Articles

Rodents of the eastern and western slopes of the Tropical Andes: phylogenetic and taxonomic insights using DNA barcodes

C. Miguel Pinto *
Escuela Politécnica Nacional, Ecuador
Reed Ojala-Barbour
Escuela Politécnica Nacional, Ecuador
Washington Department of Fish and Wildlife, U. S. A.
Jorge Brito
Instituto Nacional de Biodiversidad, Ecuador
Escuela Politécnica Nacional, Ecuador
Angélica Menchaca
University of Bristol, United Kingdom
André L. G. Carvalho
Instituto de Biociências, Brazil
Marcelo Weksler
Fundação Oswaldo Cruz, Brazil
Universidade Federal do Rio de Janeiro, Brazil
George Amato
American Museum of Natural History, USA
Thomas E. Lee
Abilene Christian University, USA

Rodents of the eastern and western slopes of the Tropical Andes: phylogenetic and taxonomic insights using DNA barcodes

Therya, vol. 9, no. 1, pp. 15-27, 2018

Asociación Mexicana de Mastozoología A. C.

Received: 15 July 2016

Accepted: 13 September 2017

Funding

Funding source: Escuela Politécnica Nacional

Contract number: PIMI-14-10

Contract number: PII-ICB-03-2017

Funding

Funding source: Ministerio del Ambiente de la República del Ecuador

Contract number: 020 IC FAU-DNBAPVS/MA

Contract number: 02-2010-FAU-DPAP-MA

Contract number: 001-12-PMVS-FAU-DNB/MA

Contract number: 13-2011-INVESTIGACION-B- DPMS/MAE

Contract number: MAE-DNA-CM-2015-0029

Abstract: The Andes Mountains particularly the forests along the mid-elevations of their eastern and western slopes, are a hotspot of biodiversity (high numbers of species and endemics). Among mammals, rodents are a priority group for study in the Tropical Andes given their high diversity and often relatively small geographic ranges. Here, we use DNA barcoding as a tool to help in the identification, and preliminary analysis of the phylogenetic relationships, of rodents from two natural reserves: Otonga, a private forest reserve, located on the western slopes, and Sangay National Park, located on the eastern slopes of the Ecuadorian Andes. We sequenced 657 bp of the mitochondrial Cytochrome Oxidase I (COI) gene for 201 tissue samples of sigmodontine and echimyid rodents collected primarily in Otonga and Sangay. We conducted phylogenetic analyses using maximum-likelihood and Poisson tree processes (PTP) species delimitation analyses. Three sets of data were analyzed: 1) our newly generated sequences, 2) our Mesomys sequence plus DNA sequences of Echimyidae available in GenBank, and 3) all of our sequences (all Sigmodontinae and one Echimyidae) together with relevant DNA sequences of Sigmodontinae available in GenBank. Our samples consisted of 24 species; the molecular data indicated that only one species—Microryzomys minutus—was shared between both eastern and western localities. Contrary to the currently recognized distributions of Akodon mollis and Chilomys instans, our species delimitation analysis suggests that these species are not shared between Otonga and Sangay, and may actually represent two species each. The sample of Mesomys from the eastern slopes of the Andes differs minimally from that from the lowlands of the Ecuadorian Amazon, suggesting that both populations would correspond to the same species, Mesomys hispidus. Both Mindomys hammondi and an undescribed Mindomys from Otonga do not form a reciprocally monophyletic group with relation to Nephelomys. The Nephelomys of Sangay might correspond to two different species. The eastern and western slopes of the Tropical Andes harbor different species of rodents, with only one of our study species shared between both localities, implying that other cases of shared species between the eastern and the western slopes of the Andes need further assessment. Several lineages represented in our sample may require formal taxonomic description, highlighting the need for further systematic research. The new genetic data generated in our study could speed taxonomic discovery in the Andes and help to illuminate interesting evolutionary patterns, such as the radiation of Thomasomys.

Key words: Akodon, Andes, Chilomys, Echimyidae, Ecuador, Microryzomys, Oligoryzomys, Sigmodontinae, species delimitation, Thomasomys.

Resumen: Los Andes particularmente los bosques de las elevaciones medias de las estribaciones occidentales y orientales, son un punto caliente de biodiversidad (alto número de especies y de endemismo). Entre los mamíferos andinos, los roedores son un grupo prioritario a ser estudiado dada su alta biodiversidad y sus rangos de distribución que por lo general son pequeños. En esta contribución, usamos códigos de barras de ADN como una herramienta para la identificación y generación de hipótesis filogenéticas preliminares de los roedores colectados principalmente en dos reservas naturales: Otonga, ubicada en las estribaciones occidentales, y Sangay, localizada en las estribaciones orientales de los Andes ecuatorianos. Secuenciamos 657 pares de base del gen mitocondrial Citocromo Oxidasa I (COI) en 201 muestras de tejido de roedores sigmodontinos y echimyidos colectados principalmente en Otonga y Sangay. Hicimos análisis filogenéticos usando máxima verosimilitud, y análisis de delimitación de especies mediante el proceso de árboles de Poisson (PTP). Tres grupos de datos fueron analizados: 1) todas nuestras nuevas secuencias generadas, 2) nuestra secuencia de Mesomys más las secuencias de ADN de Echimiydae disponibles en GenBank, y 3) todas nuestras secuencias (mayoritariamente Sigmodontinae) junto con secuencias de ADN de Sigmodontinae disponibles en GenBank. Nuestra muestra contiene 24 especies; los datos moleculares demuestran que solo una especie—Microryzomys minutus—es compartida entre ambas localidades del este y oeste. Mientras que nuestro análisis de delimitación de especies sugiere que Akodon mollis y Chilomys instans no son compartidas entre Otonga y Sangay, y representan dos especies cada una. La muestra de Mesomys de la vertiente oriental de los Andes es mínimamente diferente de secuencias de las tierras bajas de la Amazonia ecuatoriana; recomendando que ambas poblaciones podrían corresponder a la misma especie, Mesomys hispidus. Mindomys hammondi y una especie no descrita de Mindomys de Otonga no forman un grupo monofilético en relación a Nephelomys. Los Nephelomys de Sangay corresponderían a dos especies diferentes. Las vertientes occidental y oriental de los Andes tropicales albergan especies diferentes de roedores, con una sola especie compartida entre ambas indicando que otros casos de especies compartidas entre el este y occidente necesitan ser investigadas con mayor detalle. Múltiples especies de nuestra muestra necesitarían descripción formal, lo que revela que se requiere más investigación sistemática en la región. Los nuevos datos genéticos aquí presentados podrían acelerar los descubrimientos taxonómicos en los Andes y ayudar a explorar patrones volutivos interesantes, como la radiación de los Thomasomys.

Introduction

The Andes Mountains encompass diverse environments along their slopes, ranging from lowland forests to glacier-covered peaks at over 6,000 meters above the sea level (masl). These different environments harbor high levels of species diversity and endemism, and together they make the Andean region one of the most important diversity hotspots on the planet (Myers et al. 2000). The Andean rodent fauna is no exception to these environmental trends. Recent analyses have detected several hotspots of rodent diversity along the Andes, such as the eastern slopes in Ecuador and Peru (Prado et al. 2015; Maestri and Patterson 2016).

The systematics of Neotropical rodents is in a phase of rapid update and improvement, triggered especially by active efforts in Latin American countries to train taxonomic specialists (Voss 2009) and by the recent availability of a synthetic treatment of the entire rodent fauna of South America (Patton et al. 2015). However, many systematic relationships remain to be clarified, especially in clades of Andean rodents such as akodontines and thomasomyines, as well as some oryzomyines and echimyids. Such studies have been difficult to perform due to various limitations in past collecting and inventory work (Patterson 2002), and the logistic difficulties of visiting natural history museums in foreign countries to undertake revisionary work. These difficulties are evidenced, for example, in the data gaps for rodent sampling in various areas, such as in middle elevation forests near Papallacta in eastern Ecuador (Voss 2003).

The rodent fauna of the Andean slopes of northwestern South America is rich in species of Thomasomys. It is not uncommon to find large (e. g., T. aureus), medium (e. g., T. silvestris), small (e. g., T. baeops), and very small (e. g., T. cinnameus) species of the genus living in sympatry (Jarrín 2001; Pacheco 2003, 2015; Lee et al. 2011). Other components of the rodent fauna of the Andean forests include oryzomyines such as Microryzomys, Nephelomys, Oreoryzomys, and the enigmatic Mindomys hammondi, which is known from few specimens (Carleton and Musser 1989; Weksler 2006; Weksler et al. 2006).

The usage of molecular markers has been pivotal to accelerate and improve taxonomic work. One common approach has been the use of DNA barcodes—sequences of the mitochondrial gene COI—which have been applied successfully for facilitating identifications of specimens in Neotropical faunal surveys (Clare et al. 2007; Borisenko et al. 2008); however, this approach has not been used exhaustively with Andean mammals. Here, we use DNA barcoding as evidence to identify and conduct preliminary phylogenetic analysis of rodents from two natural reserves: Otonga, located in the western slopes of the Andes (cis-Andean), and Sangay National Park, located in the eastern slopes of the Andes (trans-Andean). Also, we explore whether populations shared between the eastern and western slopes of the Andes are likely to be conspecific, or alternately whether they represent divergent lineages that may not be recognized under current taxonomic classifications.

Materials and Methods

Sampling. We used selected samples of 21 species of rodents, primarily identified on the basis of morphological characters, collected in two Andean forests: Otonga, a private forest reserve located in the western slopes of the Andes in the province of Cotopaxi in northern Ecuador (Jarrín 2001), and Sangay National Park located in the eastern slopes of the Andes in the provinces of Chimborazo, Morona Santiago and Tungurahua in south-central Ecuador (Armstrong and Macey 1979; Fonseca et al. 2003; Figure 1). Three different field parties collected voucher specimens with tissues during 2006 in Otonga, and during 2010 and 2012 in Sangay. Morphological identifications of all specimens were conducted using specialized taxonomic literature (e. g., Carleton and Musser 1989; Weksler 2006; Patton et al. 2015), and by side-by-side comparisons with voucher specimens from the following collections: Abilene Christian University (ACUNHC) in Abilene, Texas, USA; American Museum of Natural History (AMNH) in New York, New York, USA; Escuela Politécnica Nacional (MEPN) in Quito, Ecuador; Museo Ecuatoriano de Ciencias Naturales (MECN) in Quito, Ecuador; National Museum of Natural History (NMNH) in Washington DC, USA; and Pontificia Universidad Católica del Ecuador (QCAZ) in Quito, Ecuador. Some previous findings of the mammals collected by these parties have been reported elsewhere (Lee et al. 2011; Helgen et al. 2013; Ojala-Barbour et al. 2013; Brito and Ojala-Barbour 2014; Brito et al. 2014; Brito et al. 2017). Examined specimens are housed at different mammal collections as indicated in Appendix 1.

Otonga Reserve and Sangay National Park, localities of the rodent specimens analyzed in this study. Otonga samples were collected by Helgen et al. (2013). For Sangay, points 1 and 2 correspond to localities near the Atillo Lagoon sampled by Lee et al. (2011); and points 3 to 5 correspond to localities sampled by J. Brito and R. Ojala-Barbour (Ojala-Barbour et al. 2013; Brito et al. 2014). Chimborazo and Cotopaxi volcanoes are labeled as points of reference. Inset: map of northwestern South America indicating in a black rectangle the expanded map.
Figure 1
Otonga Reserve and Sangay National Park, localities of the rodent specimens analyzed in this study. Otonga samples were collected by Helgen et al. (2013). For Sangay, points 1 and 2 correspond to localities near the Atillo Lagoon sampled by Lee et al. (2011); and points 3 to 5 correspond to localities sampled by J. Brito and R. Ojala-Barbour (Ojala-Barbour et al. 2013; Brito et al. 2014). Chimborazo and Cotopaxi volcanoes are labeled as points of reference. Inset: map of northwestern South America indicating in a black rectangle the expanded map.

Laboratory work. We used the DNeasy kit (Qiagen, Valencia, California, USA), following the manufacturer´s protocol, to extract DNA of 201 samples of either liver or muscle from rodents collected in Otonga and Sangay. We performed PCR amplifications with the Illustra puReTaq Ready-To-Go PCR beads (GE Healthcare, Little Chalfont, Buckinghamshire, UK) to amplify a fragment of the mitochondrial COI gene using the “cocktail 2”—an M13-tailed primer cocktail optimized for mammals—with the primer ratios and thermal cycle conditions of Clare et al. (2007). We cleaned the PCR products with ExoSAP-IT (Affymetrix Inc., Santa Clara, California, USA), and conducted sequencing reactions with the ABI Big Dye chemistry (Applied Biosystems, Inc., Foster City, California, USA), using the primers M13F and M13R (Messing 1983). We sequenced the products on an ABI 3730xl DNA Analyzer automatic sequencer (Applied Biosystems, Inc., Foster City, California, USA). New sequences were deposited in GenBank (accession numbers: MF806172 – MF806372).

Phylogenetic analyses. We constructed three alignments: (A) an alignment containing our 201 newly generated sequences; (B) an alignment including our sample of Mesomys, a COI sequence of Chinchilla lanigera, and 614 sequences of the COI gene of members of the family Echimyidae (retrieved from the nucleotide database of GenBank searching for “Echimyidae COI”); C) an alignment including our 201 newly generated sequences plus 1,775 sequences of sigmodontinae rodents retrieved from Gen-Bank with the search terms “Sigmodontinae COI”. To align the sequences we used the MUSCLE (Edgar 2004) plugin in Geneious Pro v8.1.5 with default parameters. We checked the alignments manually for obvious misplacements, and trimmed all alignments to a length of 657 bp.

For each alignment we conducted phylogenetic analyses using maximum likelihood in RAxML v8 (Stamatakis 2014). We used the model GTRGAMMA for alignment A— tree A—(Figure 2) and the model GTRCAT for alignments B—tree B—(Figure 3) and C—tree C—(Figures 4 to 7). For each analysis support values were estimated using 1,000 nonparametric bootstrap pseudo replicates. For analyses A and C we used as outgroup our sequence of Mesomys, and of Chinchilla lanigera for analysis B. For each RAxML analysis, we started with a complete alignment as described above to obtain the reduced alignment (a matrix without redundant haplotypes); later, we resumed the analysis with the reduced alignment and let it finish.

Maximum likelihood gene tree (tree A; see text) of unique haplotypes of the COI gene of the rodents collected in Otonga (West, W) and Sangay (East, E). Color of the branches indicates the results of the PTP species delimitation analysis: monophyletic groups in red indicate a single putative species as well as terminal branches in blue. Numbers associated with each putative species are supporting values of the PTP species delimitation; values of 1 indicate the highest possible support. Single plus symbols indicate main branches with moderate ML bootstrap values ≥75 %, and asterisks indicate main branches with strong ML bootstrap values ≥95 %.
Figure 2
Maximum likelihood gene tree (tree A; see text) of unique haplotypes of the COI gene of the rodents collected in Otonga (West, W) and Sangay (East, E). Color of the branches indicates the results of the PTP species delimitation analysis: monophyletic groups in red indicate a single putative species as well as terminal branches in blue. Numbers associated with each putative species are supporting values of the PTP species delimitation; values of 1 indicate the highest possible support. Single plus symbols indicate main branches with moderate ML bootstrap values ≥75 %, and asterisks indicate main branches with strong ML bootstrap values ≥95 %.

Maximum likelihood gene tree and PTP species delimitation of unique haplotypes of the COI gene of the rodents of the family Echimyidae available in GenBank plus the sample of Mesomys collected at Sangay in the eastern slopes of the Ecuadorian Andes (inset); main figure panel is a zoom-out of tree to depict only the genus Mesomys, showing two putative species within M. hispidus. Colors, symbols and support values correspond to the same as in Figure 2. Names of terminals indicate sample codes and geographic origin of the samples; sequences retrieved from GeneBank keep their original identifications. Star indicates the sample of Mesomys hispidus from Sangay.
Figure 3
Maximum likelihood gene tree and PTP species delimitation of unique haplotypes of the COI gene of the rodents of the family Echimyidae available in GenBank plus the sample of Mesomys collected at Sangay in the eastern slopes of the Ecuadorian Andes (inset); main figure panel is a zoom-out of tree to depict only the genus Mesomys, showing two putative species within M. hispidus. Colors, symbols and support values correspond to the same as in Figure 2. Names of terminals indicate sample codes and geographic origin of the samples; sequences retrieved from GeneBank keep their original identifications. Star indicates the sample of Mesomys hispidus from Sangay.

Maximum likelihood gene tree and PTP species delimitation of unique haplotypes of the COI gene of the rodents of the subfamily Sigmodontinae available in GenBank plus our sample (Appendix 1) collected in Otonga Reserve and Sangay National Park (inset). Main figure panels are zoom-outs of the three clades were appear representatives of Oligoryzomys. Colors, symbols and support values correspond to the same as in Figure 2. Names of terminals indicate sample codes; sequences retrieved from GeneBank keep their original identifications. Star indicates the samples of Oligoryzomys spodiurus from Ontonga. Oligoryzomys is depicted as a paraphyletic genus; this is regarded as a spurious result (see text). True Oligoryzomys is depicted in clade B.
Figure 4
Maximum likelihood gene tree and PTP species delimitation of unique haplotypes of the COI gene of the rodents of the subfamily Sigmodontinae available in GenBank plus our sample (Appendix 1) collected in Otonga Reserve and Sangay National Park (inset). Main figure panels are zoom-outs of the three clades were appear representatives of Oligoryzomys. Colors, symbols and support values correspond to the same as in Figure 2. Names of terminals indicate sample codes; sequences retrieved from GeneBank keep their original identifications. Star indicates the samples of Oligoryzomys spodiurus from Ontonga. Oligoryzomys is depicted as a paraphyletic genus; this is regarded as a spurious result (see text). True Oligoryzomys is depicted in clade B.

Maximum likelihood gene tree and PTP species delimitation of unique haplotypes of the COI gene of the rodents of the subfamily Sigmodontinae available in GenBank plus our sample (Appendix 1) collected at Otonga Reserve and Sangay National Park (inset). Main figure panel is a zoom-out of the Mindomys + Nepehelomys clade. Colors, symbols and support values correspond to the same as in Figure 2. Names of terminals indicate sample codes; sequences retrieved from GeneBank originally identified as N. albigularis were reclassified as N. devius and N. pirrensis based on their geographic origins. Stars indicate the species of Mindomys and Nephelomys sequenced for this study.
Figure 5
Maximum likelihood gene tree and PTP species delimitation of unique haplotypes of the COI gene of the rodents of the subfamily Sigmodontinae available in GenBank plus our sample (Appendix 1) collected at Otonga Reserve and Sangay National Park (inset). Main figure panel is a zoom-out of the Mindomys + Nepehelomys clade. Colors, symbols and support values correspond to the same as in Figure 2. Names of terminals indicate sample codes; sequences retrieved from GeneBank originally identified as N. albigularis were reclassified as N. devius and N. pirrensis based on their geographic origins. Stars indicate the species of Mindomys and Nephelomys sequenced for this study.

Maximum likelihood gene tree and PTP species delimitation of unique haplotypes of the COI gene of the rodents of the subfamily Sigmodontinae available in GenBank plus all our samples included in Figure 2 collected in Otonga Reserve and Sangay National Park (inset); main figure panel is a zoom-out of the Hylaeamys clade. Colors, symbols and support values correspond to the same as in Figure 2. Names of terminals indicate sample codes; sequences retrieved from GeneBank keep their original identifications. Star indicates the sample of Hylaemays tatei from Sangay. Pound symbol indicates a very large clade of Hylaeamys megacephalus that was collapsed to obtain a clearer representation of this figure. Doted lines indicate branch lengths were reduced.
Figure 6
Maximum likelihood gene tree and PTP species delimitation of unique haplotypes of the COI gene of the rodents of the subfamily Sigmodontinae available in GenBank plus all our samples included in Figure 2 collected in Otonga Reserve and Sangay National Park (inset); main figure panel is a zoom-out of the Hylaeamys clade. Colors, symbols and support values correspond to the same as in Figure 2. Names of terminals indicate sample codes; sequences retrieved from GeneBank keep their original identifications. Star indicates the sample of Hylaemays tatei from Sangay. Pound symbol indicates a very large clade of Hylaeamys megacephalus that was collapsed to obtain a clearer representation of this figure. Doted lines indicate branch lengths were reduced.

Maximum likelihood gene tree and PTP species delimitation of unique haplotypes of the COI gene of the rodents of the subfamily Sigmodontinae available in GenBank plus all our samples included in Figure 2 collected in Otonga Reserve and Sangay National Park (inset); main figure panel is a zoom-out of the Rhipidomys clade. Colors, symbols and support values correspond to the same as in Figure 2. Names of terminals indicate sample codes; sequences retrieved from GeneBank keep their original identifications. Stars indicate the two species of unnamed Rhipidomys reported in this study. Pound symbol indicates a very large clade of Rhipidomys macconnelli that was collapsed to obtain a clearer representation of this figure.
Figure 7
Maximum likelihood gene tree and PTP species delimitation of unique haplotypes of the COI gene of the rodents of the subfamily Sigmodontinae available in GenBank plus all our samples included in Figure 2 collected in Otonga Reserve and Sangay National Park (inset); main figure panel is a zoom-out of the Rhipidomys clade. Colors, symbols and support values correspond to the same as in Figure 2. Names of terminals indicate sample codes; sequences retrieved from GeneBank keep their original identifications. Stars indicate the two species of unnamed Rhipidomys reported in this study. Pound symbol indicates a very large clade of Rhipidomys macconnelli that was collapsed to obtain a clearer representation of this figure.

Species delimitation. We performed species delimitation analyses for the best maximum likelihood trees using the Poisson tree processes (PTP) method in the bPTP web server (Zhang et al. 2013). The PTP method was built as an operational criterion of the Phylogenetic Species Concept (Eldredge and Cracraft 1980). PTP is a fast and accurate species delimitation method that uses as input a non-ultrametric tree; PTP models speciation rates from the number of substitutions in a phylogeny, and expects to find statistically significant differences from intra and inter specific relationships (Zhang et al. 2013). PTP has been successfully applied to mammals and other organism such as trypanosome parasites (Cottontail et al. 2014; Ermakov et al. 2015; Bernal and Pinto 2016), and this method has been found to be more robust than the popular GMYC method that uses time divergences from ultrametric trees which are error prone and computationally expensive to estimate (Zhang et al. 2013; Tang et al. 2014). We ran the PTP analyses for 100,000 MCMC generations for tree A, 200,000 MCMC generations for tree B, and 400,000 generations for tree C. For all analyses we set the thinning value at 100, a burn-in of 0.1, and removed outgroups to improve species delimitation.

Results

Our maximum likelihood gene tree A (Figure 2) recovered a paraphyletic tribe Thomasomyini (represented in our sample by Thomasomys, Chilomys, and Rhipidomys) relative to Akodon mollis; however, the members of the Oryzomyini were recovered as a monophyletic group (Figure 2). The maximum likelihood species delimitation analysis in PTP of tree A returned 24 candidate species. Even though we expected three shared species between both sides of the Andes (Figure 1), the molecular data supported that only one species—Microryzomys minutus—was shared between both eastern and western localities. In contrast, Akodon mollis, and Chilomys instans show structured variation, with percentage of difference >1.4 % between both putative species of Akodon and 7 % between the putative species of Chilomys. Also, our species delimitation suggests that Thomasomys taczanowskii is comprised of two putative species, both distributed in the Eastern slopes of the Andes; the divergence between both is 3 % (Figure 2).

The maximum likelihood gene tree of the family Echimyidae — tree B — (Figure 3) contained 281 unique terminals, and the maximum likelihood PTP analysis of species delimitation returned 42 candidate species. The sample of Mesomys from the eastern slopes of the Andes is nested with sequences of Yasuní National Park from the lowlands of the Ecuadorian Amazonia, confirming that both populations likely correspond to the same species (Figure 3).

The COI gene tree of the subfamily Sigmodontinae (tree C; Figures 4 to 7) consisted of 1,020 unique sequences, and the maximum likelihood species delimitation returned 153 candidate species. The genus Oligoryzomys was recovered as polyphyletic. The Otonga samples of Oligoryzomys destructor are sister to a clade of Oligoryzomys species including 6 candidate species within O. fulvescens and a sample identified as O. nigripes (Figure 4). The genera Mindomys and Nephelomys form a monophyletic group. However, the genus Mindomys (M. hammondi and an undescribed Mindomys from Otonga) was not recovered monophyletic (Figure 5). The specimens of Nephelomys from Sangay National Park might correspond to two different species, with a divergence of 5.6 %, and Nephelomys moerex from Otonga is sister to two Nephelomys species from Central America (Figure 5). The genus Hylaeamys was recovered as monophyletic and H. tatei was nested well inside the genus, as sister to a clade comprised of 6 candidate species currently identified within H. yunganus (Figure 6). Both species of Rhipidomys from Ecuador form a monophyletic group sister to a clade formed by R. scandens, R. leucodactylus (2 putative species), and R. nitela (Figure 7).

Discussion

The DNA barcoding initiative was established as a fast and universal approach to speed the discovery and identification of species (e. g., Hebert et al. 2003; Hebert and Gregory 2005; Harris and Bellino 2013). However, using the mitochondrial COI gene as the marker of choice for mammals has faced resistance from researchers used to working mainly with the CYTB gene; this is shown by the asymmetric number of sequences for the two markers deposited in GenBank (as of December 31st, 2016 there are 37,101 and 136,965 sequences of the mammalian COI and CYTB genes, respectively). Also it has been argued that CYTB gene performs better in deeper nodes of phylogenies, and it seems more informative for discriminating species (Tobe et al. 2010); however, this stance has faced criticism, as it has been demonstrated that COI gene behaves similarly to CYTB gene (Nicolas et al. 2012), and various studies have successfully made use of COI gene for species identifications (e. g., Clare et al. 2007; Borisenko et al. 2008). Although, we are aware that single locus phylogenies are substandard, and well-accepted phylogenetic inferences in mammals are increasingly made with larger, even genomic scale datasets (e. g., Meredith et al. 2011; Foley et al. 2016). In this study we found the COI gene to be a useful marker for species identification; however, more taxa and loci are needed to obtain robust phylogenies of these rodent taxa.

Along the Andes there are three main patterns of allopatric distributions: (1) a latitudinal pattern is evidenced when a pair of sister species are distributed one to the north and the other to the south, e. g., Hippocamelus antisensis (north) vs. H. bisulcus (south), and Nasuella meridensis (north) vs. N. olivacea (south) (Helgen et al. 2009; Pinto et al. 2016); (2) a cross Andean pattern is evidenced when a pair of sister species are distributed with one in the eastern slopes and another in the western slopes of the Andes, e. g., Bassaricyon alleni (east) vs. B. medius (west) (Helgen et al. 2013); and (3) altitudinal pattern is evidenced when one species is in higher elevations and its close relatives are in lower elevations, e. g., Bassaricyon neblina and Dactylomys peruanus vs. the rest of the species in their respective genera (Helgen et al. 2013; Upham et al. 2013). In this work, we highlight further possible examples of the cross Andean pattern of distributions: of the three species supposedly shared between the eastern and western slopes of the Andes, two (Chilomys instans and Akodon mollis) may represent multiple species. However, suggestion of two species within Akodon mollis in particular should be interpreted with caution; the scant genetic differentiation between the Otonga and Sangay specimens (< 2 %) and the fact that A. mollis is a widespread Andean species might suggest that intermediate lineages in the inter-Andean valleys are yet to be found, and we may have only one — not multiple — species level clades (Lee et al. 2011). Further sampling, and the analysis of additional morphological and genetic data will elucidate whether A. mollis is one or multiple species (Alvarado-Serrano et al. 2013). Our results from DNA barcoding provide preliminary views into biodiversity within these lineages which can be explored with other datasets, approaches, and sampling.

As noted, our results indicate that the interpretations of rodent species being widely distributed across both the eastern and western slopes of the tropical Andes should be viewed with certain caution. Of the species that we sampled in our comparisons, only Microryzomys minutus can be considered to indeed occupy both Andean slopes in light of our barcode data. Potentially, this Andean species is well adapted to different environments such as high elevation grasslands (páramos), Andean forests, and inter-Andean valleys. This tolerance to multiple environments would facilitate the colonization of both Andean slopes, but at the same time this may suggest that forest specialists (e. g., Chilomys) would be less likely to colonize both Andean slopes.

Species delimitation methods, such as PTP and GMYC, are useful as an initial approach to delimit species using DNA sequences (Pons et al. 2006; Zhang et al. 2013). While these inferences are useful, there are also several pitfalls associated with these analyses and the results should be taken with caution, particularly when only one method and locus are used (Carstens et al. 2013). In our results, the splitting of Akodon mollis could very well represent a false positive associated with shallow genetic differentiation; however, the deep divergence between both clades within Chilomys instans indicates that the delimitation results might reflect real species-level diversity (Figure 2). In the case of species delimitation of the subfamily Sigmodontinae (Tree C), it is possible that there was an over-splitting of species by the PTP analysis; for example, there was a potential over splitting of Hylaeamys yunganus in multiple species (Figure 6). Further systematic research will clarify the species limits of these taxa.

Following the analyses of González-Ittig et al. (2014) we preliminarily recognize the Oligoryzomys of the western slopes of the Ecuadorian Andes as O. spodiurus; these populations were traditionally regarded as part of the widespread O. destructor (Weksler and Bonvicino 2015). We also recovered Oligoryzomys as paraphyletic, but we propose that this may be due to two artifacts: incorrect identifications of various voucher specimens associated with sequences available in GenBank (sequences of specimen MN71255 [GenBank accession number: KF815407] (Figure 4C) actually belongs to Necromys lasiurus, based on the analysis of CYTB of the same specimen,results not shown); and putative pseudogenes (Numts; Bensasson et al. 2001) in sequences generated by Müller et al. (2013) [GenBank accession numbers: GU938877, GU938878, GU938886-GU938890, GU938892-GU938894, GU938898, GU938899, GU938953, GU938969-GU938988] (Figure 4A), based on the position of these sequences in an analyses of a larger data- set of Oligoryzomys barcodes (M. Weksler et al., in prep.). Traditionally, the genus Oligorzomys has been a hard group to study because of the availability of a large number of taxonomic names and various difficulties inherent in assessing patterns of morphological variation. Fortunately, there have been new efforts to generate a more comprehensive understanding of the diversity in the genus (Weksler and Bonvicino 2005, 2015; González-Ittig et al. 2014; Weksler et al. 2017). Our barcode data corroborate the sister relationship of Oreoryzomys, a poorly studied Andean genus, and Microryzomys (Weksler 2006).

Even though our phylogenetic analysis of the COI gene did not recover the two species of Mindomys as monophyletic (Figure 5), further analysis with the IRBP and CYTB gene do indeed recover these two species as a monophyletic lineage (C. M. Pinto and M. Weksler in prep.), a good example of the marked limitation of DNA barcoding for providing accurate insight into species-level phylogenetics. Mindomys form a monophyletic group with Nephelomys; both of these genera are mostly Andean, with two species of Nephelomys, N. devius and N. pirrensis, distributed in the mountain areas of Central America (Percequillo 2003, 2015). Our barcode data suggest that N. moerex of the western slopes of the Andes may be most closely related to Central American species (Figure 5). Without further systematic study we are not yet confident in assigning species names to the two candidate species of the eastern slopes of the Andes; potential names for these candidate species include N. albigularis, N. auriventer, and N. nimbosus (Brito et al. 2015; Percequillo 2015; Tinoco López 2015).

The tribe Thomasomyini was not recovered as monophyletic in our Maximum Likelihood analyses (Figure 2). This result is not surprising for several reasons: 1) Monophyly of this tribe is not strongly supported in studies using additional molecular data — CYTB and IRBP genes — (Salazar-Bravo et al. 2016). 2) The COI marker is problematic for unveiling deep nodes in phylogenies; a recent example of this limitation is the utility of this marker to in the phylogeny of bats, without using constraints (Amador et al. in press). 3) The taxonomic sampling of the analysis was very limited with only 24 species; it is known that phylogenetic accuracy increases with taxon sampling (Zwickl and Hillis 2002).

Currently, specimens of Thomasomys from Sangay are assigned to T. caudivarius, T. cinnameus, T. paramorum, T. princeps and T. taczanowskii (Lee et al. 2011, 2015). Our phylogenetic analyses show that true T. silvestris, from Otonga, are sister to a clade formed by T. paramorum and T. cinnameus; also the large species T. princeps is closely related to small sized species T. baeops and T. taczanowskii. These relationships differ from previous phylogenetic hypotheses based solely on morphological or CYTB data (Pacheco 2003; Lee et al. 2011, 2015); the single relationship that is constant across phylogenies is the sister relationship of T. baeops and T. taczanowskii. Two putative species were recovered within T. taczanowskii (Figure 2); however, it is possible that they correspond to a single species given the scant genetic divergence with the COI gene (3 %). The puzzling pattern showing that large species of Thomasomys do not form a clade (Lee et al. 2015) potentially indicates multiple origins of the large body-size phenotype, suggesting that the evolution of body size in Thomasomys is more complex than previously suggested by discrete grouping of species by body-size (Pacheco 2003, 2015). Detailed exploration of the radiation of thomasomyine rodents along the Andes is much needed, and will likely provide exciting results about diversification patterns along the Andes, as have emerged from studies of plants (e. g., Monasterio and Sarmiento 1991; Hughes and Eastwood 2006; Nürk et al. 2013).

The results for Echimyidae show that the analyzed sequences of Mesomys hispidus contain two putative species with divergences in the range of 6.9- 7.2 % (Figure 3). One of these putative species is distributed in the Guiana Shield, and the other in the western Amazon of Ecuador. These results are in line with the findings of five relatively deep mitochondrial clades within M. hispidus, with mean divergence 4.6 % (Patton et al. 1994, 2000). Also, our results suggest that the Mesomys sample (JBM 368) from the Andes is conspecific with the Mesomys from Yasuní in the western Amazonian lowlands (genetic divergence ranging from 1.2 to 1.4 %). These results contrast with a previous analysis, in which the sample JBM 368 was assigned as a different species from the lowland samples (Upham et al. 2013). Additional work on the morphology and genetics of M. hispidus will be needed to clarify its taxonomy.

Our results indicate that the alpha taxonomy of the tropical Andean rodents is still not fully resolved, for example with respect to delineation of species in the genera Chilomys and Mindomys. Also, COI sequences that we have obtained for the genera Thomasomys and Chilomys provide the first data from this marker for these genera, and may be useful for onward rodent barcoding efforts and for efforts toward a comprehensive multilocus phylogeny of thomasomyines, which remains an outstanding goal in Neotropical mammalogy (Salazar-Bravo and Yates 2007; Lee et al. 2011, 2015). While acknowledging its limitations, we encourage research teams studying Neotropical rodents to provide DNA barcoding data whenever possible, which may help to speed new species discoveries and taxonomic reviews in a highly diverse order in which many lines of basic taxonomic and inventory research remain open, active, and fruitful.

Acknowledgments

Fieldwork discussed in our paper was facilitated by a grant from the Texas Tech University Association of Biologists to CMP, a Fulbright United States Student Program grant and a Barbara E. Brown Fund for Mammal Research (FMNH) to RO-B, and grants and funds of Abilene Christian University to TEL. The Sackler Institute for Comparative Genomics at the American Museum of Natural History, and the Smithsonian Institution funded laboratory work. Escuela Politécnica Nacional supported CMP through grants PIMI-14-10 and PII-ICB-03-2017. We thank Roland Kays, Paul Pinto, Elicio Tapia, and Don Wilson for help in the field. We thank Verónica Crespo-Pérez for a helpful revision of this manuscript and providing help with figures. Katherine Moreno helped with the map, and Pablo Moreno helped locating specimens and data. Field expeditions were conducted under legal authorizations of the Ministerio del Ambiente de la República del Ecuador; permit numbers: 020 IC FAU-DNBAPVS/MA, 02-2010-FAU-DPAP-MA, 001-12-PMVS-FAU-DNB/MA,13-2011-INVESTIGACION-B- DPMS/MAE, and MAE-DNA-CM-2015-0029.

Literature Cited

Alvarado-Serrano, D. F., L., Luna, and L. L., Knowles. 2013. Localized versus generalist phenotypes in a broadly distributed tropical mammal: how is intraspecific variation distributed across disparate environments? BMC Evolutionary Biology 13:160.

Amador, L. I., R. L. M., Arévalo, F. C., Almeida, S. A., Catalano, and N. P., Giannini. In press. Bat systematics in the light of unconstrained analyses of a comprehensive molecular supermatrix. Journal of Mammalian Evolution.

Armstrong, G. D., and A., Macey. 1979. Proposals for a Sangay National Park in Ecuador. Biological Conservation 16:43–61.

Bensasson, D., D.-X., Zhang, D. L., Hartl, and G. M., Hewitt. 2001. Mitochondrial pseudogenes: evolution’s misplaced witnesses. Trends in Ecology & Evolution 16:314–321.

Bernal, X. E., and C. M., Pinto. 2016. Sexual differences in prevalence of a new species of trypanosome infecting túngara frogs. International Journal for Parasitology: Parasites and Wildlife 5:40–47.

Borisenko, A. V., B. K., Lim, N. V., Ivanova, R. H., Hanner, and P. D. N., Hebert. 2008. DNA barcoding in surveys of small mammal communities: a field study in Suriname. Molecular Ecology Resources 8:471–479.

Brito, J., and R., Ojala-Barbour. 2014. Presencia de la rata invasora Rattus rattus (Rodentia: Muridae) en el Parque Nacional Sangay, Ecuador. Therya 5:323–329.

Brito, J., H., Orellana, and G., Tenecota. 2014. Descripción del nido de Hylaeamys yunganus (Rodentia: Cricetidae) de los Andes del sureste de Ecuador. Avances en Ciencias e Ingenierías 6:B10–B12.

Brito, J., N., Tinoco, and F., Zornoza. 2015. Nuevo registro distribucional del ratón endémico Nephelomys nimbosus (Rodentia: Cricetidae) en el suroriente de Ecuador. Therya 6:667–674.

Brito, J. M., N., Tinoco, D., Chávez, P., Moreno-Cárdenas, D., Batallas, and R., Ojala-Barbour. 2017. New species of arboreal rat of the genus Rhipidomys (Cricetidae, Sigmodontinae) from Sangay National Park, Ecuador. Neotropical Biodiversity 3:65–79.

Carleton, M. D., and G. G., Musser. 1989. Systematic studies of oryzomyine rodents (Muridae, Sigmodontinae): a synopsis of Microryzomys. Bulletin of the American Museum of Natural History 191:1–83.

Carstens, B. C., T. A., Pelletier, N. M., Reid, and J. D., Satler. 2013. How to fail at species delimitation. Molecular Ecology 22:4369–4383.

Clare, E. L., B. K., Lim, M. D., Engstrom, J. L., Eger, and P. D. N., Hebert. 2007. DNA barcoding of Neotropical bats: species identification and discovery within Guyana. Molecular Ecology Notes 7:184–190.

Cottontail, V. M. et al. 2014. High local diversity of Trypanosoma in a common bat species, and implications for the biogeography and taxonomy of the T. cruzi clade. PLoS ONE 9:e108603.

Edgar, R. C.. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32:1792–1797.

Eldredge, N., and Cracraft, J. 1980. Phylogenetic patterns and the evolutionary process: methods and theory in comparative biology. Columbia University Press, New York.

Ermakov, O. A. et al. 2015. Implications of hybridization, NUMTs, and overlooked diversity for DNA barcoding of Eurasian ground squirrels. PLOS ONE 10:e0117201.

Foley, N. M., M. S., Springer, and E. C., Teeling. 2016. Mammal madness: is the mammal tree of life not yet resolved? Philosophical Transactions of the Royal Society B 371:20150140.

Fonseca, R. M. et al. 2003. Identificación preliminar de un corredor ecológico para mamíferos entre los parques nacionales Llanganates y Sangay. Revista de la Pontificia Universidad Católica del Ecuador 71:201–216.

González-Ittig, R. E., P. C., Rivera, S. C., Levis, G. E., Calderón, and C. N., Gardenal. 2014. The molecular phylogenetics of the genus Oligoryzomys (Rodentia: Cricetidae) clarifies rodent host-hantavirus associations: Rodent Host-Hantavirus genotype relationships. Zoological Journal of the Linnean Society 171:457–474.

Harris, S. E., and M., Bellino. 2013. DNA barcoding from NYC to Belize. Science 342:1462–1463.

Hebert, P. D. N., A., Cywinska, S. L., Ball, and J. R., deWaard. 2003. Biological identifications through DNA barcodes. Proceedings of the Royal Society of London B: Biological Sciences 270:313–321.

Hebert, P. D. N., and T. R., Gregory. 2005. The promise of DNA barcoding for taxonomy. Systematic biology 54:852–859.

Helgen, K. M. et al. 2009. Taxonomic boundaries and geographic distributions revealed by an integrative systematic overview of the mountain coatis, Nasuella (Carnivora: Procyonidae). Small Carnivore Conservation 41:65–74.

Helgen, K. M. et al. 2013. Taxonomic revision of the olingos (Bassaricyon), with description of a new species, the Olinguito. ZooKeys 324:1–83.

Hughes, C., and R., Eastwood. 2006. Island radiation on a continental scale: Exceptional rates of plant diversification after uplift of the Andes. Proceedings of the National Academy of Sciences 103:10334–10339.

Jarrín, P.. 2001. Mamíferos en la niebla Otonga, un bosque nublado del Ecuador. Museo de Zoología, Centro de Biodiversidad y Ambiente, Pontificia Universidad Católica del Ecuador, Quito.

Lee, T. E., C., Boada-Terán, A. M., Scott, S. F., Burneo, and J. D., Hanson. 2011. Small mammals of Sangay National Park, Chimborazo Province and Morona Santiago Province, Ecuador. Occasional Papers Museum of Texas Tech University 305:1–16.

Lee, T. E., A. R., Ritchie, S., Vaca-Puente, J. M., Brokaw, M. A., Camacho, and S. F., Burneo. 2015. Small mammals of Guandera Biological Reserve, Carchi Province, Ecuador and comparative Andean small mammal ecology. Occasional Papers Museum of Texas Tech University 334:1–20.

Maestri, R., and B. D., Patterson. 2016. Patterns of species richness and turnover for the South American rodent fauna. PLOS ONE 11:e0151895.

Meredith, R. W., J. E., Janečka, J., Gatesy, O. A., Ryder, C. A., Fisher, E. C., Teeling, A., Goodbla, E., Eizirik, T. L., Simão, T., Stadler, and D. L, Rabosky. 2011. Impacts of the Cretaceous terrestrial revolution and KPg extinction on mammal diversification. Science 334:521–524.

Messing, J.. 1983. New M13 vectors for cloning. Methods in Enzymology 101:20–78.

Monasterio, M., and L., Sarmiento. 1991. Adaptive radiation of Espeletia in the cold Andean tropics. Trends in Ecology & Evolution 6:387–391.

Müller, L. et al. 2013. DNA barcoding of sigmodontine rodents: identifying wildlife reservoirs of zoonoses. PLoS ONE 8:e80282.

Myers, N., R. A., Mittermeier, C. G., Mittermeier, G. A. B., da Fonseca, and J., Kent. 2000. Biodiversity hotspots for conservation priorities. Nature 403:853–858.

Nicolas, V. et al. 2012. Assessment of three mitochondrial genes (16S, Cytb, CO1) for identifying species in the Praomyini tribe (Rodentia: Muridae). PLoS ONE 7:e36586.

Nürk, N. M., C., Scheriau, and S., Madriñán. 2013. Explosive radiation in high Andean Hypericum—rates of diversification among New World lineages. Frontiers in genetics 4:175.

Ojala-Barbour, R., C. M., Pinto, J., Brito, L., Albuja, T. E., Lee, and B. D., Patterson. 2013. A new species of shrew-opossum (Paucituberculata: Caenolestidae) with a phylogeny of extant caenolestids. Journal of Mammalogy 94:967–982.

Pacheco, V.. 2003. Phylogenetic analyses of the Thomasomyini (Muroidea: Sigmodontinae) based on morphological data. City University of New York.

Pacheco, V.. 2015. Genus Thomasomys Coues, 1884. Pp. 617–682 in Mammals of South America (Patton, J. L., U. F. J. Pardiñas, and G. D’Elía, eds.). The University of Chicago Press. Chicago & London.

Patterson, B. D.. 2002. On the continuing need for scientific collecting of mammals. Mastozoología Neotropical 9:253–262.

Patton, J. L., M. N. F., Da Silva, and J. R., Malcolm. 1994. Gene genealogy and differentiation among arboreal spiny rats (Rodentia: Echimyidae) of the Amazon basin: A test of the riverine barrier hypothesis. Evolution 48:1314–1323.

Patton, J. L., M. N. F., Da Silva, and J. R., Malcolm. 2000. Mammals of the Rio Juruá and the evolutionary and ecological diversification of Amazonia. Bulletin of the American Museum of Natural History 244:1–306.

Patton, J. L., U. F. J., Pardiñas, and G., D’Elía (eds.). 2015. Mammals of South America, Volume 2: Rodents. The University of Chicago Press. Chicago and London.

Percequillo, A. R.. 2003. Sistemática de Oryzomys Baird, 1858: definição dos grupos de espécies e revisão taxonômica do grupo albigularis (Rodentia, Sigmodontinae). Universidade de São Paulo.

Percequillo, A. R.. 2015. Genus Nephelomys Weksler, Percequillo, and Voss, 2006. Pp. 377–390 in Mammals of South America (Patton, J. L., U. F. J. Pardiñas, and G. D’Elía, eds.). The University of Chicago Press. Chicago & London.

Pinto, C. M. et al. 2016. Archaeology, biogeography, and mammalogy do not provide evidence for tarukas (Cervidae: Hippocamelus antisensis) in Ecuador. Journal of Mammalogy 97:41–53.

Pons, J. et al. 2006. Sequence-based species delimitation for the DNA taxonomy of undescribed insects. Systematic Biology 55:595–609.

Prado, J. R. et al. 2015. Species richness and areas of endemism of oryzomyine rodents (Cricetidae, Sigmodontinae) in South America: an ndm/vndm approach. Journal of Biogeography 42:540–551.

Stamatakis, A.. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313.

Salazar-Bravo, J. , and T. L., Yates. 2007. A new species of Thomasomys (Cricetidae: Sigmodontinae) from central Bolivia. Pp. 747-774 in The Quintessential Naturalist: Honoring the Life and Legacy of Oliver P. Pearson. (Kelt, D. A., E. P. Lessa, J. Salazar-Bravo, and J. L. Patton, eds.). University of California Publications in Zoology 134:1-981.

Salazar-Bravo, J. , U. F. J., Pardiñas, H., Zeballos, and P., Teta. 2016. Description of a new tribe of sigmodontine rodents (Cricetidae: Sigmodontinae) with updated summary of valid tribes and their generic contents. Occassional Papers Museum of Texas Tech University 338:1-24.

Tang, C. Q., A. M., Humphreys, D., Fontaneto, and T. G., Barraclough. 2014. Effects of phylogenetic reconstruction method on the robustness of species delimitation using single-locus data. Methods in Ecology and Evolution 5:1086–1094.

Tinoco López, N. O.. 2015. Caracterización molecular, morfológica y morfometrica del complejo Nephelomys albigularis Tomes, 1860 (Rodentia: Cricetidae), y su distribución en el Ecuador. Pontificia Universidad Católica del Ecuador.

Tobe, S. S., A. C., Kitchener, and A. M. T., Linacre. 2010. Reconstructing mammalian phylogenies: a detailed comparison of the cytochrome b and cytochrome oxidase subunit I mitochondrial genes. PLoS ONE 5:e14156.

Upham, N. S., R., Ojala-Barbour, J., Brito M, P. M., Velazco, and B. D., Patterson. 2013. Transitions between Andean and Amazonian centers of endemism in the radiation of some arboreal rodents. BMC Evolutionary Biology 13:191.

Voss, R. S.. 2003. A new species of Thomasomys (Rodentia: Muridae) from eastern Ecuador, with remarks on mammalian diversity and biogeography in the Cordillera Oriental. American Museum Novitates 3421:1–47.

Voss, R. S.. 2009. Review of: Mammals of South America. Volume 1: Marsupials, xenarthrans, shrews, and bats (Gardner A. L., ed.). Journal of Mammalogy 90:521–523.

Weksler, M.. 2006. Phylogenetic relationships of oryzomine rodents (Muroidea: Sigmodontinae): separate and combined analyses of morphological and molecular data. Bulletin of the American Museum of Natural History 296:1–149.

Weksler, M., and C. R., Bonvicino. 2005. Taxonomy of pigmy rice rats genus Oligoryzomys Bangs, 1900 (Rodentia, Sigmodontinae) of the Brazilian Cerrado, with the description of two new species. Arquivos do Museu Nacional 63:113–130.

Weksler, M., and C. R., Bonvicino. 2015. Genus Oligoryzomys Bangs, 1900. Pp. 417–437 in Mammals of South America (Patton, J. L. , U. F. J. Pardiñas, and G. D’Elía, eds.). The University of Chicago Press. Chicago & London.

Weksler, M., E. M., Lemos, P. S., D’Andrea, and C. R., Bonvicino. 2017. The taxonomic status of Oligoryzomys mattogrossae (Allen 1916)(Rodentia: Cricetidae: Sigmodontinae), reservoir of Anajatuba Hantavirus. American Museum Novitates 3880:1-32.

Weksler, M., A. R., Percequillo, and R. S., Voss. 2006. Ten new genera of oryzomyine rodents (Cricetidae: Sigmodontinae). American Museum Novitates 3537:1–29.

Zhang, J., P., Kapli, P., Pavlidis, and A., Stamatakis. 2013. A general species delimitation method with applications to phylogenetic placements. Bioinformatics 29:2869–2876.

Zwickl, D. J., and D. M., Hillis. 2002. Increased taxon sampling greatly reduces phylogenetic error. Systematic Biology 51:588–598.

Appendix

List of the 201 samples of mammals from Otonga Reserve and Sangay National Park sequenced for this study. List includes collector numbers, museum numbers, collection locality, and GenBank accession numbers.
SpeciesField numberTissue numberMuseum numberLocality GenBank Accession
Akodon mollis APS14--FMNH 219797SangayMF806219
Akodon mollis APS4--FMNH 219798SangayMF806236
Akodon mollis APS17--FMNH 219804SangayMF806257
Akodon mollis APS26--FMNH 219805SangayMF806260
Akodon mollis APS6--MEPN 12135SangayMF806212
Akodon mollis APS10--MEPN 12138SangayMF806220
Akodon mollis APS34--MEPN 12156SangayMF806223
Akodon mollis APS39--MEPN 12161SangayMF806238
Akodon mollis ATEL2235ACUNHC1618QCAZ 11880SangayMF806242
Akodon mollis ATEL2242--QCAZ 11881SangayMF806261
Akodon mollis ATEL2256ACUNHC1595QCAZ 11882SangayMF806234
Akodon mollis ATEL2257ACUNHC1586QCAZ 11883SangayMF806226
Akodon mollis ATEL2321ACUNHC1583QCAZ 11884SangayMF806254
Akodon mollis ATEL2328ACUNHC1585QCAZ 11885SangayMF806256
Akodon mollis ATEL2346--QCAZ 11888SangayMF806252
Akodon mollis ATEL2363--QCAZ 11889SangayMF806240
Akodon mollis ATEL2237ACUNHC1587QCAZ 11890SangayMF806245
Akodon mollis ATEL2238ACUNHC1575QCAZ 11891SangayMF806239
Akodon mollis ATEL2240ACUNHC1620QCAZ 11892SangayMF806248
Akodon mollis ATEL2253ACUNHC1619QCAZ 11893SangayMF806224
Akodon mollis ATEL2259--QCAZ 11894SangayMF806225
Akodon mollis ATEL2268--QCAZ 11895SangayMF806216
Akodon mollis ATEL2269ACUNHC1603QCAZ 11896SangayMF806235
Akodon mollis ATEL2272ACUNHC1616QCAZ 11897SangayMF806221
Akodon mollis ATEL2273ACUNHC1604QCAZ 11898SangayMF806217
Akodon mollis ATEL2276ACUNHC1628QCAZ 11899SangayMF806262
Akodon mollis ATEL2277ACUNHC1577QCAZ 11900SangayMF806258
Akodon mollis ATEL2280ACUNHC1579QCAZ 11901SangayMF806222
Akodon mollis ATEL2281--QCAZ 11902SangayMF806218
Akodon mollis ATEL2282ACUNHC1584QCAZ 11903SangayMF806237
Akodon mollis ATEL2286--QCAZ 11904SangayMF806249
Akodon mollis ATEL2289--QCAZ 11905SangayMF806263
Akodon mollis ATEL2297ACUNHC1591QCAZ 11906SangayMF806227
Akodon mollis ATEL2299--QCAZ 11907SangayMF806255
Akodon mollis ATEL2302--QCAZ 11908SangayMF806228
Akodon mollis ATEL2314ACUNHC1576QCAZ 11910SangayMF806229
Akodon mollis ATEL2317ACUNHC1596QCAZ 11911SangayMF806230
Akodon mollis ATEL2350--QCAZ 11913SangayMF806259
Akodon mollis ATEL2352--QCAZ 11914SangayMF806253
Akodon mollis ATEL2356--QCAZ 11915SangayMF806243
Akodon mollis ATEL2370ACUNHC1581QCAZ 11916SangayMF806250
Akodon mollis ATEL2376--QCAZ 11917SangayMF806241
Akodon mollis ATEL2379--QCAZ 11918SangayMF806246
Akodon mollis ATEL2385--QCAZ 11919SangayMF806244
Akodon mollis ATEL2389ACUNHC1580QCAZ 11920SangayMF806247
Akodon mollis ATEL2390--QCAZ 11921SangayMF806214
Akodon mollis ATEL2391--QCAZ 11922SangayMF806231
Akodon mollis ATEL2392--QCAZ 11923SangayMF806213
Akodon mollis ATEL2396--QCAZ 11924SangayMF806232
Akodon mollis ATEL2397--QCAZ 11925SangayMF806215
Akodon mollis ATEL2399--QCAZ 11926SangayMF806211
Akodon mollis ATEL2400--QCAZ 11927SangayMF806251
Akodon mollis ATEL2401--QCAZ 11928SangayMF806233
Akodon mollis BKMH2227TK149044QCAZ 8634OtongaMF806209
Akodon mollis BMP74TK149070QCAZ 8635OtongaMF806210
Chilomys instans APS24--MEPN 12149SangayMF806264
Chilomys instans BMP62TK149051QCAZ 8691OtongaMF806266
Chilomys instans BMP64TK149053QCAZ 8693OtongaMF806269
Chilomys instans BMP69TK149058QCAZ 8694OtongaMF806265
Chilomys instans BMP91TK149099QCAZ 8695OtongaMF806267
Chilomys instans BKMH2241TK149080QCAZ 8740OtongaMF806268
Hylaeamys tateiPS22--MEPN 12147SangayMF806196
Mesomys hispidusJBM368--MEPN 12212KutukúMF806172
Microryzomys altissimusTEL2298--QCAZ 11929SangayMF806185
Microryzomys altissimusTEL2347ACUNHC1553QCAZ 11930SangayMF806183
Microryzomys altissimusTEL2278ACUNHC1605QCAZ 11931SangayMF806182
Microryzomys altissimusTEL2279--QCAZ 11932SangayMF806179
Microryzomys altissimusTEL2322--QCAZ 11933SangayMF806181
Microryzomys altissimusTEL2327--QCAZ 11934SangayMF806180
Microryzomys altissimusTEL2258--QCAZ 11973SangayMF806184
Microryzomys minutusKMH2235TK149063QCAZ 8673OtongaMF806186
Microryzomys minutusKMH2236TK149064QCAZ 8674OtongaMF806187
Microryzomys minutusKMH2257TK149106QCAZ 8675OtongaMF806189
Microryzomys minutusKMH2258TK149107QCAZ 8676OtongaMF806188
Microryzomys minutusMP53TK149026QCAZ 8677OtongaMF806195
Microryzomys minutusPS9--FMNH 219796SangayMF806194
Microryzomys minutusPS35--MEPN 12158SangayMF806191
Microryzomys minutusPS69--MEPN 12190SangayMF806190
Microryzomys minutusTEL2362ACUNHC1556QCAZ 11935SangayMF806193
Microryzomys minutusTEL2371ACUNHC1571QCAZ 11936SangayMF806192
Mindomys sp.MP88TK149096QCAZ 8720OtongaMF806197
Nephelomys moerexKMH2204TK149005QCAZ 8696OtongaMF806204
Nephelomys moerexKMH2210TK149009QCAZ 8697OtongaMF806198
Nephelomys moerexKMH2221TK149038QCAZ 8700OtongaMF806201
Nephelomys moerexKMH2253TK149102QCAZ 8709OtongaMF806202
Nephelomys moerexMP83TK149079QCAZ 8717OtongaMF806203
Nephelomys moerexMP90TK149098QCAZ 8718OtongaMF806200
Nephelomys moerexMP93TK149101QCAZ 8719OtongaMF806199
Nephelomys sp. APS2--FMNH 219795SangayMF806205
Nephelomys sp. BPS3--MEPN 12133SangayMF806206
Oligoryzomys spodiurusMP75TK149071QCAZ 8678OtongaMF806174
Oligoryzomys spodiurusMP85TK149093QCAZ 8681OtongaMF806173
Oreoryzomys balneator----MEPN 12226Cordillera del CóndorMF806175
Oreoryzomys balneatorPS66--MEPN 12187SangayMF806178
Oreoryzomys balneatorPS57--MEPN 12189SangayMF806177
Oreoryzomys balneatorPS56--MEPN 12197SangayMF806176
Rhipidomys albujaiPS75--MEPN 12196SangayMF806208
Rhipidomys sp.----MEPN 12114Cordillera del CóndorMF806207
Thomasomys baeopsMP92TK149100QCAZ 8746OtongaMF806276
Thomasomys baeopsKMH2225TK149042QCAZ 8692OtongaMF806275
Thomasomys baeopsKMH2209TK149010QCAZ 8739OtongaMF806274
Thomasomys caudivariusPS28--MEPN 12151SangayMF806307
Thomasomys caudivariusPS29--MEPN 12152SangayMF806323
Thomasomys caudivariusPS36--MEPN 12159SangayMF806309
Thomasomys caudivariusTEL2345ACUNHC1602QCAZ 11912SangayMF806325
Thomasomys caudivariusTEL2270ACUNHC1572QCAZ 11949SangayMF806310
Thomasomys caudivariusTEL2271ACUNHC1592QCAZ 11950SangayMF806312
Thomasomys caudivariusTEL2285ACUNHC1563QCAZ 11951SangayMF806313
Thomasomys caudivariusTEL2287--QCAZ 11952SangayMF806314
Thomasomys caudivariusTEL2293ACUNHC1557QCAZ 11953SangayMF806322
Thomasomys caudivariusTEL2301ACUNHC1562QCAZ 11954SangayMF806315
Thomasomys caudivariusTEL2318--QCAZ 11955SangayMF806311
Thomasomys caudivariusTEL2319--QCAZ 11956SangayMF806316
Thomasomys caudivariusTEL2343ACUNHC1567QCAZ 11959SangayMF806324
Thomasomys caudivariusTEL2344--QCAZ 11960SangayMF806308
Thomasomys caudivariusTEL2354ACUNHC1554QCAZ 11961SangayMF806321
Thomasomys caudivariusTEL2355ACUNHC1573QCAZ 11962SangayMF806317
Thomasomys caudivariusTEL2377--QCAZ 11964SangayMF806320
Thomasomys caudivariusTEL2393--QCAZ 11965SangayMF806326
Thomasomys caudivariusTEL2398--QCAZ 11966SangayMF806319
Thomasomys caudivariusTEL2402--QCAZ 11967SangayMF806318
Thomasomys cinnameusPS40--MEPN 12163SangayMF806291
Thomasomys cinnameusTEL2236ACUNHC1601QCAZ 11968SangayMF806299
Thomasomys cinnameusTEL2243ACUNHC1564QCAZ 11969SangayMF806293
Thomasomys cinnameusTEL2246--QCAZ 11970SangayMF806298
Thomasomys cinnameusTEL2250--QCAZ 11971SangayMF806297
Thomasomys cinnameusTEL2252--QCAZ 11972SangayMF806292
Thomasomys cinnameusTEL2291ACUNHC1559QCAZ 11975SangayMF806303
Thomasomys cinnameusTEL2292ACUNHC1627QCAZ 11976SangayMF806300
Thomasomys cinnameusTEL2296ACUNHC1610QCAZ 11977SangayMF806301
Thomasomys cinnameusTEL2307ACUNHC1611QCAZ 11978SangayMF806295
Thomasomys cinnameusTEL2308--QCAZ 11979SangayMF806294
Thomasomys cinnameusTEL2310ACUNHC1582QCAZ 11980SangayMF806305
Thomasomys cinnameusTEL2311--QCAZ 11981SangayMF806302
Thomasomys cinnameusTEL2329--QCAZ 11982SangayMF806306
Thomasomys cinnameusTEL2274--QCAZ 11983SangayMF806296
Thomasomys cinnameusTEL2365--QCAZ 12018SangayMF806337
Thomasomys paramorumTEL2233ACUNHC1624QCAZ 11984SangayMF806359
Thomasomys paramorumTEL2234ACUNHC1593QCAZ 11985SangayMF806360
Thomasomys paramorumTEL2239ACUNHC1626QCAZ 11986SangayMF806361
Thomasomys paramorumTEL2241ACUNHC1590QCAZ 11987SangayMF806362
Thomasomys paramorumTEL2244ACUNHC1600QCAZ 11988SangayMF806358
Thomasomys paramorumTEL2245ACUNHC1625QCAZ 11989SangayMF806357
Thomasomys paramorumTEL2247ACUNHC1597QCAZ 11990SangayMF806329
Thomasomys paramorumTEL2248ACUNHC1574QCAZ 11991SangayMF806363
Thomasomys paramorumTEL2249ACUNHC1607QCAZ 11992SangayMF806364
Thomasomys paramorumTEL2251ACUNHC1589QCAZ 11993SangayMF806356
Thomasomys paramorumTEL2255ACUNHC1612QCAZ 11994SangayMF806334
Thomasomys paramorumTEL2262ACUNHC1599QCAZ 11996SangayMF806333
Thomasomys paramorumTEL2263ACUNHC1606QCAZ 11997SangayMF806354
Thomasomys paramorumTEL2264ACUNHC1608QCAZ 11998SangayMF806353
Thomasomys paramorumTEL2300ACUNHC1615QCAZ 11999SangayMF806352
Thomasomys paramorumTEL2309ACUNHC1569QCAZ 12000SangayMF806340
Thomasomys paramorumTEL2312ACUNHC1622QCAZ 12001SangayMF806327
Thomasomys paramorumTEL2320--QCAZ 12002SangayMF806355
Thomasomys paramorumTEL2323ACUNHC1568QCAZ 12003SangayMF806335
Thomasomys paramorumTEL2324--QCAZ 12004SangayMF806330
Thomasomys paramorumTEL2325ACUNHC1613QCAZ 12005SangayMF806304
Thomasomys paramorumTEL2326--QCAZ 12006SangayMF806341
Thomasomys paramorumTEL2348--QCAZ 12011SangayMF806338
Thomasomys paramorumTEL2349ACUNHC1558QCAZ 12012SangayMF806346
Thomasomys paramorumTEL2351--QCAZ 12013SangayMF806336
Thomasomys paramorumTEL2353--QCAZ 12014SangayMF806344
Thomasomys paramorumTEL2357--QCAZ 12015SangayMF806339
Thomasomys paramorumTEL2358--QCAZ 12016SangayMF806342
Thomasomys paramorumTEL2364--QCAZ 12017SangayMF806331
Thomasomys paramorumTEL2366--QCAZ 12019SangayMF806347
Thomasomys paramorumTEL2367--QCAZ 12020SangayMF806343
Thomasomys paramorumTEL2368--QCAZ 12021SangayMF806366
Thomasomys paramorumTEL2369--QCAZ 12022SangayMF806349
Thomasomys paramorumTEL2374--QCAZ 12023SangayMF806332
Thomasomys paramorumTEL2375--QCAZ 12024SangayMF806348
Thomasomys paramorumTEL2380ACUNHC1549QCAZ 12025SangayMF806365
Thomasomys paramorumTEL2381--QCAZ 12026SangayMF806345
Thomasomys paramorumTEL2383--QCAZ 12027SangayMF806351
Thomasomys paramorumTEL2384--QCAZ 12028SangayMF806350
Thomasomys paramorumTEL2275ACUNHC1623QCAZ 12029SangayMF806328
Thomasomys princepsTEL2288--QCAZ 11937SangayMF806271
Thomasomys princepsTEL2295--QCAZ 11938SangayMF806273
Thomasomys princepsTEL2378ACUNHC1560QCAZ 11939SangayMF806272
Thomasomys princepsTEL2394ACUNHC1548QCAZ 11940SangayMF806270
Thomasomys silvestrisKMH2237TK149065QCAZ 8741OtongaMF806371
Thomasomys silvestrisMP66TK149055QCAZ 8742OtongaMF806367
Thomasomys silvestrisMP68TK149057QCAZ 8743OtongaMF806369
Thomasomys silvestrisMP70TK149059QCAZ 8744OtongaMF806372
Thomasomys silvestrisKMH2231TK149048QCAZ 8747OtongaMF806370
Thomasomys silvestrisMP82TK149078QCAZ 8749OtongaMF806368
Thomasomys taczanowskii APS56--FMNH 219801SangayMF806277
Thomasomys taczanowskii APS25--FMNH 219803SangayMF806278
Thomasomys taczanowskii B----MEPN 12224Cordillera del CóndorMF806282
Thomasomys taczanowskii BPS1--MEPN 12132SangayMF806285
Thomasomys taczanowskii BPS64--MEPN 12185SangayMF806281
Thomasomys taczanowskii BTEL2254ACUNHC1598QCAZ 11941SangayMF806286
Thomasomys taczanowskii BTEL2290ACUNHC1570QCAZ 11942SangayMF806287
Thomasomys taczanowskii BTEL2306ACUNHC1614QCAZ 11943SangayMF806288
Thomasomys taczanowskii BTEL2386--QCAZ 11945SangayMF806290
Thomasomys taczanowskii BTEL2387--QCAZ 11946SangayMF806289
Thomasomys taczanowskii BTEL2388--QCAZ 11947SangayMF806280
Thomasomys taczanowskii BTEL2395--QCAZ 11948SangayMF806279
Thomasomys taczanowskii BTEL2372--QCAZ 11963SangayMF806283
Thomasomys taczanowskii BTEL2261ACUNHC1609QCAZ 11995SangayMF806284

List of the 201 samples of mammals from Otonga Reserve and Sangay National Park sequenced for this study. List includes collector numbers, museum numbers, collection locality, and GenBank accession numbers. Continuación
List of the 201 samples of mammals from Otonga Reserve and Sangay National Park sequenced for this study. List includes collector numbers, museum numbers, collection locality, and GenBank accession numbers.  Continuación

List of the 201 samples of mammals from Otonga Reserve and Sangay National Park sequenced for this study. List includes collector numbers, museum numbers, collection locality, and GenBank accession numbers. Continuación
List of the 201 samples of mammals from Otonga Reserve and Sangay National Park sequenced for this study. List includes collector numbers, museum numbers, collection locality, and GenBank accession numbers.  Continuación

List of the 201 samples of mammals from Otonga Reserve and Sangay National Park sequenced for this study. List includes collector numbers, museum numbers, collection locality, and GenBank accession numbers. Continuación
List of the 201 samples of mammals from Otonga Reserve and Sangay National Park sequenced for this study. List includes collector numbers, museum numbers, collection locality, and GenBank accession numbers.  Continuación

List of the 201 samples of mammals from Otonga Reserve and Sangay National Park sequenced for this study. List includes collector numbers, museum numbers, collection locality, and GenBank accession numbers. Continuación
List of the 201 samples of mammals from Otonga Reserve and Sangay National Park sequenced for this study. List includes collector numbers, museum numbers, collection locality, and GenBank accession numbers.  Continuación

Notes

1 Associated editor: Guillermo D´Elia

Author notes

* Corresponding author: C. Miguel Pinto, e-mail: miguel.pinto@epn.edu.ec

HTML generated from XML JATS4R by