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1. Introduction

The urgency of making a transition from fossil-based sources to renewable sources arises for a variety 
of reasons. Firstly, environmental sustainability as the sustained growth of carbon dioxide ( 2CO ) emissions 
would lead to irreversible climatic changes. Secondly, energy sustainability as the depletion of non-renewable 
resources would lead to an energy crisis. In this context, the improvement of ‘Energy Efficiency’ is the one 
with the greatest impact. This involves progressive improvements in manufacturing technologies, efficient use 
of resources (mainly scarce or polluting resources), ensuring the longest possible lifetime and improvements in 
efficiencies. In this sense, the Energy Returned on Investment (EROI) measures the ratio of Benefit/energy cost 
(not economic). Energy transitions are necessary to obtain a better systemic EROI, which is not easy to solve. 
There is no common agreement between these disciplines in measurement, definition and evaluation criteria, 
since some of them are contrary (for example, economics vs. environmental regulations). Second, formulating 
these problems requires expensive and complex software. Finally, this is because these attributes are not subject 
to the conventional laws of market equilibrium and, consequently, are not directly and objectively monetizable.
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This paper is a novel proposal of the present author to solve the problem of energy and environmental 
sustainability of an energy power system. Nobel sustainability indices were formulated, some of them per 
unit of power (this is to make it independent of the installed power). A novel iterative method is proposed to 
estimate the impact of the expansion of the renewable production capacity. This problem is complex and it 
cannot be solved satisfactorily using linear or dynamic programming methods due to the number of objectives, 
non-linearity of the attributes and the presence of uncertainty. It is sought to optimize and analyze the energy 
transition seeking to optimize the Argentine energy system regarding several novel indexes and dynamic models 
of renewable penetration scenarios. A minimum participation of 20% in renewable energy power is searched. 
Additionally, the improvement of technical, economic and environmental quality indices is sought, carrying out 
investment plans in generation equipment that involves the attributes related to economic (Cost), energy (EROI 
and renewable participation) and environmental quality (emissions expressed as equivalent in 2CO ). The indices 
that are proposed are: Energy Return On Energy Investment (EROI), 2CO  emissions, Investment Cost (IC) and 
Renewable Proportion (RP). Second, the formulation of the fitness function by extension to the fuzzy domain.

A multiobjective model was extended to the fuzzy domain, by means of the convergence of the different 
optimization criteria by the use of the t-norm called ‘Algebraic Product’ (according to the ‘Fuzzy Decision Making 
in Fuzzy Environments’) is proposed. Fuzzy models are based on the reasoning and perception of the human 
being and allow change of domain to the variables or functions studied. Within the ‘Fuzzy Decision Making 
Theory’, the uncertainty associated with the desired result obtained is called as ‘Fundamental Uncertainty’. In 
this way there are degrees of acceptance of a certain variable to a given set. This mean, the certainty or risk 
of accepting a given alternative is possible to be modelled using fuzzy sets. In the present work, the algebraic 
product t-norm is used, which is simpler and less drastic than Einstein’s product. Regarding the solution method, 
the metaheuristics qualities are exploited as flexible methods of problem solving. In this aspect, the Evolutive 
Particle Swarm Optimization (EPSO) metaheuristic was applied. Through the analysis of results, it is expected 
that the dynamic indices will improve in the stages analyzed. This work will serve to deepen the proposed 
models in future works.

This work is organized as follows: in Section 3, the state of the art is presented. In Section 4. the material 
and methods are presented and the index formulation and methodology are developed: EROI (Section 4.1), 
CO2 Emissions (Section 4.2), Investment Cost (Section 4.3) and Renewable Participation (Section 4.4). The 
Dynamic Growth Allocation Model (DGAM) is developed in Section 4.5. In Section 5, a simulation of the 
Argentinean Electric Matrix based scenario-based is presented: the main parameters (Section 5.1), transition 
energy (Section 5.2), fuzzy indices (Section 5.3) and Evolutive Particle Swarm Optimization (Section 5.4). The 
conclusions are described in Section 6. The Annex presents the Mathematical modelling (Annex 1), Fuzzy 
Decision Making (Annex 2), Evolutionary Particle Swarm Optimization EPSO (Annex 3) and Energy transition 
proposed in the state of the art (Annex 4).

2. Nomenclature

2.1. Acronyms

DGAM Dynamic Growth Allocation Model
EPSO Evolutionary Particle Swarm Optimization
EROI Energy Returned On Investment
EO Energy Obtained
EI Energy Invested
LCA Life Cycle Assessment
RP Renewable Participation

Symbols

m EW  Exponential Weight of Criteria m.
mµ  Generic Membership Function of Criteria m.

mU  Generic Variable of Criteria m.
Up, Low

mU    Limit Value of Criteria m, (Up: Upper Limit; Low: Lower Limit).



Production, 32, e20210132, 2022 | DOI: 10.1590/0103-6513.20210132 3/25

giUL  Useful Life of each type of each power source gi.
giP  Installed Power Invested of each power source gi.

giLF  Load Factor of each power source gi.
giEROI  Energy Returned On Energy Investment (EROI) of each power source gi.

giη  Performance of each of each power source gi.

3. State of the art

Energy efficiency (EE) is defined as that between the Useful Energy (UE) of an energy system and the Energy 
Invested (EI); EE is divided in Supply Side Management (SSM) and Demand Side Management (DSM). SSM 
refers to the technological improvement of devices and their efficiency and DSM refers to change in consumer 
demand behavior (Lovins, 2017). Within the electric power supply chain, an indicator of EE mentioned in the 
state of the art is the Energy Returned On Investment (EROI). The EROI is the relationship between the Energy 
Obtained (EO) by the generation source and the Energy Invested (EI). The EO is relatively easy to obtain, 
while the EI requires complex analysis of the production chain, measuring the associated expenses and waste 
(Arvesen & Hertwich, 2015). This problem exceeds the scope of economic theory and involve decision theory 
and computational economics and it is a matter of discussion in the state of the art. The Life Cycle Assessment 
(LCA) allows the design, research and evaluation of a production process and the associated environmental 
impact during the exploitation of the energy resource in question (Brundage et al., 2019). If the Energy Invested 
is reduced, the EE improves.

The Energy Transition (ET) describes either the change in the composition or the structure of the primary 
energy supply, the gradual change of a specific model of energy supply in a new stage of the energy system, 
and changes in the economic activities of a country in a long-term horizon based on the passage from some 
energy sources to others (Isoaho & Karhunmaa, 2019; Falcone et al., 2019). ET includes the gradual diffusion 
of new devices, such as engines that replace the workforce of animals and people, and are characterized by 
changes in: energy use patterns, energy quantities, the characteristics of energy resources or the dynamics of 
energy demand. ET usually takes decades to be partially or completely performed. The solution to this problem 
is complex, since multiple criteria must be considered: environmental, economic, technical and quality indices. 
There is no agreement on which scenario design criteria is the most appropriate, since it depends on the energy, 
political, economic and social context. The scenarios currently studied for Adaptation to Climate Change are: 
‘Business as Usual’ (BAU) and ‘Collective Responsibility’ (CR). BAU refers to planning according to current criteria 
and CR implies a significant change that will reorient current patterns in a significant way. In recent decades, 
energy from renewable sources has gained momentum worldwide, motivated by different factors. A first factor 
was the economic incentives that promote its penetration. A second factor was the growing economy of scale 
and the consequent decrease in costs.

The ET must satisfy certain conditions: satisfaction of requirements with respect to costs, regulations regarding 
environmental impact, standards and standard procedures, speed of solution, etc. The simultaneous satisfaction 
of these criteria is difficult and arises from applying compromise solutions between them (optimization) and 
according to the needs (hierarchy). They should be organized through categories that present different importance, 
being attributed to the hierarchical criteria different relevance and values. This procedure is referred to as Analytic 
Hierarchy Process (AHP). The decision maker provides (or not) subjective evaluations (a priori or posteriori) 
regarding the relative importance of each of the criteria and he must specify their preference with respect to 
each of the decision alternatives (Hwang et al., 1993; Kosheleva & Kreinovich, 2018). The result of the AHP 
is a hierarchy with priorities that show the global preference for each of the decision alternatives. The weights 
obtained must meet a set of minimum conditions to be coherent, called consistency criteria. One of the fuzzy 
logic characteristics, besides incorporating the AHP, is the use of ordinary language as a description language 
in a computer, thus incorporating the knowledge of an expert in a given task. It introduces the imprecision and 
subjectivity proper to human activity in an automated procedure. Fuzzy models emulate one of the “intelligent” 
functionalities of human beings: reasoning with uncertainty (Shahzadi et al., 2020).

Several works were already presented in the literature that relied the renewable energy transition. Here, a 
part of them are reviewed.

Emilia Ruggeri & Santiago Garrido (Ruggeri & Garrido, 2021) have analyzed the energy and socio-economic 
variables of the renewable energy incentive plans carried out in Argentina. The equity of the impact of such 
long-term planning was analyzed.
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Soonho Hwangbo et al. (2021) have developed a mathematical model of electricity based on renewable 
energy and large-scale utility networks to achieve a low-carbon economy in South Korea.

Wang et al. (2018) have proposed an optimal planning method, with a mixed-integer linear programming 
problem based on graph theory, for a community level multiple energy systems that jointly determines the 
optimal generation.

Zhao & You (2021) have proposed a renewable ET planning under uncertainty using a data-driven multistage 
adaptive robust optimization approach with machine-learning. The proposal is interesting, although it has 
limitations in the uncertainties of the considered data, multiple and complex restrictions and the need for 
supervised learning.

Other works to mention are the following. Kokkinos et al. (2020) have proposed a circular bio-economy 
via ET supported by Fuzzy Cognitive Map modeling towards sustainable low-carbon environment. Capellán-
Pérez et al. (2019) have proposed a dynamic EROI and material requirements in scenarios of global transition 
to renewable energies. Navas-Anguita et al. (2019) have proposed a Simulation and LCA of synthetic fuels 
produced via biogas dry reforming and Fischer-Tropsch synthesis. Bogdanov et al. (2021) have proposed a 
Low-cost renewable electricity as the key driver of the global ET towards sustainability. Adesanya et al. (2020) 
have proposed a transition of US with 100% renewable electricity. Ligus & Peternek (2018) have proposed 
the determination of most suitable low-emission energy technologies development in Poland using integrated 
fuzzy AHP-TOPSIS method.

Table 1 shows a summary of the present proposals with: country of analysis, sources analyzed, linear or 
non-linear modeling, type of uncertainty, resolution methodology and limitations. Most of the important 
published works are carried out using deterministic models, or in the best of cases, mixed with stochastic 
models. That is, they use classical models of mathematical programming, which have limitations in their 
formulation and quality of the results obtained. No important studies were found on the energy transition 
applying the EPSO metaheuristic. It is also observed that there are few studies that involve all the different 
types of generation sources.

Table 1. Search results in the Scopus database (conducted in November 2021).

Author/Year
Country of 

study
Source Modeling Indices

Objective 
and 

Constraints

Resolution 
method

Limitation

Ruggeri &  Garrido 
(2021)

Argentina All types Deterministic Socio-economic 
Indices

Linear Statistic Analysis from 
statistical 
records

Hwangbo et al. (2021) South Korea Fossil Mixed: 
deterministic 

and stochastic

Economic cost, 
emissions and 

energy

Linear Mathematical 
Programming

Linearization 
removes 

accuracy from 
the solution

Wang et al. (2018) Beijing Fossil Linear MILP model 
based on graph 

theory

Zhao & You (2021) New York All types Multiple and 
non Linear

Machine 
Learning

Supervised 
learning is 

needed

Kokkinos et al. (2020) Greek Biofuel Fuzzy Cognitive 
Map (FCM)

Environmental 
social, economic 

and political 
impacts

Non Linear Heuristics It requires 
interactive 

methodologies

Capellán-Pérez et al. 
(2019)

Global All types Deterministic EROI and material 
requirements

Non Linear Heuristics Economic costs 
or emissions are 
not consideredNavas-Anguita et al. 

(2019)
Spain Biogas and 

fossil
Energy and 
emissions

Linear life cycle 
assessment

Bogdanov et al. (2021) Global All types Economic cost, 
emissions and 

energy

Does not 
consider 

uncertainty

Adesanya et al. (2020) United States All types Statistic Analysis from 
statistical 
records

Ligus & Peternek (2018) Poland All types Fuzzy Environmental 
socioeconomic and 
political impacts

AHP-TOPSIS 
method

Source: The Author.
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Proposals based on linear programming have the disadvantage that they require the objective functions 
and constraints to be linear or, if they are non-linear, to be linearized. This can produce that the solution 
obtained is not the most satisfactory and there are many solutions of better quality. Those models that are only 
deterministic and probabilistic (not fuzzy) do not take into account value uncertainties. This is a problem in a 
context where there is uncertainty that affects the decision maker. These proposals do not take into account 
hierarchy criteria either or, in the best of cases, they make linear weightings. The latter is an inconvenience 
due to metric compatibility (same measurement units) and the presence of subjectivity and uncertainty in the 
assessment of each index (Camargo et al., 2018). The complexity and breadth of the search space makes these 
proposals unsuitable. For these reasons, dynamic programming is also not possible. Proposals based on fuzzy 
models are not optimization models but assessment and ranking models. Lastly, there is no common agreement 
on how the EROI and LCA should be calculated, this is because the state-of-the-art estimates (usually) do 
not consider the production chain and waste management. There is also no agreement on how to assess and 
prioritize environmental variables. Finally, there are no important studies for the Argentine electricity matrix or 
agreement to solve the energy crisis and transition to renewables.

The present work is a novel mixed multi-objective optimization method that considers the presence of 
uncertainty in the valuation of the indices, ranking/assessment of the optimization criteria and the use of the 
EPSO metaheuristic. This has the advantage of being able to solve any problem in a relatively simple way and 
without the need to linearize the objectives or restrictions.

A novel interactive life cycle analysis model is also proposed that contemplates the expansion of the productive 
capacity, production times and the calculation of the EROI. In this work, the EROI considers all the expenses 
of the production chain (including all waste) and the operation y maintenance of the generator and power 
system. Additionally, this proposal does not restrict investment in nuclear energy given its technical advantages.

The contributions are the following: a novel dynamic model of productive chain and its EROI, a novel 
formulation of indices, use of the EPSO experimental metaheuristic in continuous search space, use of fuzzy 
decision theory and the combination of all these techniques.

4. Material and methods

In order to determine the energy invested of the power sources (wind, photovoltaic, hydraulic, biomass, fossil 
and nuclear), a LCA is carried out where the essential sectors for obtaining the generator and the fuel necessary 
for its operation are divided. The sectors are extraction, processing, manufacturing, construction, transport 
and waste treatments, the latter is distributed throughout the entire system. The transport sector is considered 
concentrated; this is like one more stage of the life cycle. This life cycle is carried out for two inputs: materials 
used and fuel required. Regarding the latter, the cost of the generator fuel and the fuel required for transportation 
are considered. In this way, energy costs are obtained, which are referred to in Tons of Oil Equivalent (toe).

The parameters were mainly processed and the complete model was validated from the information of the 
public reports prepared by the Argentine Chamber of Renewable Energies (Argentina, 2021a) and the public 
database available from the Ministry of Energy and Mining (Argentina, 2021b).

Figure 1 shows the schematic diagram related to the operation to determine the most satisfactory scenario 
of investment allocation of power energy. A computation of materials necessary to build the generation source 
is carried out, including the generator, infrastructure and complementary equipment. In turn, the type of fuel 
(fossil, nuclear, organic, etc.) and its quantity are determined. From there, the energy calculations of each 
stage considered of the life cycle are made. Each stage has a certain performance, associated time, energy cost 
and waste. Waste contemplates the production chain of materials and fuel. Nuclear waste is considered in the 
production chain and, therefore, the necessary energy. The transport sector is distributed in the production 
chain, however, and for simplicity, it was drawn as another stage.

The present work seeks to propose a growth model of this productive chain (Annex 1), which allows to 
produce and expand the installed capacity in generators (Figure 2). Then, this model will assign the expansion 
of this productive capacity, according to each generation and through the interest indices. This allocation will 
be in proportion to the estimated growth of the expansion of productive capacity. This growth in productive 
capacity will be transferred in the expansion of the installed capacity of each generation source and its 
infrastructure. The proportion of this assignment will be determined by the state variable, which defines the 
search space of the problem to be optimized. To model the expansion of installed power and energy demand 
over time, auxiliary functions are used. These functions are affected by growth factors, which depend on the 
aforementioned growth allocation. In this way, the evolution of the electricity matrix and percentage proportion 
of each generation source are determined.



Production, 32, e20210132, 2022 | DOI: 10.1590/0103-6513.20210132 6/25

Figure 1. Life Cycle Analysis (LCA) model applied in the present work. Source: The Author.

Figure 2. Dynamic growth model and its interaction with fuzzy modeling and the metaheuristic EPSO. Source: The Author.
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The evaluation function to be used by EPSO are determined by the Fuzzy Decision Theory (Annex 2). The EPSO 
metaheuristics (Annex 3) will explore the search space and look for the best alternatives. By means of heuristic 
rules it will determine a more satisfactory solution to the problem which correspond to rules of communication 
between particles (alternatives), comparison and movement (alteration of the proposed solution in the direction 
where it is believed that there are good solutions). EPSO is an experimental metaheuristic product of combining 
the functioning of PSO (Kadkol, 2021) and genetic algorithms. Mutations are made in the parameters using 
standard normal functions, to model the probability of mutation and its effect. This feature gives it a good 
capacity for exploration and robustness in the search for good solutions. Additionally, in the present research 
it had a good functioning for this type of problem, where the search space is continuous.

Indices are constructed from the proposed mathematical growth model. These indices correspond to the 
systemic EROI, which is calculated from the EROI of each generator, CO2 emissions, Investment Cost (COST) and 
the proportion in renewable energy (RP). These indices are transformed to the fuzzy domain and weighted by 
exponential weights, which are obtained from the AHP. Additionally, for the assembly of these indices, limits 
of dis/acceptance of the same are needed. These are obtained from extremely unfavorable scenarios. Finally, 
the intersection of these fuzzy indices are carried out by means of the t-norm. This operator allows to build an 
aptitude function obtaining (at most) the worst diffuse index obtained. Algebraic product is used, which is one of 
the t-norms that is continuous and, additionally, it is one of the less strict (this can be developed in future work).

In the transport sector, three types are considered: trucks, trains and ships. A constant ratio between imports 
and exports was also considered. Growth factors only affect national production and it is considered that there 
is no restriction on access to imported products. For simplicity, this proposal considers invariable energy costs 
and oil prices and it also does not consider technological improvements in generators and the production chain. 
However, these aspects can easily be incorporated. Additionally, variations and logistical changes are not considered.

4.1. Energy returned on investment

Firstly, the energy obtained in each stage s  analyzed and for each sector of generation gi  (wind, solar, 
photovoltaic, biomass, fossil and nuclear) is expressed in the Equation 1. In this expression the necessary parameters 
for each generation sector are: efficiency giη , installed power s

giP   , useful life giUL  and load factor giLF .
From the installed power of each sector, the total installed power is calculated (Equation 2).

	 s s
gi gi gigi giEO P UL LFη      = ⋅ ⋅ ⋅  	 (1)

	

6
S S

T gi
1

P P      =∑  	 (2)

Secondly, the EROI (Arvesen & Hertwich, 2015) is defined in each stage s  for each sector of generation 
gi  (Equation 3).

	

s
s gi

gi s
gi

 EO
EROI

EI

  
  

  
=  	 (3)

Equation 1 is replaced in Equation 3 and the Equation 4 and Equation 5 are obtained in the present research.

	
 s

gi gi gis gi
gi s

gi

P UL LF
EROI

EI

η  
  

  

⋅ ⋅ ⋅
=  	 (4)

	
 s

gi gi gis gi
gi s

gi

P UL LF
EI

EROI

η  
  

  

⋅ ⋅ ⋅
=  	 (5)

From Equation 4 and Equation 5 the systemic (total) EROI is obtained (Equation 6 and Equation 7).
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   s s

gi gigi gis
T s

gi

P UL LF
EROI

EI

η      
  

  

 
∑ ⋅ ⋅ ⋅ 
 =

 
∑ 
 

 	 (6)

	

  

   

s
gi gi gigis

T s
gi gi gigi

s
gi

P UL LF
EROI

P UL LF

EROI

η

η

  
  

  

  

 
∑ ⋅ ⋅ ⋅ 
 =
 

⋅ ⋅ ⋅ 
∑ 
 
 

 	 (7)

Dividing by the total installed power S
TP    the Equation 8 is obtained in this research:

	

    

 

  
  

s
gi gi gigi

s
s gi gi gigis T

T s s s
gi gigi gi gi gi

gi gis s
giT

P UL LF

AP UL LFP
EROI

P AP RT LFUL
LF

P EROI

η

η

η
η

  

      
          

      

 
∑ ⋅ ⋅ ⋅ 
   

∑ ⋅ ⋅ ⋅ 
 = =

   
∑ ⋅ ⋅ ⋅   

∑ ⋅ ⋅ ⋅   
 
 

 	 (8)

Where two terms of importance are defined: s
giRT    is the energy recovery time of the generator gi  (Equation 9) 

and s
giAP    is the proportion of the electrical matrix that is had in each type of generation gi  (Equation 10). In 

other words, of each total power installed, a total percentage corresponds to each type of generation gi .

	
s gi

gi s
gi

UL
RT

EROI

  
  

=  	 (9)

	
s

s gi
gi s

T

P
AP

P

  
  

  
=  	 (10)

It is observed that the systemic EROI depends on the EROI of each generation source and therefore on the 
recovery time RT. Then, when the EROI increases, the systemic EROI also increases.

4.2. Carbon dioxide emissions

Defining the 2CO  emissions for each type of generation, the Equation 11, Equation 12 and Equation 13 
are obtained in this research:

	

s s
gi gi

2
2 s

T

EO EI
  

P

s
gigi

CO EQCO ef
MW

      
  

  

 
+    = ⋅  
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Then, the energy obtained is replaced and the Equation 14 is obtained.
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Then, the monthly emissions of all power sources gi  are added and the Equation 15 is obtained. The power 
sources are: wind, photovoltaic, hydraulic, biomass, fossil and nuclear.
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It is observed in Equation 15 that: as there is an increase in the EROI, the 2CO  emissions are lower, since 
there is a greater energy and economic profitability. Therefore, the sources that have a better EROI will have a 
lower associated investment cost.

4.3. Economic cost

The monthly cost is taken, instead of taking the total cost, since the energy matrix is ​​in permanent change 
(investing and disinvesting in generation permanently). The cost is referred to the total installed power, to make 
it independent of it. The Discounted Cash Flow (DCF) method was used (Camargo et al., 2018; Bogdanov et al, 
2021) which is showed in Equation 16.
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DCF consists of estimating foreseeable earnings Cash Flow  and discount, using a discount rate dt , the 
present value. dt  corresponds to the discount rate of the project studied which depends on various factors: 
country risk, US rate, and project risk. In renewable energy and electrical projects, the rate is usually around 
10% (Camargo et al., 2018). Defining the investment cost for each type of generation below, the Equation 17 
is obtained:
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 	 (17)

Where K  is a constant to calculate the cost equivalent of the energy balance made. To do this, the hours in a 
month, the ETO units and the oil price are considered. The K  value is obtained as:

	 51 ETO30 24 75 7.6 2.3 10
1.7

h USD barrel USDK day
day MWh barrel ETO MWh
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 	 (18)

A capital recovery factor giCRF  is defined, in order to obtain the cost corresponding to stage s considered 
(Camargo et al., 2018; Bogdanov et al., 2021).
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There is a permanent investment and this is considered in the cash flow. The monthly cost is given by 
Equation 20.
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Dividing the cost by the total installed power 
s

TP    the Equation 21 is obtained:
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k
giAP    is replaced in Equation 21 and the Equation 22 is obtained.
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Equation 22 shows that: as there is an increase in the EROI, the investment cost is lower, since there is a greater 
economic profitability. Therefore, the sources that have a better EROI will have a lower associated investment cost.

4.4. Restriction on renewable generation

According to the indices studied, the methodology should choose the sources that have the highest EROI 
(renewable or non-renewable), which would be an inconvenient. Therefore, a restriction on investment in 
renewables is added, which must be maximized (Equation 23). This expression calculates the total proportion 
of renewable generation with respect to the total installed power.

	
{ }

s

  

RP
gi

s
P

gi Renewable

A       
=  

 ∑
ò
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4.5. Dynamic Growth Allocation Model (DGAM)

The allocation or assigned proportion of the growth in installed power the Equation 24 is defined, corresponding 
to each type of generation. In case of being the unit, it means that all the investment was allocated in that type 
of generation gi  and stage s . Then, it is presented mathematically the power growth allocation per generator the 
Equation 25 is defined, power growth per generator Equation 26 is defined and total power growth Equation 
27 is defined as follows below:
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From the expressions of Equation 24, Equation 25, Equation 26 and Equation 27, the Equation 28 and 
Equation 29 are obtained as follows below:
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From this expression, the assignment or search variable s
giX    (EPSO search vector) used for optimization is:

	 s s
X A Pgi gi
      = ∆  	 (30)

Then the growth by generation sector is given by Equation 31.
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It is to be noted that the Equation 32 and Equation 33 must be satisfied.
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Since s
giX    is a random variable, it is normalized Equation 44, which allows a proportional distribution of the 

expected investment.

5. Simulation of a Real Energy Matrix

5.1. Parameters

Table 2 presents the main parameters of the generators: EROI, useful life, charge, efficiency emissions and 
recovery factor. The nuclear source has the best EROI, while the Photovoltaic Solar Energy hast the worst EROI. 
This is due in part to service life, load factors, and energy expenditures in the life cycle. From these results, it 
is observed that the most convenient source is nuclear. This would be the case if the restriction of renewable 
energy and the times associated with the production chain did not exist. However, this is an important aspect 
that will explain the results analyzed in the next subsections.

Table 2. Parameters associated with each type of generation used (Wind, Solar photovoltaic, Hydraulic, Biomass, Fossil and 
Nuclear).

Power Source EROI [u] Useful life [y] Load factor [u] Efficiency [u]

Emissions factor 

2 
  

t CO  EQ
MW

Wind Energy 4.11 25 0.37 0.8 0.162

Photovoltaic Energy 3.59 25 0.24 0.65 0.3807

Hydraulic Energy 6.63 60 0.69 0.8 0.0405

Biomass Energy 4.54 15 0.71 0.32 0.081

Fossil Energy 4.30 15 0.89 0.35 0.81

Nuclear Energy 9.61 40 0.72 0.3 0.0405
Source: The Author.
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Biomass has high increases since it has a good EROI and the fact that the emitted emissions are offset. 
A decrease in the proportion of the composition in Hydraulic and Fossil generation in the electrical matrix is ​​
observed in all scenarios: they fall between a third and a quarter of their value, approximately. This is justified by 
the economic and environmental inconvenience, as will be seen in the analysis of the scenarios. The final Nuclear 
composition in all scenarios is high, first of all, because Nuclear Energy have a good EROI, which is at least 
two times that of the remaining sources. Second, its levels of costs and resulting emissions are lower. Since the 
optimal scenario was obtained from the nuclear scenario, both bear some similarity in the final electrical matrix.

Figure 3 presents the electrical matrix in [%] of the Optimal Scenario. A bar graph shows how the proportion 
of each generation source in the Argentine electricity matrix varies over the 15 years studied. Figure 3 shows 
the progressive growth of nuclear and renewable energy, and the disinvestment in fossil energy. Given that 

5.2. Energy transition

Different (optimized) scenarios were proposed that favor each type of generation used (Wind, Solar photovoltaic, 
Hydraulic, Biomass, Fossil and Nuclear). Each of these scenarios were optimized using the methodology proposed 
in this article. The most satisfactory scenario was obtained based on the best of the six scenarios based on each 
renewable source.

Table 3 presents the initial and final composition (for each scenario) of the electrical matrix according to 
the sources used. Each of them was optimized using the same procedure, limiting the search space in order to 
favor their assignment. In their respective favorable scenarios, the following variations are observed: Wind Energy 
(from 4% to 14%), Photovoltaic Energy (from 1% to 9%), Hydraulic Energy (from 31% to 27%), Biomass Energy 
(from 1% to 14%), Fossil Energy (from 31% to 36%) and Nuclear Energy (from 6% to 31%). Additionally, Wind, 
Photovoltaic and Biomass Energy grow considerably in their favorable scenarios.

Table 3. Composition of the Argentine electricity matrix, according to the scenarios proposed.

Power Source
Initial 

Scenario
Wind 

Scenario
Photovoltaic 

Scenario
Hydraulic 
Scenario

Biomass 
Scenario

Fossil 
Scenario

Nuclear 
Scenario

Optimal 
Scenario

Wind Energy 4% 14% 3% 10% 9% 12% 9% 9%

Photovoltaic Energy 1% 1% 9% 2% 1% 2% 2% 2%

Hydraulic Energy 31% 26% 26% 27% 26% 18% 18% 18%

Biomass Energy 1% 6% 7% 9% 14% 3% 8% 9%

Fossil Energy 58% 30% 30% 30% 30% 36% 31% 31%

Nuclear Energy 6% 22% 17% 15% 17% 20% 31% 30%

Total Energy 100% 100% 100% 100% 100% 100% 100% 100%
Source: The Authors.

Figure 3. Electrical matrix (%) vs. time in years for the Optimal Scenario. Source: The author.
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nuclear power plants take many years to build, their growth in installed power has a certain inertia. In contrast, 
renewable generation has shorter life cycle times. The investment in nuclear energy is due to its good EROI, 
which contributes to a good systemic EROI, low cost and emissions. For this reason, at the beginning of 15 years, 
they invest in other types of generation. In this sense, the generation source that is promoted in the short and 
medium term is wind energy and biomass. Wind power have less construction time and a high or intermediate 
EROI, depending on the location.

Figure 4, Figure 5, Figure 6 and Figure 7 show the EROI, Emissions and Economic cost vs. time, respectively. 
In these graphs, the upper and lower limits that build the fuzzy indices are shown. In cases where the indices 
must be maximized (EROI and RP), the upper limit constitutes the values ​​of full satisfaction and vice versa 
for the lower limit. In cases where the indices must be minimized (CO2 and COST), the lower limit constitutes 
the values ​​of full satisfaction and vice versa for the upper limit. This case is valid for any assigned weight. The 
intermediate values ​​correspond to a level of satisfaction intermediate between zero and one, depending on the 
assigned exponential weight.

Figure 4. Energy Returned On Investment (EROI) vs. time [years] for the Optimal Scenario. Source: The Authors.

Figure 5. Emission 2 2CO  t CO  EQ / MW    vs. time years   , for the Optimal Scenario. Source: The Author.
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Figure 4 shows the EROI graph for each type of scenario studied and the upper and lower limits used for 
fuzzy functions. It is observed that the scenario with the lowest global energy profitability corresponds to 
that of Fossil Scenario, which remains approximately constant. Additionally, in this scenario the best EROI was 
obtained by building nuclear generators. Biomass generation has interesting characteristics, such as security of 
supply, provided that the availability of the input is guaranteed and an intermediate EROI. It is observed that 
the most favorable in the very long term (10 to 15 years) is the transition towards nuclear energy which have 
the best EROI and service safety.

Figure 5 shows the monthly emission levels in tons of 2CO  equivalent for the studied scenarios. Logically, 
it was obtained that the scenario that produced the greatest amount of emissions is the Fossil Scenario, and the 
one with the least emissions is Optimal Scenario. The other scenarios obtained similar levels. All the proposed 
scenarios are closer to the lower limit than the upper limit, which makes the results promising. This implies 
that the methodology seeks to offset emissions that are produced by sources with poor EROI and/or a high 
emissions factor. It does this by searching for complementary sources that have a low emission factor and/or 

Figure 6. Investment Cost [USD/MW] vs. time in years, for the Optimal Scenario. Source: The Author.

Figure 7. Investment Cost [USD/MW] vs. time in years, for the Optimal Scenario. Source: The Author.
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When the value is one unit it means that the index has reached or even improved the established limits 
(upper or lower). The limit wanted depends on whether the decision-maker wants to maximize or minimize the 
index in question. If the value is null it means that the corresponding index reached the opposite limit and that 
it is unwanted by the decision maker. In turn, this level of satisfaction is influenced by the weights used, which 
produces an over/undervaluation of the indices (expansion or contraction). It is observed that all the proposed 
optimization indices have a good level of acceptance. The renewable generation restriction was almost fully 
satisfied, while the index with the lowest level of satisfaction was the EROI. This is logical according to what 
was analyzed in Section 4. The effect of the algebraic product t-norm is observed which is stricter than the 
t-min. The graphed values correspond to the level of acceptance of each optimized index by the decision maker.

The graphs of confluence function that were obtained by the different scenarios studied are presented 
in Figure 9. That is, the final curves are plotted in a similar way to that shown in Figure 8, this is for each 

a high EROI. The source that meets these conditions and was chosen for all scenarios is nuclear (see Table 3). 
Nuclear generation has an EROI greater than 9 units (see Table 1), that is, the systemic EROI could grow by 
50% if only nuclear power plants were installed and all other generation sources were dismantled. This is not 
allowed due to the restriction of renewable generation and given that any alternative that results in better 
indices than the desired ones are indifferent for the proposed fuzzy modeling.

The investment cost in USD/MW is presented in Figure 6. Likewise, the investment in nuclear energy (to 
a greater or lesser extent) in all the scenarios offset the increase in cost by opting for less profitable sources.

There are three scenarios that obtained costs totally or partially lower than the desired cost: Fossil, Nuclear 
and optimal. The other scenarios, which correspond to renewable sources, have intermediate costs. It is observed 
that the transition with the lowest cost corresponds to the Nuclear Scenario, and the one with the highest cost 
is the Hydraulic Scenario. Fossil and Photovoltaic Scenario are among the lowest cost scenarios.

Figure 7 shows the attribute associated with the percentage of participation of renewable sought, which 
is increasing from the starting point to that obtained. Except for the fossil and nuclear scenario, the scenarios 
exceed the desired upper limit (20% renewable target). The optimal scenario sought to be as close to it as 
possible, with the objective of relying on other sources and minimizing the investment cost.

5.3. Fuzzy Functions

Figure 8 shows the Fuzzy Function associated with the attributes to be optimized (EROI, CO2, Investment 
Cost and Renewable Participation) and their confluence, for the optimal scenario and the confluence of these 
fuzzy functions.

Figure 8. Fuzzy Function associated with the attributes to be optimized and their confluence. Source: The Author.
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proposed scenario. The optimal scenario has a better fitness function per stage than the other scenarios. 
The Nuclear Scenario begins with low fitness values, due to inertia in its growth, however its final value is 
higher than all other scenarios. The Optimal and Nuclear based scenarios are the ones with the best fuzzy 
functions, because to the high emission levels and in the second to the high levels of investment cost. The 
Biomass Scenario possesses an aptitude in third place with respect to the Optimal and Nuclear Scenario, 
because to its good load factor, low emission factor and intermediate EROI. The Optimal Scenario has a 
good aptitude in most of the stages, only surpassed in the final stage by the Photovoltaic scenario, which 
has a final aptitude superior to the other generation sources. In second place, the nuclear scenarios have 
the best confluences of the analyzed attributes. This is because the optimal scenario was obtained using the 
nuclear scenario as a starting point. Both scenarios have a high presence of nuclear energy and an adequate 
combination of the other resources.

5.4. Evolutive Particle Swarm Optimization (EPSO)

The EPSO metaheuristic was applied with 50 particles and 100 iterations to each scenario. Figure 10 shows 
the executions for this model for the transition scenarios. The total fitness function is shown, which corresponds 
to the confluence considering three stages for each scenario.

The number of particles and iterations were adjusted ad hoc, performing a large number of simulations 
and analyzing the execution time and quality of the solution obtained. Additionally, it is important to 
note that two mutations are made for each particle, therefore the total number of particles is 150. Also, 
from this analysis it was seen that there are no considerable improvements after 100 iterations. This 
can be developed in depth in future publications. The total time was 950 seconds, that is, 15 minutes 
and 40 seconds. That is, each optimization was done in about 2 minutes and 15 seconds. The EPSO 
operating mechanism obtained good results, although substantial improvements are obtained in the 
first 50 iterations. This is because PSO-based metaheuristics have difficulty finding better solutions in 
advanced iterations.

The Optimal Scenario was obtained from the scenario with the best fitness function (Figure 10). It is 
observed that the order of scenarios according to the fitness function obtained was the following (from 
the best to the worst): Optimal, Nuclear, Biomass, Wind, Solar photovoltaic and Fossil. It is observed how 
the optimal and nuclear scenarios stand out notably from the rest, since both scenarios are similar. In 
them, considerable investment is made in nuclear, wind and biomass energy. This makes sense according 
to what was analyzed in the previous sections, due to the EROI, 2CO  emissions, cost and Proportion 
in renewable.

Figure 9. Confluence of the fuzzy functions for each scenario. Source: The Author.
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6. Conclusions

The problem of energy transition is extensive, complex and multidisciplinary, and it cannot be resolved using 
conventional methods, due to the existence of multiple optimization objectives (which are also non-linear) 
and the presence of uncertainty in their valuation. To obtain the optimal alternative that maximizes the fuzzy 
fitness function, “Evolutionary Particle Swarm Optimization” (EPSO) was applied in each scenario. It would not 
be possible to easily solve this problem with mathematical programming techniques. The search space of the 
present problem is continuous and the modeling is non-linear, dynamic and multi-objective. This makes linear, 
mixed, and dynamic programming unsuitable. The fact that the search space is continuous requires that it be 
discretized or transformed into another simpler search space for these alternatives to be valid. This can cause good 
solutions to be lost. The fact that there are multiple objectives complicates metric compatibility, so the subjective 
assessment of each optimized index must be used. This makes the optimal solution up to the decision maker.

The present proposal does not need to resort to linearizing, discretizing and a priori evaluations of the 
objectives, it only the weights produced by the AHP. A novel dynamic model of allocation DGAM, sustainability 
indices and fuzzy decision model were used in the present work. It was observed that a necessary time was required 
for the expansion of the existing production, according to the investment allocation model. The methodology 
proposed in this paper produces good results for the problem of finding the best investment alternative in each 
generation source. The main practical implications of this combination are:

•	 The EROI is a good indicator of energy efficiency and sustainability, since it encompasses the energy cost-benefit 
and can be used to estimate the economic cost and emissions. These are determined by installed power, load 
factor, useful life, performance, emissions factor, and discount rate;

•	 The proportion of nuclear, wind and biomass generation favors a sustainable electricity matrix. The scenarios 
based on nuclear generation were those that obtained the best results, followed by wind and biomass generation. 
The investment in hydraulics has high associated investment costs, together with its associated time, makes it 
inconvenient. The scenario with investment in Fossil was the least satisfactory regarding 2CO  emissions, which 
is logical. The optimal composition of renewable energies (Solar, Wind and Biomass) reaches the target of 20%, 
and considering the hydraulic energy, this reaches the third part of the Electrical Matrix;

•	 Total installed power follows the growth trend of the Argentine Energy System, and the composition of the 
final Electrical Matrix requires strong state policies, broad consensus with the different sectors of society, and 
awareness campaigns. The time required for the energy transition depends on the energy source (more time is 
required for nuclear generation);

Figure 10. Confluence of the fuzzy functions for each analyzed scenario. Source: The Author.



Production, 32, e20210132, 2022 | DOI: 10.1590/0103-6513.20210132 18/25

•	 The EPSO metaheuristic works very well for these types of problems, with almost continuous search space. Its 
good exploration capacity allowed finding solutions with a high function of aptitude, precision and robustness. 
The fuzzy decision model allows the construction of an objective function, without the needing of define 
linear functions and constraints or economically value the attributes. The decision maker must determine only 
the exponential weights according to the AHP. The fuzzy functions allowed to guide the metaheuristic to the 
improvement of the proposed solution. The optimal solution in some indices achieved the desired maximum or 
minimum values;

•	 Novel environmental assessment mechanisms can be made from this work.

The work was validated by comparing with BAU and CR scenarios (Annex 4). Additionally, the results were 
analyzed using expert knowledge and international standards. In this way, it was verified that the results 
were consistent. However, variations in the price of oil or in energy costs are not considered. Variations in the 
production chain or technological improvements that seek to reduce energy consumption are not considered 
either. Changes in energy demand were also not considered, since it requires cultural changes. Future work may 
take these aspects into account, as well as the inclusion of uncertainty in the life cycle analysis and this would 
allow detailing the procedure used.
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Annex 1. Mathematical modelling.

The model of this research is based on the characteristics of energy consumption in extraction and production 
in the time (15 years or 180 months). s′  consider the moment when the life cycle begins. Helper functions 
are used (exponential and normal functions) and auxiliary functions ( ( )1f s,s′ , ( )2f s,s′  and ( )3f s,s′ ). Using this 
algorithm, from the data obtained from the LCA, the growth of installed power, energy obtained and invested 
can be modelled.

BEGIN /* Exponential growth model for the evolution of installed power */
Input: LCA and Generator technical data, Stage s  and energy power sector gi.
Outputs: Total installed power s

giP    and assignment s
giAP   .

Step 1: Calculate auxiliary functions ( )1 ,f s s′ , ( )2 ,f s s′  and ( )3 ,f s s′
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Step 2: Calculate the growth factor.
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Step 3: Calculate the power invested s
giPO    and power obtained s

giPI     per stage s .
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Step 4: Calculate the total installed power of the system with the depreciation depf
 of installed power.

	 ( )1 1s ss
gi depgi giP P f PO   −   = ⋅ − +  	 (40)

Step 5: Calculate the proportion of the electrical matrix, according to each generation source  gi .

	
s

s gi
gi s
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P
AP
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=  	 (41)
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END WHILE
END PROGRAM
The time inv prs' T T+ +  (months) represents the time elapsed between the start of the generator’s manufacturing 

life cycle, until it comes into operation (contemplating extraction, production and installation).
The time inv prs' T T UL+ + +  (months) considers the time elapsed until the generator reaches its useful life.
The interval pr pr invs T ,   s T T + + + ′ ′  (months) considers the time that must elapse between when the extraction 

of the mineral begins and when it ends, where the energy 2E  is invested. The mining extraction and processing 

process is modelled by a normal function with mean equal to inv
pr

Ts' T
2

+ +  and standard deviation equal to invT
6

.

The interval prs ,   s T + ′ ′  considers the time between when the manufacturing process starts and when the 

Life Cycle ends, where the energy 3E  is invested. The exponential function, whit growth rate r, considers the 
energy expenditure in manufacturing, being of a high value at the beginning and progressively decreasing. 
Future publications will detail this algorithm in greater depth.

BEGIN /* Algorithm of Objective Functions and Constraints */
Data: Power and technical data for each generation source gi .
Input: Particle i X  corresponding to swarm X  (investment allocation), for each generation source studied.
Output: Objective and Restriction Functions by stage during the period analyzed  S .
FOR s 1:S=  and  1: 6gi =   DO
Step 1: Normalization of the search vector iX  used to assign the generated power:

	

s
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 	 (42)

BEGIN /* Iterative Electric Matrix Correction Model */
Step 2: Start program Dynamic Growth Allocation Model (DGAM).
END
Step 3: calculate the Energy Returned On Investment (EROI) of the System.
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Step 4: calculate total emissions of 2CO  of the System.
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Step 5: calculate total cost of the System.
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Step 6: calculate the proportion of the electrical matrix in renewable.
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END FOR
END PROGRAM
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Annex 2. Fuzzy Decision Making.

The transformation algorithm to the fuzzy domain and confluence is presented, according to the FDM. 
In Equation 48 and Equation 49, the mEW   are exponential weights (for each criteria m), whose effect is to 
expand ( mEW 1< ) and contract ( mEW 1> ) the fuzzy functions (Camargo et al., 2018). If the objective is to 
be maximized, the function has a positive slope, which causes the upper limit to be sought (and vice versa for 
the case of minimization). The exponential weights are obtained from the AHP. The attributes associated with 
EROI and CO2 (Annex 1) will have a dilation in their fuzzy functions ( EW 0.57=  for both), while the others will 
have no effect ( 1EW = ). The limits and fuzzy functions are dynamic and they are calculated taking into account 
extreme energy scenarios. To simplify the algorithm, an auxiliary variable is added to establish the preference 
values ​​in the fuzzy limits, depending on whether it is maximization or minimization.

BEGIN /* Fuzzy Decision Making */
Data: Objective and Constraints mU , Exponential Weights mEW  (AHP), Lower Low

mU  and Upper Up
mU  Limits.

FOR ( m 1: 4=  and s 1:S= ) DO
Step 1: Calculate the auxiliary variable a.
IF Minimization of attribute m  THEN

	 1a =  	 (47)

ELSE IF Maximization of attribute m  THEN

	 0a =  	 (48)

END IF
Step 2: Calculate the states  mµ  using the next function.
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Step 3: Calculate the weights between stages s, using the t-norm used (Algebraic Product).

	 1 1,s s s s s
t t ttµ µ µ µ µ− −                   = = ⋅ 

 
 	 (50)

END
END PROGRAM

Annex 3. Evolutionary Particle Swarm Optimization EPSO

EPSO takes the equation of motion of the PSO (Kadkol, 2021) and adapts it in a similar way to the method 
of genetic algorithms (Equation 53 and Equation 54). In each k -iteration, the evolutionary operators of 
mutation (*), selection and combination are applied them to the parameters (Equation 51) and global optimum 
(Equation 52) (Miranda et al., 2019). ( )N 0,1  is a random variable with Gaussian Distribution of mean equal to 
zero and standard deviation equal to the unity, the comma is to separate the two said parameters. Section 2 
describes each variable and parameter used in the EPSO metaheuristics.

BEGIN /* Evolutionary Particle Swarm Optimization EPSO*/

Step 1: Initialize k
iX   , k

Gb   , 
k

ib    at zero, random values or a good value according to the designer’s criteria.

Step 2: Calculate fitness functions (Annex 1): k
i f X   

 
 

 and k
if b   

 
 

.
FOR ( ( k 1:100= ) and ( 1: 50i = )) DO
Step 3: Mutate parameters (two mutations per particle): * k

Ii w    , 
* k
Iiw    ,

* k
Si w    . A normal function with mean 

equal to zero and standard deviation equal to unity is used, both parameters of the Gaussian Distribution are 
separated by a comma.
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	 ( )* 1 *
, , , ,    1   0,1k k

i I C S i I C Sw w Nσ+      
      

 = ⋅ + ⋅   	 (51)

Step 4: Mutate better position of the swarm (two mutations per particle): 
* k
Gb   .

	 ( )* k 1 * k * k
G G iNb b w N 0,1+          = + ⋅  	 (52)

Step 5: Equation and rule of motion, respectively:

	
k 1 * k k * k k k * k * k k
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 	 (53)

	 k 1 k k 1
i i iX X V+ +          = +  	 (54)

Step 6: Limit position 
k 1

iX +    and speed 
k 1

iV +   .

Step 7: Stochastic tournament: looking for the best particle or its mutation * k
Gb    . In the process, the fitness 

functions k
i f X   

 
 

, 
* k
Gf b    

 
 

 are calculated.

Step 8: Compare and update the best positions seen by the particles
k

i b     and by the swarm k
Gb  .

	
k k k 1 k 1

i i i if X f b b X+ +                 
> ⇒ =   

   
 	 (55)

	 k * k * k k
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   

 	 (56)

END FOR

END PROGRAM

Annex 4. Energy transition proposed in the state of the art

The scenarios, graphed again in this work, of the Argentine Chamber of Renewable Energies (CADER) are 
presented in Figure A1, Figure A2 and Figure A3.

The main criteria to consider in the BAU scenario (Figure A1) are the following:

➢ The percentages of contribution of each source to the consumption of each sector demanded remains 
constant over time.

➢ The electricity balance remains constant over time.

➢ Electricity generation occurs with an average yield of generation according to 2015 data.

➢ The contribution of nuclear energy remains constant depending on the data from 2015, since the installed 
power cannot be increased.

➢ The increase that nuclear power should provide is allocated to renewables.

The main criteria to consider in the CR scenario (Figure A2) are the following:

➢ Changes in consumption habits are proposed, which causes the demand for energy to decrease.

➢ Electricity generation occurs with an average yield of generation according to 2015 data.

➢ The contribution of nuclear energy remains constant depending on the data from 2015, since the installed 
power cannot be increased.

➢ The increase that nuclear power should provide is allocated to renewables.
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Figure A1. Electrical matrix, for the Business as usual (BAU). Source: The Authors.

Figure A3 shows the composition of the electrical matrix in the BAU and CR scenarios. Currently, the 
Argentine Primary Energy Matrix is predominantly composed of fossil fuels (see Figure A3) and presents 
two peculiarities: the high contribution of natural gas (54%) and the very low participation of mineral coal 
(less than 1%). There is a high and growing dependence on fuels, as a result of generation dispatch with a 
growing fossil predominance and high inefficiency in transportation systems. The current construction of 
gas turbine plants, combined cycles, etc., decreases the import of electrical energy, but increases the import 
of these fuels, and therefore the total balance is not improved. The CR (see Figure A3) scenario seeks a more 
drastic reduction in fossil fuels than the BAU scenario. However, neither of the two scenarios contemplates 
a growth in nuclear energy.

Figure A2. Electrical matrix, for the Business as usual (BAU). Source: The Authors.
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Figure A3. Electrical matrix for the Business as usual (BAU) and Collective Responsibility (CR). Source: The Authors.


