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1. Introduction

The electric vehicle (EV) market has been constantly growing (and is expected to continue doing so) due to some 
environmental policies and the acceptance from industries and consumers (International Energy Agency, 2020). 
However, EVs face certain technical challenges such as having overall less autonomy than internal combustion 
vehicles, lengthy charging times and expensive batteries. Even though the cost of these batteries has been 
decreasing with the years, it can still account for around 30% of the total cost of an EV (Bullard, 2019). This 
issue takes even more importance when considering another problem of such batteries, their degradation. Battery 
degradation is a phenomenon in which a battery’s maximum capacity decreases due to its charging cycles and 
its storing conditions (Barré et al., 2013). Transport operations with EVs must account for these limitations to 
be technically feasible and economically viable.

Most EVs operate in urban areas where their technical limitations are less impactful than in rural ones. Additionally, 
urban areas tend to have more reliable energy grids than rural ones (Krupp, 2010), which makes it easier for EVs to be 
charged. However, recent technological advances such as improved battery energy densities (Choi & Aurbach, 2016) 
(which increase the driving range of EVs) or the use of Photovoltaic Charging Stations (PVCSs) allow EVs to 
operate in rural areas. PVCSs as their name implies are charging stations that use photovoltaic energy during their 
operation (Shepero et al., 2020). This energy may supplement the one from the electric grid to help mitigating the 
reliability issues on rural areas. One interesting application of electric transportation in rural areas is the fluvial one. 
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This type of transportation is crucial in certain regions where terrestrial transportation is infeasible, such as 
certain areas of the Amazonía (Jaimurzina et al., 2017). Some electric fluvial operations have been implemented 
in Latin America in recent years. Jaimurzina et al. (2017) evaluated the feasibility of using Electric Boats (EBs) 
for passenger transportation in the Putumayo River in routes of up to 60 km. Project Kara Solar connected 
multiple indigenous communities in Ecuador using a solar powered EB and aim at installing another one in 
Peru (Giménez, 2017).

Given that some electric fluvial operations have been implemented in the past couple of years, optimization 
problems in transportation regarding EBs have recently been researched in the literature. These problems can 
be faced from two different perspectives, a strategic and an operational one. Strategic problems determine 
the required infrastructure to support electric fluvial operations, making decisions such as the location and 
sizing of charging stations or the battery capacity of an EB. From this perspective, Zhang et al. (2017) used 
a mixed integer programming formulation to determine the location and service capacity of some charging 
stations to supply a given demand of EBs. Considering PVCSs, Villa  et  al. (2020) used a mixed integer 
linear programming formulation to install non-grid connected PVCSs to supply an EB during a given route, 
while also selecting the battery capacity of the boat. Solving a similar problem, Vélez et al. (2020) used a 
constructive heuristic to also select the battery capacity of an EB and locate the same type of PVCSs, while 
also sizing their photovoltaic (PV) components. Expanding on these works, Vélez & Montoya (2023) used a 
two-stage simulation-based branch-and-bound algorithm to determine the battery capacity of an EB, the 
location and sizing of PVCSs and non-PV charging stations. Their objective function was the sum of the 
investment costs plus the ones needed to operate the system in a simulation of multiple years-worth of the 
EB’s operation. For that simulation, the authors considered the number of passengers, the solar irradiance 
and the possibility of having power outages as stochastic variables. Operational problems determine how 
to operate an EB regarding decisions like its traveling speed, charging decisions or the scheduling of the 
operation, given an existing infrastructure. To our best knowledge, the first work to consider this perspective 
was Villa et al. (2019), who proposed the Electric Boat Charging Problem (EBCP). This problem determines 
the average speeds for an EB when traversing a set of segments in which a fluvial route is divided and 
the charging decisions of the EB. The charging decisions consist of where and when to charge, how much 
energy to charge, and which charging power to use. The objective function of the problem is to minimize 
the charging and the EB’s battery degradation costs. For the battery degradation, only the component 
related to the cycling of the battery is considered, as it is the one that depends on the EB’s operation. 
The EBCP solves a static scenario of the fluvial operation before the beginning of such operation. One of 
the main parameters of the problem is an estimation of the energy consumption of the EB as a function of 
its speed. However, the actual energy consumption that an EB experiences can be significantly affected by 
external factors that are hard to predict, such as waves generated by other boats or sediment in the water. 
Additionally, the authors considered only non-PV charging stations. However, given that fluvial transport 
operations are usually performed in rural areas where electric grids may be unreliable, PVCSs are more 
common and applicable in these areas. Due to these two reasons, the solution of the EBCP may not be 
properly translated to the actual operation of an EB.

To face the aforementioned issues of the EBCP, in this research we propose the Dynamic Electric Boat 
Charging Problem (DEBCP). This problem dynamically reevaluates its solution, updating the energy level of 
the EB’s battery as new information of the energy consumption is known. Additionally, the problem considers 
grid connected PVCSs to charge the EB. As the solar irradiance is a stochastic variable due to some weather 
phenomena, we also reevaluate the solution as new information of such irradiance is available. For this problem 
we consider the same objective function of the EBCP, to minimize the charging and battery degradation costs. 
Our charging cost is given by the amount of energy to purchase from the grid. A feasible solution to the problem 
must meet the energy autonomy of the EB and comply with a set of time windows for the EB to depart from 
certain nodes of the fluvial route and a maximum route time. For this problem we considered that such route 
is a round trip. To solve this problem, we propose a rolling horizon genetic algorithm. The rolling horizon 
algorithm dynamically recalculates the solution of the DEBCP and the Genetic Algorithm (GA) makes the speed 
and charging decisions. For the charging decisions, the GA uses an embedded heuristic method with some 
charging policies. We perform some computational experiments to evaluate our solution method. Considering 
that the speed and charging decisions are made by the GA we first compare its performance against a Mixed 
Integer Linear Programming (MILP) formulation based on that of Villa et al. (2019). The results show that 
the GA provides competitive solutions. Then, we assess the impact of the recalculations of the solution in the 
DEBCP by comparing it to a scenario where a static solution is followed. Results show that such recalculations 
can either reduce the cost of the solution when possible or correct the operation when required.
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The remainder of the paper is organized as follows. Section 2 presents a literature review of optimization 
problems with dynamic decisions in transportation topics as well as problems that make charging and speed 
decisions for EVs. Section 3 describes some important technical aspects of the problem. Section 4 formally 
introduces the DEBCP. Section 5 presents our solution method. Section 6 shows the computational experiments. 
Finally, Section 7 concludes the paper.

2. Literature review

To our best knowledge, operational optimization problems with EBs are relatively new. Because of that, 
this literature review focuses on transportation problems that consider components of the DEBCP, regardless 
of which type of vehicle the problem considers. Such components are the dynamic part of the problem, the 
charging, and the speeds decisions.

Dynamic transportation problems have been widely studied in the literature. For example, Pillac et al. (2013) made 
a review of dynamic vehicle routing problems. The authors mentioned four different perspectives to face the dynamic 
component of the problems: periodic or continuous reoptimization, stochastic modeling and sampling. A common 
approach to perform periodic reoptimization is using a rolling horizon algorithm, which is the approach we took 
on this research. These algorithms divide a problem into multiple time slots which are each solved separately using 
some information taken from previous time slots or future ones via predictions (Bischi et al., 2019). The following 
works used a rolling horizon algorithm to face the dynamic nature of their problems. For a dynamic green bicycle 
repositioning problem, Shui & Szeto (2018) used a hybrid algorithm of rolling horizon and artificial bee colony to 
minimize a penalty cost related the unmet demand of bicycles, the fueling and emission costs of the vehicle that 
relocates them. The authors define a set of time slots for the operation, solving a scenario with updated parameters 
in each time slot. For a bus dispatching problem, Gkiotsalitis & Van Berkum (2020) used a rolling horizon algorithm 
with a novel nonlinear formulation to minimize the variance of the headway for a set of bus routes prioritized by 
their number of passengers. The authors updated the solution of the problem each time a new route is about to be 
dispatched. Recently, Kumar & Khani (2021) used a rolling horizon with an optimal matching algorithm to maximize 
either the total number of matches or the vehicle-hours savings for a ridesharing and scheduled-based transit system. 
To save computational time, the authors run their algorithm only for new riders and drivers during each time slot.

One of the main characteristics of most transportation problems with EVs is the inclusion of charging decisions. 
These decisions may include when and where to charge, how much energy to charge or which charging power 
to use. A review of optimization problems in the topic of charging EVs was made by Rahman et al. (2016). 
The authors reviewed works with different types of objective functions such as charging station installations costs 
from a strategic perspective as well as the charging costs, life cycle costs of the stations, average energy level of 
the EVs being charged or maximizing the use of renewable energies from an operational perspective. The authors 
emphasize the use of renewable energy sources for future optimization problems in EV charging topics. Considering 
the large number of works in the topic of optimization of EV charging processes and the importance of renewable 
energy sources, we focused this topic of the literature review in problems that use PVCSs, as we do in the present 
work. Aiming to minimize the charging costs of some groups of EVs, Seddig et al. (2017) used three different 
optimization methods to reschedule the charging operations of EVs with PVCSs. They considered that the cost of 
the energy to purchase from the grid was hour-dependent and different available hours in which each EV could 
be rescheduled. Recently, Li et al. (2020) used a chance constrained programming method to also minimize the 
cost of using PVCSs to charge EVs. The authors considered different charging strategies, such as using energy 
storage systems and selling energy back to the grid via PV generation or vehicle to grid. Accounting for the battery 
degradation of the EVs, Wu et al. (2020) used a Markov decision process to minimize the operational costs of 
PVCS. Such costs yet again included selling energy to the grid from the PV generation or from vehicle to grid. 
The authors additionally considered a compensation cost for the EVs due to the degradation of their batteries 
when using the vehicle to grid alternative and a penalization cost for not properly satisfying the charging demands.

The speed of an EV plays a significant role on its energy consumption, which is why selecting such speed is 
a crucial decision in certain operational problems. In one of such problems, Betancur et al. (2017) used a GA to 
optimize the speeds of a PV powered EV aiming to minimize the time it took to finish a race. Such race followed 
a fixed route which the authors divided into multiple segments, selecting the speed with which to traverse each of 
them. Probably the most similar research to ours is the EBCP of Villa et al. (2019). As mentioned before, the authors 
selected the speeds and charging decisions of an EB aiming to minimize the recharging and battery degradation 
costs using a MILP formulation. In a similar work to Villa et al. (2019) and our current research, Deschênes et al. 
(2020) used a MILP formulation to select the speeds and charging decisions of an EV during a fixed route. However, 
the authors did not consider the battery degradation or the use of different charging powers. They did however 
consider that the charging stations are not part of the fixed route and therefore required detours to be visited.
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As previously mentioned, our research extends the EBCP proposed by Villa et al. (2019) by adding the dynamic 
recalculation of the solution, time windows for the operation and the use of PVCSs. We consider that these additions 
allow the problem to respond to the inherent uncertainty of some estimated parameters of the operation while 
also reducing the cost of the solution and providing a more detailed schedule of the route timewise.

3. Technical aspects

To provide a better explanation of the DEBCP, in this section we perform a brief explanation of some 
technical aspects related to the problem. These aspects are the EB’s energy consumption, the PVCSs, how we 
estimated the solar irradiance, the way the battery degradation is modeled and the nonlinear charging function 
of electric batteries.

3.1. Energy consumption

The limited autonomy of EVs when compared to internal combustion vehicles is more impactful for EBs 
than for electric cars as the former consume around 12 to 18 times more energy to traverse the same distance 
(Candela, 2021). The energy consumption of an EB depends on different variables, two of the most important 
being the speed and weight of the vehicle (Minami & Yamachika, 2004). The weight of the EB in this research is a 
parameter composed by the weight of the hull, the equipment of the EB (including its battery) and the number of 
passengers currently aboard it. In the present work only the number of passengers may vary during the operation, 
but it is a known parameter. On the other hand, the speed of the EB is a decision variable of ours. This speed is the 
one measured relative to the water. For the actual speed of the EB relative to the ground, the river current is either 
added or subtracted depending on the flow of water. The consumption rate of the EB at a given speed remains 
the same while traveling in favor or against the current. However, as the speed of the EB is higher when traveling 
in favor of the river current, the energy consumption would be lower due to shorter travel times.

Some transportation problems with EVs require an estimation of the energy consumption of the vehicles to 
be performed (Villa & Montoya, 2018). For the DEBCP we require such estimation to be in terms on the weight 
and speed of the EB. There are multiple energy consumption models for boats in the literature. The model to 
select depends on whether the boat has a displacement or planing hull. The former type always displaces the 
same amount of water to float. The latter generates a lift force at certain speeds which decreases the displaced 
water and by extension the generated drag (Molland et al., 2017). The EB that we considered for our experiments 
had a planing hull. Therefore, we used the model of Savitsky (1964) to estimate the EB’s energy consumption. 
However, as such consumption is a parameter for the DEBCP, any other consumption model that depends on 
the speed and weight of the vehicle can be implemented in a future research.

3.2. Photovoltaic charging stations

As previously mentioned, PVCSs are an interesting addition to electric fluvial transport operations in rural 
areas where the electric grid is not reliable. This is because PVCSs can either supplement or entirely replace the 
energy from the grid with their own PV generation. The main components of a PVCS are its charging plug, 
PV panels, either a DC-DC converter or a DC-AC inverter and an optional battery which is often called energy 
storage system. Just like with every other type of charging station, PVCSs are divided into three levels given by 
their charging powers, with level 1 stations having the lowest powers and level 3 the highest ones (Forbes, 2021). 
As EBs need relatively large batteries due to their energy consumption, in this research we focused only on level 
3 PVCSs. All level 3 charging stations perform their charging in DC, therefore the following explanation reflects 
that. For the PV components, the PV panels are grouped up in arrays which are then connected to DC-DC 
converters. The output voltage of the PV arrays must match the charging voltage of the EV, something which 
can be achieved by either having large PV arrays, or by connecting them in series as in Macellari et al. (2013). 
Energy storage systems are sometimes used in PVCSs to store any surplus from the PV generation, which is crucial 
for non-gid connected PVCSs. However, it is not necessary for grid connected PVCSs to have such components, 
specially considering that they require a large initial investment and maintenance (Bhatti et al., 2016). Given 
that the PVCSs in the present work are indeed grid connected, we did not consider energy storage systems. 
For the energy flow, PVCSs prioritize using their own PV generation, buying energy from the grid only when 
required to supply the current energy demand of the EB. If the PV generation is large enough to supply the 
current charging demand at a given time, no energy is purchased from the grid. However, depending on the 
charging power, a great number of PV panels would be required for doing so.
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3.3. Solar irradiance

Solar irradiance (which is the input energy for PV generation) is the amount of light energy from the sun 
that hits a square meter of the Earth each second (National Aeronautics and Space Administration, 2009). The 
fraction of solar irradiance that reaches the Earth’s surface is stochastic due to weather related variables such as 
cloudiness (Ramakrishna & Scaglione, 2016). Because of that, such irradiance is often forecasted, which is what 
we do in this research. For doing so, we used a bidirectional long short-term memory artificial neural network 
implemented by Singh (2020). This is a type of memory based neural network that is trained using data presented 
both in a forward and reversed sequence to consider past and future information for each datum. Bidirectional 
long short-term memory artificial neural networks have given good results in the literature when forecasting 
weather variables such as solar irradiance (Patel et al., 2018). The training data for the neural network were 
taken from the National Solar Radiation Database (2023).

3.4. Battery degradation

As previously mentioned, battery degradation refers to a decrease in a battery maximum capacity. The literature 
divides battery degradation into two components referred to as calendar and cycling aging Barré et al. (2013). The 
former refers to the degradation given by the battery’s storage condition while the latter is due to its charging 
cycles. We only considered the cycling aging on this paper as it is the one that depends on the operation of the EB.

To include the battery degradation in our model, we implemented an approach similar to the one used by 
Villa et al. (2019). In that work the battery degradation depends on two components: the depth of discharge, and 
the charging power. The first component is explained in detail by Pelletier et al. (2017). They propose an approach 
to cost the battery degradation based on an experimental study by Han et al. (2014). The latter studied the number 
of charging cycles that a battery is able to perform for different depths of discharges. Then, the authors estimated 
a wear cost function per unit of energy either charged or discharged from the battery while its energy level is in 
between a set of intervals. Each interval is given a different degradation cost. This approach assumes that charging 
operations are performed using a domestic charger (i.e. it does not account for multiple charging powers).

In the topic of degradation due to different charging powers, Omar et al. (2014) studied the impact of 
using higher charging powers in a battery’s charging cycles when compared to a domestic one. To account 
for both the impact of the depth of discharge as well as the charging powers, Villa et al. (2019) penalizes the 
wear cost function proposed by Han et al. (2014) for each different charging power based on the findings of 
Omar et al. (2014). That is, different parameters of the wear cost function are considered for each charging 
power. As stated by Villa et al. (2019), this is a limited approach as it mixes two independent battery degradation 
studies. Nonetheless, our intention is simply to account for the impact of using different charging powers.

Figure 1 shows an example of a wear cost function for 16 kWh and 4,800 USD battery charged with either 
a 11 kW or 44 kW power. 10 intervals where selected, having each an equal length of 1.6 kWh. Values in the 
graph represent the degradation costs of charging 1 kWh with either of the charging powers when the current 
energy level of the battery falls within such intervals.

Figure 1. Wear cost function for a 16 kWh battery costing 4, 800USD charged with 11 kW and 44 kW charging powers.
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3.5. Nonlinear charging function

Charging functions for electric batteries model the relation between the charging time and energy level 
during a charging operation. To prevent such batteries from degrading due to overcharging, their charging 
process follows a nonlinear function called as constant current - constant voltage. During the constant current 
phase, the charging power is kept constant causing the battery’s energy level to increase in a linear way with 
respect to time. This phase finishes when the battery’s energy level is around 80% of its total capacity. Then, 
during the constant voltage phase the charging power decreases in an exponential way causing the energy level 
to increase following a decreasing curve with respect to time (Pelletier et al., 2015). In this research we modeled 
this charging process using the same approach as Montoya et al. (2017), which consists in approximating it via 
a piecewise linear function. Figure 2 shows an example of such approximation for a 16 kWh battery charged 
with a 22 kW power.

4. Problem description

Let { }0, ..., S n=  be the set of segments in which a round trip is divided, with 0 being the segment in which 
the outward trip starts and n the one in which it finishes. Let also pS  be a subset of S having the segments 
with a port at the end of them where passengers may board of disembark from the EB. Each port also has a 
PVCS where the EB may charge. A PVCS located at the end of segment i during the outward trip is also located 
at the end of segment ( )1n i− +  during the return one. The EB is allowed to charge at such PVCS during both 
trips. We consider that the EB starts the round trip fully charged, and given that set pS  contains the segments 
with a PVCS at the end of them, we note that   pn S∉ . To properly plan the operation, we consider a booking 
system for passengers to buy their tickets. Because of that, the number of passengers aboard the EB at all 
times is known in advance. As previously mentioned, this number of passengers plays a significant role in the 
energy consumption of the EB. To have a proper quality service towards the passengers in relation to the time 
of their bookings, let sl  and su  be the lower and upper time window in between which the EB must depart 
from the port at the end of segment ps S∈ . Additionally, let maxT  be the maximum time in which the EB must 
complete the round trip. Let then sp  be the number of passengers aboard the EB when travelling towards the 
node at the end of segment { }ps S n∈ ∪ . Let V  be the set of speeds to consider for the EB. Each segment s S∈  
has an associated travel time svt  and real energy consumption ( ), , se s v p  when traversing at speed v V∈  with 

sp  passengers. However, such energy consumption is uncertain before the start of the fluvial operation due to 
external factors such as the presence of other boats or sediment in the water. For that reason, let e (s, v, pS) 
be the estimated energy consumption of the EB when traversing the segment s S∈  with a speed   v V∈  and sp  
passengers. For the operation of the PVCSs, let H  be the set of charging powers to consider. Let also shf  be a 
binary parameter equal to 1 if the PVCS at the end of segment ps S∈  has access to charging power h H∈ . We 
considered that PVCSs have the same owner of the EB, so there are not different energy tariffs based on the 
charging powers or the location of each PVCS, but rather a unified cost of buying energy from the grid. For 
the PV generation, let sa  be the number of PV panels of the PVCS at the end of segment ps S∈ . Let T  be a set 
of time intervals of a day and gj the real solar irradiance during time interval j T∈ . Similarly to ( ), , se s v p , g j is 
also uncertain due to external factors. Therefore, let g j be the estimated solar irradiance during interval j T∈ . 

Figure 2. 16 kWh battery charged with a 22 kW power. Taken from Villa et al. (2019).
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The EB has a battery with capacity Q. For the degradation of such battery, let M be a set of energy intervals in 
which to divide the EB’s battery (e.g. { }0  5 , 5 10 , ...M kWh kWh kWh kWh= − ). Let md  be the battery degradation cost 
when the EB’s battery is being discharged and its energy level falls in interval m M∈ . Finally let mhc  be the battery 
degradation cost when the EB’s battery is being charged with power h H∈  and its energy level is within interval m M∈ .

The goal of the DEBCP is to dynamically determine the speed and charging decisions (where and when to charge, 
how much energy to charge and which power to use) of an EB performing a round trip. The dynamic component 
refers to recalculating the solution to the problem as new information becomes available during the operation. The 
objective function is to minimize the sum of the cost of the energy to purchase from the grid while charging the 
EB plus its battery degradation costs. For a solution to be feasible, the EB must comply with its time windows and 
maximum route time while meeting its energy autonomy. For the latter, the energy level of the battery must always be 
equal to or greater than a minimum value, both for safety and for battery health reasons (Pelletier et al., 2018). Lastly, 
if the reader wants to see a MILP formulation of the problem (without the dynamic recalculations of the solution), 
please refer to the one by Villa et al. (2019).

5. Rolling horizon genetic algorithm

We use a rolling horizon algorithm to face the dynamic component of DEBCP by recalculating the solution 
of the problem when an event is triggered. Events are triggered when a significant deviation between the real 
and expected values of the energy consumption, or the solar irradiance is experienced or when the EB arrives 
at a PVCS. The solution is recalculated using a GA that determines the speeds of the EB with some embedded 
charging policies making the charging decisions. Then, such policies allow the solution to be evaluated in terms 
of its feasibility and its cost to be calculated. We used a GA to recalculate the solution DEBCP as it allows such 
calculations to be performed with low computational times. We selected this metaheuristic as it has given good 
results in other works that determine the travelling speeds of EVs in the literature. For example, Saini et al. (2016) 
used a GA for a gear shift strategy for EVs aiming to minimize the consumption and the difference between 
the desired and actual speed of the vehicles. As mentioned in the literature review, Betancur et al. (2017) used 
a GA to optimize the speeds of an electric car aiming to minimize its traveling time.

5.1. Rolling horizon algorithm

For our rolling horizon algorithm, we divide the EB’s operation in multiple time slots. During each of them, the 
current energy level of the EB, φ , and the estimation of the solar irradiance, g j, are updated and a new solution for the 
remaining part of the round trip is calculated using the GA. The time slots are not evenly spaced in time as they are 
triggered by three different events, named 1 2, θ θ  and 3θ , which are not always synchronous. Event 1θ  is triggered every 
time the EB arrives at a PVCS. Event 2θ  is triggered when a significant deviation between the most recent measured 
values of e (s,v,pS) and e (s,v,pS) is experienced. We compare the moving averages and not the actual values of the 
variables to look for significant differences rather than outlier values. For that reason, let µe and µe be the moving 

averages of the last b2 values of e (s,v,pS) and e (s,v,pS). Event 2θ  is triggered if 2
 e ē

e
r

 
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percentage value to determine if the difference is significant. This comparison is performed every o2 units of time, 
resetting the timer when the EB is at a PVCS. Variable 3θ  is analogous to 2θ  but regarding the solar irradiance. Let 

gµ  and gµ  be the moving averages of the last b3 values of g j and g j. The event is triggered if 
g g

3
g

 
 r

µ µ

µ

−
> . This 

comparison is performed every o3 units of time. When either event 2θ  or 3θ  is triggered, the EB continues travelling 
following the previous solution up until the recalculation is ready. For event 1θ , we assume the recalculations are 
performed just before the arrival of the EB to a PVCS so that their execution times do not affect the operation. The 
fact that a new solution is not implemented immediately during events 2θ  and 3θ  as well as the differences between 
e (s,v,pS) and e (s,v,pS)  may cause the EB to incur in greater consumption than expected. Therefore, even though 
the EB’s battery minimum energy level is a hard constraint when calculating each individual solution, we allow such 
minimum to be surpassed during the rolling horizon algorithm as long as the energy level remains positive.

An illustrative example of the rolling horizon algorithm is shown in Figure 3. The dotted lines crossing the 
route (which is the spline curve) represent the limits of each segment s S∈  and the symbols above the PVCSs 
represent the amounts of energy charged. Figure 3a represents the solution of the initial time slot of the rolling 
horizon algorithm before the start of the operation. Figure 3b shows the recalculation of the solution during the 
second time slot when event 2θ  is triggered. The event was triggered when the EB was located at the black circle 
while traversing the third segment of the route. Before that, the EB was travelling such segment with speed 1. 
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The solution of the DEBCP started being recalculated as soon as the event was triggered. However, due to the 
required computational time, by the time the new solution was ready the EB was located at the white circle. 
During the time it took for the solution to be recalculated, the EB kept travelling the third segment of the route 
with speed 1. Following the decisions of the new solution, the rest of such segment was traversed with speed 2.

5.2. Genetic algorithm

As previously mentioned, each time slot of the rolling horizon algorithm is solved using a GA. The method 
determines the speeds and charging decisions of the EB for the missing fraction of the fluvial operation. The 
speed decision is represented with two vectors, 0Γ  for the outward trip and 1Γ  for the return one. This was done 
so that certain operations during the generation of the initial population, the crossing and mutation operators 
are performed separately for each trip. Each of these vectors has a size equal to the number of segments which 
are yet to be finished in the respective trip. For example, consider that each trip of a given round trip is divided 
in three segments. If an event of the rolling horizon algorithm is triggered when the EB is traversing the second 
segment of the outward trip, new instances of 0Γ  and 1Γ  would be calculated. Vector 1Γ  would store three 
speeds while 0Γ  would only store two, one for the missing fraction of the second segment and another for 
the third segment.

When a new individual of the GA is created, a procedure named ( )·ChargingPolicies  is executed. This procedure 
determines how much energy to charge, when and where to charge and which charging power to use. Let ψ  
represent all of these decisions clustered up. Having made such decisions, the feasibility of the individual is 
evaluated regarding all of the constraints of the problem and its cost is calculated. If an individual is deemed 
infeasible, its cost is set to infinity. We provide a detailed explanation of the procedure ( )·ChargingPolicies  
in Section 5.3. Our GA has all the classical components of that family of methods. We now describe how we 
implemented each of these components.

(a)	 Initial population: Prior to designing the strategy to generate the initial population, we solved and analyzed 
some instances of the static version of our problem using a MILP formulation based on that of Villa et al. 
(2019). While it was not the case for every solution, some of them showed a tendency to have the same speeds 
over multiple consecutive segments as well as higher speeds during the trip against the river current. Therefore, 
we designed a method to generate the initial population which aims to favor similar characteristics to those 
of such results.
Algorithm 1 shows the structure of the initial population generation. The algorithm starts by initializing a list 
population to store the initial population (line 2) and two auxiliary indices 0ρ  and 1ρ  (line 3). The algorithm 
iterates trying to generate a population with at least one feasible individual, up until a maximum number of 
tries δ  (lines 4-22). During each try, population is reinitialized as an empty list (line 5) and z  individuals are 
generated (lines 6-15). To generate each individual, the algorithm first initializes vectors 0Γ  and 1Γ  (line 7). 

Figure 3. Illustrative example of the rolling horizon algorithm.
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As previously mentioned, the size of these vectors depends on the number of segments that are yet to be 
finished in the outward trip, 0ϑ , and in the return one, 1ϑ . The algorithm fills each kΓ  for the outward 
and return trips separately. To do so, first a random value is generated. If random α≤ , with α  been a given 
input value, kΓ  is filled with random speeds v V∈  by the procedure ( )kRandomVector ϑ  (lines 9-10). Else, the 
procedure ( )( ), k kFixedVector Vϑ ρ  fixes every position of kΓ  to the speed in index kρ  of V  (line 12) and the 
procedure ( )kUpdateRho ρ  updates kρ  (line 13). ( )kUpdateRho ρ  performs different operations depending on 
which trip is against the river current. In the scenario that such trip is the outward one, the procedure 
checks if 0 1ρ = . If so, 0ρ  is reset to its initial value V . Otherwise, 0ρ  is decreased by 1. The procedure 
performs the opposite operations for 1ρ . On the other hand, in case that the trip against the river current 
is the return one, 0ρ  and 1ρ  must be switched in the previous explanation. When both speed vectors 
have been filled, the procedure ( )0 1 sh, , ,g ,jChargingPolicies fφ Γ Γ  is executed. This procedure returns ψ  and 
the cost of the objective function (line 16). Then, a new individual is generated and added to population 
(line 17). When z individuals have been generated, procedure the ( )CheckForFeasibleIndividuals population  
checks if at least one of them is feasible (line 19). If so, the algorithm breaks out of the outermost for 

Algorithm 1. Initial population generation.

1: function ( )1 1 0 0
0 1 0 1 0 1, , , ,  ,  g , , , , , , , , shjGENERATEINITIALPOPULATION z V f τ τα δ φ ϑ ϑ τ − −Γ Γ Γ Γ

2:	       population ←

3:	 0 1, ,1 Vρ ρ ←

4: 	 for 1i =  to i δ=  do

5: 		   ()population list←

6: 		  for 1j =  to j z=  do

7:			   0 1 0 1,  , double doubleϑ ϑ Γ Γ ←    

8:			   for 0k =  to 1k =  do

9: 				    if random α≤  then

10: 					     ( ) ,  k kRandomVector VΓ ←
11: 				    else

12:				    ( )( ), k k kFixedVector Vϑ ρΓ ←

13: 				    ( )k kUpdateRhoρ ρ←
14: 			   end if
15: 			   end for

16: 			   ( )0 1, , , , g , shjcost ChargingPolicies fψ φ← Γ Γ

17: 			   ( )( )0 1.   , , , population add new Individual costψΓ Γ

18: 		  end for

19: 		  if ( )CheckForFeasibleInidividuals population true=  then
20: 			   break
21:		  end if
22: 	 end for

23:	 if   'τ ≥ Π  then

24:		  ( ),  ’population RemoveWorstIndividuals population← Π

25:		  for each i∈Π′ do

26:			   ( )0
1

sh , , , ,g ,i i
jcost ChargingPolicies fψ φ← Γ Γ

27:			   ( )0 1.   , , , i ipopulation add new Individual costψ Γ Γ 
 

28:		  end for
29:	 end if
30:	 return population
31: end function
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loop (line 20). Else, population is discarded and the algorithm goes back to line 4. We note that the 
population is either discarded or accepted as a whole (i.e. even the infeasible individuals are accepted 
if there is at least one which is feasible). This was done as infeasible solutions may still provide good 
features when crossed with feasible individuals during the crossing stage.
The next part of the algorithm replaces the worst individuals of population with ones that have the 
speed vectors of solutions to previous time slots. This is done as such speeds have given good results 
in the past, and even if that were no longer the case, the new individuals would be eliminated during 
the rest of the GA’s execution. For this reason, let Π be the set of all previous solutions of the GA 
up until the current time slot. Additionally, let 'Π  be a subset of Π having the solutions that will be 
used for replacing the worst individuals of population. Let also 0

iΓ  and 1
iΓ  be the speed vectors of the 

outward and return trip of solution 'i∈Π . If the current time slot, τ , is greater than or equal to the 
cardinality of 'Π  (line 23), the algorithm replaces the worst 'Π  individuals of population with new 
individuals having the speed vectors of previous solutions. To perform this replacement, procedure 

( ),  'RemoveWorstIndividuals population Π  removes the worst 'Π  individuals from population (line 24). Then, 
iterating over all elements ( )0 1 sh ,  , , ,g ,i i

ji ChargingPolicies fφ′∈Π Γ Γ  is executed generating a new ψ  and 
cost (line 26). After that, a new individual is generated and added to population (line 27). Finally, the 
algorithm returns population (line 30).

(b)	 Crossover operator: New individuals are generated in pairs. To do so, two different random parents are selected 
from the half of the population with the lowest objective function cost, as in Betancur et al. (2017). We use 
a single point crossover where the crossing point is randomly selected. The crossing is performed separately 
in between the pair of 0Γ  and the pair of 1Γ . This process is repeated until the number of descendants is 
greater than or equal to λ  percent of z.

(c)	 Mutation operator: During the crossover, each speed vector has a probability γ  of mutating. Such mutation 
consists of having a random speed of the vector changed to a random value v V∈ .

(d)	 Population for the next generation: We keep the population size z constant throughout the execution. For 
doing so, the top z individuals with lowest costs are passed from one generation to the next.

(e)	 Stopping criterion: The algorithm stops after β generations have been performed.

5.3. Charging policies procedure

In this section we describe the procedure ( )0 1 sh , , ,g ,jChargingPolicies fφ Γ Γ . As previously mentioned, each time 
an individual is generated, this procedure makes the charging decisions ψ , which consist of how much energy 
to charge, when and where to charge and which charging power to use. After determining ψ , the feasibility of 
the individual is evaluated and its cost is calculate. To design this procedure we yet again analyzed the optimal 
solutions to the static version of the problem using the MILP formulation of Villa et al. (2019) looking for the 
best strategy to face these charging decisions. During each different time slot of the rolling horizon, only the 
fraction of the round trip that is yet to be traversed is evaluated.

Algorithm 2 shows the general structure of the ( )0 1 sh , , ,g ,jChargingPolicies fφ Γ Γ  procedure. The algorithm 
starts by initializing the bestCost and ψ  (lines 2-3). Let ζ  be a vector of size pS  that stores the charging power to 
use in every PVCS during both trips. Procedure ( )shSetHighestChargingPowers f  as its name implies sets each position 
of ζ  to the highest available charging power at each PVCS (line 4). This is because using such powers results in 
the best-case scenario in terms of charging times. Therefore, if such scenario were infeasible, no other scenario 
would be feasible. The algorithm starts iterating over an infinite loop (line 5) which is stopped by either one of 
two conditions that are explained later. The algorithm executes the procedure ( )0 1 sh , , ,g ,jEvaluateSolution fφ Γ Γ  
which evaluates the operation of the EB accounting for the traveling and charging times, the energy consumption 
and the constraints of the DEBCP (line 6). In this procedure, the EB charges at the last PVCS before its energy 
level would drop below its minimum value and charges the minimum amount of energy required to arrive at 
the following PVCS. The procedure returns the cost of the EB’s operation given the current decisions, a boolean 
value isFeasible which indicates if the operation was feasible and three vectors, , ϕ ε  and Ω . These vectors store 
the energy charged at each charging operation and the initial and final times of such operations, respectively. 
Vectors , , ϕ ε Ω , and ζ  must have an equal size pS . For that reason, if a charging operation is not performed at 
the PVCS at the end of segment ,   0j j kWhϕ =    and   j jε=      Ω . If the evaluation was feasible and its cost is less 
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than , bestCost ψ  and bestCost  are updated (lines 7-9). Else, if the evaluation was infeasible the infinite loop 
stops (lines 10-11). The algorithm then searches for a candidate charging operation in which to evaluate a 
lower power (lines 13-23) looking to decrease the degradation costs. For doing so, the algorithm initializes two 
auxiliary variables, κ  and ν  (line 13). The former stores which PVCS must have its charging power decreased, 
while the latter saves the charging time of the operation at such PVCS. Let ( ), , shLowerChargingPower i fζ  be a 
procedure that returns a boolean value true if the PVCS at the end of segment j has a lower available charging 
power than the one being considered in ζ . The algorithm uses this procedure to look for the charging operation 
that took the least amount out of the ones performed in PVCSs that have at least one lower available charging 
power than the ones in ζ , and stores its index in κ  (lines 14-18). If no charging operation has a lower available 
charging power, the infinite loop stops (lines 19-20). Else, the charging operation at the PVCS with index κ  
gets its charging power decreased to the next highest available power at its PVCS using a procedure named 

( ), DecreaseChargingPower ζ κ  . The algorithm continues iterating until either of the two stopping conditions 
(finding an infeasible solution or evaluating a scenario charging only with the lowest available power at each 
PVCS) are met. Finally, the algorithm returns ψ  and bestCost  (line 25).

6. Computational experiments

In this section we present the two types of computational experiments we performed for the DEBCP. 
Considering that we used a metaheuristic as our solution method, we first compared its performance against 
a MILP formulation based on that of Villa et al. (2019) when solving a static version of the DEBCP. With the 
goal of evaluating the importance of dynamically recalculating the solution of the problem, we then compare 

Algorithm 2. Charging policies procedure.

1: function ( )0 1,  , , g , shjCHARGINGPOLICIES fφ Γ Γ 

2:	    bestCost← ∞
3:	       ψ ←

4:	 ( )shSetHighestChargingPowers f←
5:	 while true do

6: 		  ( )0 1, , , ,  , , , g , jcost isFeasible EvaluateSolutionϕ ε φ ζ← Γ ΓΩ

7:		  if isFeasible true=  and  cost bestCost< then

8:			    bestCost cost←
9:			   , , ,   ψ ϕ ε ζ← Ω

10:		  else if isFeasible false=  then
11:			   break
12:		  end if

13:		  , 1, κ ν ← − ∞

14:		  for 0j =  to pj S=  do

15:			   if 0 j jε ν< − <      Ω  and ( )LowerChargingPower , , shj f trueζ =  then

16:				    , , j j jκ ν ε← −      Ω
17:			   end if
18:		  end for

19:		  if 1κ =  then
20:			   break
21:		  else

22: 			   ( ), DecreaseChargingPowerζ ζ κ←
23:		  end if
24:	 end while
25:	 return ⟨ψ, bestCost ⟩
26: end function
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the DEBCP against a static scenario without the solution recalculations. The algorithm was implemented on 
Java (java/jdk-1.8.0 112). Experiments were run on a computing cluster with Intel Xeon E5-2683 v4 processor 
(with 32 cores at 2.1 GHz) and 64 GB of RAM running on Linux Rocks 6.2 - 64 bits - Centos 6.6.

6.1. Test instances

For these experiments, we built a set of test instances based on a future electric fluvial transport operation in 
Magangué Colombia that will be implemented by the alliance “ENERGETICA 2030” (Energética 2030, 2023). Such 
location was selected as it is an important port in the Magdalena River (Colombia’s principal river). Most of the 
parameters of the instances were taken from a field research performed by the alliance. Some parameters are shared 
by all instances while others are instance dependent. We first describe the shared ones. The set of speeds which may 
be selected is { }20, 21, ..., 69, 70  /V km h= . For the charging power, we set { }65,1 30  H kW= . The EB’s battery has a capacity 
Q of 130 kWh and a cost of 24,595 USD according to the supplier’s quotation (the name of the supplier was treated 
as undisclosed commercial information). For the battery degradation we considered 10 intervals for its energy level, 
so { }0 13,1 3 26, ...,1 17 130  M kWh= − − − . With the battery’s cost, we calculated the wear cost for each interval m ∈ M as 
in Han et al. (2014). For the penalization due to different charging powers, we used the equations of Omar et al. 
(2014). We set the minimum energy level percentage of the battery to 10%. For the PVCS, we considered 84sa =  
panels and 1 , shf s Sp h H= ∀ ∈ ∀ ∈ . Each panel has an area of 22.24 m and an efficiency of 20.71% (Solartex, 2020). 
The cost of energy to purchase from the grid was 0.18 /USD kWh (Empresas Públicas de Medellín, 2021).

The instance-dependent parameters are shown in Table 1. All instances have the round trip starting at 
Magangué and are divided in three groups of three instances each depending on where the outward trip ends 
and the return one starts. The first group of instances perform a round trip between Magangué and the city 
of Pinillos, the second group between Magangué and an inn on the bank of the Magdalena River, and the 
third one between Magangué and the city of Achí. Instances within a group have the same segments, route 
length, location and number of PVCSs, but different maxT  and time windows. The segments have a length of 
1 km, except for segments ps S∈  which were properly shorten according to the location of the PVCSs. Such PVCSs 
were located in actual settlements across the Magdalena River.

6.2. Solution method comparison

To evaluate the performance of the GA, in this section we compare its results to those of a MILP formulation 
based on that of Villa et al. (2019). We added the upper and lower time windows to depart from each charging 
station to the formulation as well as the minimum energy level for the EB’s battery. To maintain the variant of 
the MILP formulation as close as possible to that of Villa et al. (2019), we considered non-PV charging stations 
rather than PVCSs. The MILP formulation was implemented using gurobipy with Python 3.7. For the GA, we set 
the population size (z) to 720 individuals, the probability of initializing a speed vector as random (α) to 99%, the 
percentage of descendants per generation (λ) to 20%, the mutation rate (γ ) to 1% and the number of iterations 
(β) to 5000. These values were selected after conducting a parameter tuning campaign. These parameters gave the 
overall best results considering both the objective function and the execution times. For the sake of brevity, we will 
not discuss these experiments. We set a time limit of 7200 seconds for the MILP formulation. Table 2 presents the 
comparison between the two methods. Columns 2 and 3 show the costs and CPU times of the MILP formulation. 
The MILP formulation was able to find the optimal solution in eight out of nine instances within the time limit. 
The only instance for which the optimal solution was not found was Achi3. However, the optimality gap of such 
solution was just 0,014%. We note that the CPU time was relatively low for the first group of instances but not 
for the other two groups. This is because the second and third groups of instances are bigger than the first one in 
terms of the number of segments in which the round trips were divided, as shown in Table 1. The results of the 
GA were obtained with 10 different runs, each with its own random seed. Columns 4 and 5 in Table 2 present 
the average and best-found costs by the GA for each instance during those 10 runs, while column 6 presents the 
average CPU times. The CPU times also increased in the second and third groups of instances when compared to 
the first one, but not in the same magnitude than it did for the MILP formulation. Columns 7 and 8 show the 
gaps between the best-found solution of the MILP formulation (which was almost always the optimal one) and, 
respectively, the averages and best-found costs of the GA. Even though the GA never found the same solutions 
as the MILP formulation, the average and maximum gaps were just 0.58% and 0.87% when compared to the 
average of the 10 runs and 0.4% and 0.83% in the case of the best-found solutions. This shows that the GA 
is able to provide good solutions with respect to those of the MILP formulation in terms of cost. We note that 
most of the gaps for the average of the 10 runs are rather close to the best-found gaps, which shows that the 
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GA gives consistent results. Column 9 shows the speedups of the GA when compared to the MILP formulation, 
with the average speedup being 347.65. Considering that the DEBCP requires its solution to be constantly 
reevaluated, having low CPU times is crucial for solving the problem. Additionally, we note that the GA had similar 
CPU times for instances within the same group regardless of the differences in maxT  and time windows, while 
the computation times of the MILP formulation vary significantly in between instances from the same group. 
This variance is an issue when solving the DEBCP, as each recalculation can be seen as a separate optimization 
problem with different parameters, such as time windows, maxT  and initial energy level of the EB’s battery. 
Therefore, the CPU times would be quite inconsistent for different time slots of the rolling horizon algorithm. 
Considering the gaps, speedups and the consistency of the CPU times, the GA is better suited than the MILP 
formulation for solving the DEBCP.

6.3. Comparison between the DEBCP and the static scenario

To assess the impact of including the dynamic component in the problem, in this section we compare the DEBCP 
to a static scenario with no recalculations of the solution. For the static scenario, the solution to the problem is 
estimated prior to the beginning of the EB’s operation and remains unchanged throughout such operation. Using a 
simulation of the EB’s operation (which is detailed in the following paragraph), such solution is evaluated in terms 
of the feasibility and cost of the operation. These results are then compared against the ones the DEBCP which 
uses the rolling horizon algorithm with the dynamic recalculations of the solution while considering the same 

Table 1. Instance-dependent parameters.

Instance maxT  (h) Departure hour PVCSs* Route length (km) Segments

Pinillos1 4 10:00 5 110 112

Pinillos2 4.5 10:00 5 110 112

Pinillos3 5 10:00 5 110 112

Inn1 6 9:00 9 171.6 174

Inn2 6.75 9:00 9 171.6 174

Inn3 7.5 9:00 9 171.6 174

Achi1 8 7:00 11 208.8 212

Achi3 9 7:00 11 208.8 212

Achi3 10 7:00 11 208.8 212
*Photovoltaic charging stations.

Table 2. Comparison between the MILP formulation and the GA.

MILP GA

Instance
Cost 
(USD)

CPU* time 
(sec)

Average cost 
(USD)

Best found cost 
(USD)

Average CPU time 
(sec)

Average gap 
(%)

Best found gap 
(%)

Speedup

Pinillos1 37.33 6.75 37.49 37.40 2.59 0.43 0.19 2.60

Pinillos2 32.24 25.78 32.51 32.32 2.59 0.84 0.25 9.94

Pinillos3 28.19 83.57 28.28 28.25 2.58 0.33 0.23 32.36

Inn1 83.33 5763.60 83.53 83.51 3.83 0.24 0.21 1503.17

Inn2 70.96 31.98 71.16 71.13 3.94 0.29 0.24 8.12

Inn3 63.85 195.63 64.39 64.19 3.99 0.83 0.53 49.09

Achi1 102.64 339.51 103.54 103.49 4.67 0.87 0.83 72.63

Achi2 90.10 354.59 90.60 90.52 4.80 0.56 0.47 73.93

Achi3
81.44
7200
82.12
81.96
5.23

0.83 0.63 1376.99

Min 6.75 2.58 0.24 0.19 2.60

Max 7200 5.23 0.87 0.83 1503.17

Average 1555.71 3.80 0.58 0.40 347.65
Gap = 100 * (GA cost - MILP formulation cost) / MILP formulation cost. * Central processing unit.
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simulation. To compare the differences between e (s, v, pS) and e (s, v, pS). and between jg  and jg  during the rolling 
algorithm, we set the number of previous data to consider for the moving averages (b2 and b3) to 3, the value to 
consider a difference as significant (r2and r3) to 5% and the frequency to compare such differences (o2 and o3) to 
10 minutes. As mentioned in Section 3.3, jg  is estimated using a bidirectional long short-term memory artificial 
neural network. For the static scenario, such estimation is performed only prior to the beginning of the fluvial operation. 
For the DEBCP, a new estimation is performed every 10 minutes and each time slot uses the most recent 
available estimation. As mentioned in Section 3.1, e (s, v, pS) is estimated using the model of Savitsky (1964). 
Such estimation is maintained without any kind of update during the simulation in both the static scenario and 
the DEBCP as our consumption model does not vary with time. However, if a consumption model with actual 
variations in time were to be implemented, our rolling horizon algorithm could still be used as a solution method.

We now describe the simulation with which the static scenario and the DEBCP were compared. Such simulation 
emulates the operation of the EB following the decisions made in either scenario. This simulation uses the real 
data of the energy consumption, e (s, v, pS), and the solar irradiance, jg . For the DEBCP, the CPU times of the 
GA when recalculating a solution are taken into account in this simulation as we mentioned in Section 5.1. 
We fixed the CPU times when solving each recalculation of the solution to the CPU times of the GA reported in 
Table 2, even though such times would vary in real life. This was done so that the results of the rolling horizon 
algorithm are always the same each time it is executed. The port in Magangué opens from 6:00 to 18:00, so 
we define set of time intervals of a day as { }6 : 00 6 :10, 6 :10  6 : 20, ...,1 7 : 50 18 : 00T = − − − . Data for jg  were taken 
from National Solar Radiation Database (2023) for the region near Magangué during May 11th, 2019. Such day 
was selected as it presented an irregular irradiance profile. Figure 4 compares the solar irradiance profile from 
that day against the one from January 2nd, 2019, which was a sunny day with a regular solar irradiance profile. 
Given that the data set is half-hourly spaced, we interpolated the missing data to have 10 minutes long intervals. 
Additionally, 'Π  was always composed by the solutions of the first and previous time slots up to the current 
execution of the solution method. To generate the data for e (s, v, pS), we considered an error with respect to 
e (s, v, pS) according to experimental data given to us by a fellow research of the alliance ENERGETICA 2030. 
As the data did not fit a standard probability distribution function, we used an empiric distribution based on 
such data to generate our consumption. This distribution was heavily skewed towards having lower values 
compared to those of e (s, v, pS), therefore making such estimation rather overestimated. However, as other 
consumption models could be used when solving the DEBCP, we also evaluated an scenario in which e (s, v, pS) 
was underestimated. For that reason, we made a second empiric distribution with a mirrored skewness towards 
higher than estimated energy consumption values.

Table 3 shows the comparison of the DEBCP versus the static scenario considering the lower than estimated 
energy consumption. Columns 2 and 5 show the actual costs of the simulation for each scenario using the 
real values for the parameters. Column 8 presents the gap between these two costs. The DEBCP managed to 
decrease the overall cost for every single instance, with an average reduction of 2.67% We note that the impact 

Figure 4. Solar irradiance profiles during a cloudy day (May 11th 2019) and a sunny one (January 2nd 2019) in Magangué 
[data taken from National Solar Radiation Database (2023)].
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was higher in the groups of instances with longer round trips, as the average reduction for instances going 
to Pinillos was 1.63%, while the instances going to the inn had an average decrement of 2.44% and the ones 
going to Achí an average of 3.92%. Even though these reductions in costs may not be significant for a single 
execution of the EB’s operation, the savings in absolute costs that would be made during multiple years’ worth 
of operation of the EB may be substantial. Columns 3 and 6 present the total amount of energy that was 
drained from the battery when it was below its minimum energy level during the rolling horizon algorithm. 
Columns 4 and 7 show the total amount of time that the route surpassed either the time windows or maxT . 
None of the instances in either the DEBCP or the static scenario violated these constraints, which is because the 
operation ends up being less demanding constraint-wise than what was expected when solving the problem, 
as the e (s, v, pS) tended to be lower than e (s, v, pS).

Having the same structure as Table 3, Table 4 shows the results of the comparison considering the higher 
than estimated energy consumption. Both the DEBCP and the static scenario violated either or both the time 
and energy related constraints in every single instance, although they did manage to keep a positive energy 
level for the EB’s battery at all times. However, the DEBCP violated both constraints by a lower magnitude in 
every instance, which shows that it tried to compensate for the uncertainty of the operation.

To measure the extent of these reductions, we calculated the percent differences between the averages of columns 
3 and 6 for the energy violations and between columns 4 and 7 for the time related ones. The results showed that 
the energy and time violations during the solutions of the DEBCP were on average 21.73% and 65.35% lower than 
those of the static scenario. The differences in energy violations were more significant in the groups of instances with 
longer round trips, as the average differences were 19.7%, 21.19% and 23.35% for the groups of instances going to 
Pinillos, the inn and Achí respectively. On the contrary, the differences in time violations were more significant in the 

Table 3. Comparison of the DEBCP and the static scenario with lower than estimated energy consumption.

Static scenario DEBCP

Instance Cost (USD) Energy violation (kWh) Time violation (h) Cost (USD) Energy violation (kWh) Time violation (h) Gap (%)

Pinillos1 33.48 0 0 32.66 0 0 2.43

Pinillos2 28.91 0 0 28.69 0 0 0.74

Pinillos3 26.53 0 0 26.08 0 0 1.72

Inn1 72.99 0 0 71.00 0 0 2.73

Inn2 62.60 0 0 60.98 0 0 2.58

Inn3 57.07 0 0 55.92 0 0 2.02

Achi1 89.23 0 0 86.06 0 0 3.55

Achi2 80.22 0 0 76.61 0 0 4.50

Achi3 72.87 0 0 70.16 0 0 3.72

Min 0 0 0 0 0.74

Max 0 0 0 0 4.50

Average 0 0 0 0 2.67
Gap = 100 * (static scenario cost - DEBCP cost) / static scenario cost.

Table 4. Comparison of the DEBCP and the static scenario with higher than estimated energy consumption.

Static scenario DEBCP

Instance Cost (USD) Energy violation (kWh) Time violation (h) Cost (USD) Energy violation (kWh) Time violation (h) Gap (%)

Pinillos1 38.59 8.69 0.11 39.80 8.38 0.03 -3.14

Pinillos2 33.63 7.98 0.10 34.68 6.14 0.02 -3.14

Pinillos3 30.89 7.85 0.12 31.16 5.30 0.00 -0.88

Inn1 87.47 27.68 0.18 92.11 21.33 0.09 -5.30

Inn2 74.48 22.69 0.15 78.82 18.03 0.06 -5.82

Inn3 67.72 21.52 0.27 71.85 17.20 0.06 -6.10

Achi1 107.95 31.92 0.32 113.51 28.52 0.30 -5.14

Achi2 96.66 29.12 0.40 100.48 23.07 0.12 -3.96

Achi3 88.48 28.07 0.43 92.89 17.23 0.04 -4.99

Min 7.85 0.10 5.30 0.00 -0.88

Max 31.92 0.43 28.52 0.30 -6.10

Average 20.61 0.23 16.13 0.08 -4.28
Gap = 100 * (static scenario cost - DEBCP cost) / static scenario cost.
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groups with shorter routes, with the average differences being 82.61%, 64.32% and 54.97% for the groups going 
to Pinillos, the inn and Achí. We concluded that this is because making more significant corrections to the energy 
violations makes it harder for the time violations to also be compensated at the same time. Due to these corrections, 
the costs of the DEBCP were always higher than those of the static scenario, with an average increment of 4.28%. 
The results with both types of consumption errors show that the recalculations of the DEBCP are able to provide 
beneficial impacts for the EB’s operation, either by reducing its cost if possible, or by trying to correct it if needed.

7. Conclusions

In this research we extend the EBCP. The original problem consists of selecting the speeds for an EB to 
traverse a set of segments in which a fluvial route is divided as well as making the charging decisions of the 
EB. The objective function is to minimize the cost of the energy to purchase from the grid while charging 
the EB and a cost associated to the degradation of its battery. Our additions to the problem consist mainly of 
performing dynamic recalculations for the problem’s solution as more information of the fluvial operation is 
known. Additionally, we added a set of time windows for the EB to depart from certain nodes of the route and 
the use of PVCSs. The dynamic recalculations aim at correcting certain decisions that were made with estimated 
information. We named this variant of the problem the DEBCP.

We propose a rolling horizon genetic algorithm to solve the DEBCP. Such method consists of a rolling horizon 
algorithm that dynamically recalculates the solution of the problem each time a set of events are triggered. Each 
recalculation is solved using a GA with an embedded set of charging policies. We used a GA to have low CPU 
times as the DEBCP requires multiple recalculations during the operation of the EB. To assess the performance 
of the GA with the charging policies, we compared its solutions during 10 different runs to those of a MILP 
formulation. The results show that the GA is able to provide an average speedup of 347.65 and an average gap 
in the cost of the objective function of 0.58% when considering the average of the 10 runs and 0.4% in the 
case of the best-found solution for each instance. We also found that the GA’s CPU times varied less than those 
of the MILP formulation when changing certain parameters of the problem. All of these results show that the 
GA is more suitable for facing the dynamic component of the DEBCP. We then assessed the impact of such 
recalculations by comparing the solution of the DEBCP to those of a static scenario with no recalculations. This 
comparison was performed considering both a data set where the simulated energy consumption was lower 
than the estimated and another data set with higher simulated consumption. With the former data set, the 
DEBCP was able to reduce the cost of the operation in all instances, with an average reduction of 2.67%. When 
considering the higher simulated consumption, both the DEBCP and the static scenario violated the energy 
and time related constraints of the problem. However, the DEBCP managed to reduce the overall violation of 
both types of constraints in all instances. To measure the extent of such reductions, we calculated the percent 
difference between the energy and time violations. Such results showed an average diminution of 21.73% for the 
violations of the energy constraint and 65.35% for the time related ones. These results show that the dynamic 
recalculations of the DEBCP are able to provide beneficial impacts for the problem by either reducing the cost 
of the operation or by compensating for the uncertainty in some estimated parameters.

One interesting direction for a future research consists of considering PVCSs with batteries of their own 
(or energy storage system, as they are often called in such context). These components can help making the 
overall charging system more resilient against power outages or multiple continuous days with low solar irradiance. 
Additionally, evaluating the degradation of the PVCSs’ batteries could be an interesting addition to the objective 
function of such future research. Lastly, we wanted to talk about possible challenges related to the implementation 
of the dynamic recalculations. As can be seen in Table 2, the computation times for our algorithm are in the 
range of just a couple of seconds. Additionally, these computation times tend to get shorter as the EB advances 
on its route, as a shorter version of the course needs to be solved each time. Therefore, the computation times 
themselves do not pose a significant challenge. In our opinion, the biggest challenge for the implementation 
actually comes from obtaining the input data to solve the problem. This is because obtaining these data requires 
have a set of sensors to accurately measure in real time the energy level and consumption of the EB as well as 
measuring and predicting the solar irradiance with which each recalculation of the solution is calculated.
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