50 0.584
25 25 25 0.584
RT, Total, Kl; z := ;T = M= DV = ;forrfrom 1 to wdo
40 40 40 0.584
20 20 20 0.584

for sfrom 1 tojdo; fortfrom 1tomdop = Generate(integer(range=1.4)); X,
= Mean(Sample(;\"mwm/(Mp — Tp, DVp), n)); VR, = Van‘ance(Sample(.-\r'w-mu.’(Mp
SM

—T.,DV ,n]);SM:=add(X,t=1..m);MM: —SVR—add(VR t—l..m);
pPop f
1
MVR:=%;DP:=MVR :end do; LSC == MM + 3- OF;,L[C MM —3- 0’[_,:,

M, — T, +7-DV, + B-s

M, — T, +y-DV, + B-s

forifromltokdo L = ; g = Generate(integer(range= 1

M, — T, +v-DV; +B-s

M, — T, +vDV, +B-s
4)); Y= Mean(Sampfe(.s\"omml(Lg, DVg], n) ); ifLIC <Y <LSCthenC, := 0

else C, == l endifend do; soma_:= add(C i=1. k)'end do; STotal = add(somas, s=1

STotal
Jk

_|) Prob == evatf(

do end proc

3] ARL = eva!f[ Trob 4];print{Prob);prinr(ARL)end
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RRI = proc( o, j, km.n, v, B, a, b)
local X, ARL. M, DV, z, T, s,p. i, 2, Y, C,MX, EP, LIC, soma., t, 0, LSC, VR, r, MM, Prob,
SM, N, LDV, DP, SVR, MVR, STotal, MDV, L, AM, RT, Total, KI,
z = rtable(1 .4, [50, 25, 50, 25 ], subtype = Vector| column );
T = rtable(1 .4, [50, 25, 40, 20], subtype = Vector| column]);
M = rtable( 1.4, [ 50, 25, 40, 20|, subtype = Vector| column ).
DV = rtable(1..4, [1.595, 1.595, 1.595, 1.595], subtype = Vector{ column]);
for r to @ do
for 5 to j do
for ¢ to m do
p = RandomTools:-Generate(integer{range=1.4));
X[t] = Statistics:-Mean( Statistics:-Sample( Normall M p| — T[pl. DV[p]),
n));
VR[] := Statistics:-Variance( Statistics:-Sample( Normal(M[p]| — T[p]. DV[;
D.n))s
SM = add( X[t].t=1.m);
MM = SM/m;
SVR = add(VR[t].t=1.m);
MVR = SVR/m;
DP := MVR*(1/2)
end do;
LSC == MM+ 3*DP/n"0.5;
LIC := MM — 3*DP/n™0.5,
for i to & do
L= rtable( 1.4, [M[1] — T[1] +y*DV[1] + B*s, M[2] — T[2] + y*DV
[2] + B*s, M[3] — T[3] + v*DV[3] + B*s, M[4] — T[4] + y*DV[4] + B
* 5. subtype = Vector| column]);
¢ = RandomTools:-Generate(integer{ range=1.4));
Y[i] = Statistics:-Mean(Statistics:-Sample( Normal(L[g], DV[g]). n)):
if LIC <=Y[i] and Y[/] <=LSC then C[i] = 0 else C[i]:= 1 end if
end do;
somals] = add(C[i],i=1.k)
end do;
STotal := add(soma[s],s=1.j);
Prob = evalf(STotal/ (j*k).3):
ARL = evalf(1/ Prob, 4);
prini( Prob);
print(ARL)
end do

end proc
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