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ABSTRACT 

 

The Wholesale Electricity Market (MEM) has allowed participants to trade 

electricity at Local Marginal Price (LMP); therefore, developing hedging models to 

face high volatility electricity prices and avoid financial losses has become essential. 

This work proposes a methodology based on the Seasonal and Trend Decomposition 

Model (STL) to the LMP returns series, which is fitted into NIG distribution by 

obtaining empirical NIG parameters from LMP returns using Maximum Likelihood 

Estimation (MLE) to generate a simulated NIG distributed series. Finally, the 

goodness-of-fit test is estimated to demonstrate that empirical data can be fitted into 

NIG Distribution. This work should be considered the first Electricity Hedging 

Valuation Methodology for the MEM. Results obtained show that electricity price 

returns can be fitted and simulated by NIG distribution even through economic crisis 

periods. The analysis period is from 29/01/2016 to 09/07/2021. 

Keywords: Seasonal and Trend decomposition using Loess (STL); Normal Inverse 

Gaussian Distribution (NIG); Electricity Price Forecasting (EPF); Wholesale 

Electricity Market (MEM); Electricity Hedging Valuation. 

JEL Classification: C15; G10; O13; P18; Q47. 

 

RESUMEN 

 

El Mercado Eléctrico Mayorista (MEM) ha permitido a los participantes 

comercializar electricidad al Precio Marginal Local (LMP) por lo que, se requiere 

desarrollar modelos de cobertura para enfrentar la alta volatilidad de los precios y 

así evitar pérdidas financieras. Este trabajo propone una metodología basada en el 

Modelo de Descomposición Estacional y de Tendencias (STL) aplicado a las series 

de retornos PML, su ajuste a la distribución NIG obteniendo los parámetros 

empíricos por Estimación de Máxima Verosimilitud (MLE), para simular una serie 

distribuida NIG, y por medio de pruebas de bondad de ajuste demostrar el ajuste de 
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los datos a la distribución NIG. Este trabajo debe considerarse la primera Metodología de Valuación de Coberturas 

Eléctricas para el MEM. Los resultados muestran que los retornos del precio de la electricidad pueden ajustarse a la 

distribución NIG incluso en períodos de crisis económica. El periodo de estudio contempla del 29/01/2016 al 

09/07/2021. 

Palabras clave: Descomposición Estacional y de Tendencia usando Loess (STL); Distribución Normal Inversa 

Gaussiana (NIG); Pronóstico del Precio de la Electricidad (EPF); Wholesale Electricity Market (MEM); Valuación de 

Cobertura de la Electricidad. 

Clasificación JEL: C15; G10; O13; P18; Q47. 

 

INTRODUCTION 

 

The 2013 Mexican Energy Reform was implemented to liberate the energy sector, allowing new participants 

to enter the electrical industry in the generation, transmission, distribution, and commercialization of 

electricity. The liberation process will encourage a competitive environment since new participants will 

seek to generate electricity at the lowest cost, for which they will make investments focused on modernizing 

the infrastructure and implementing automated processes, thereby seeking to achieve an increase in 

operating efficiency. The electricity reform is expected to improve the electrical service offered, as 

mentioned in Article 4 of the Electricity Industry Law (Diario Oficial de la Federación, 2014) "significant 

benefits in efficiency, quality, reliability, continuity, safety, and sustainability," as well as lower electricity 

prices for industrial, commercial, and residential consumers. 

These benefits must be transferred to the final consumer as welfare increase. In this sense, Ramírez 

et al. (2021) developed a study to measure the Mexican population's welfare improvement of those energy 

goods consumers related to Mexico's energy reform; the study is focused on electricity, liquified petroleum 

gas (LPG), and gasoline for the period between 2010 and 2018.  Ramírez et al. (2021) analysis concluded 

that after Mexico's energy reform, electricity, liquified petroleum gas (LPG), and gasoline consumers have 

experienced welfare gains compared to consumers in the 2010-2014 period. Unfortunately, it was also found 

that welfare gains are associated with enormous amounts of resources dedicated to subsidizing energy 

goods. Finally, Ramírez et al. (2021) mention that efforts must focus on increasing efficiency through the 

energy supply chain rather than subsidies to achieve sustainable welfare gains.  

Article 94 of the Electricity Industry Law states that: "National Center of Energy Control 

(CENACE) will operate the Wholesale Electricity Market” following this Law. The Short-Term Energy 

Market is part of the Wholesale Electricity Market that comprises three sub-markets: Baja California 

Interconnected System (BCA), South Baja California Interconnected System (BCS), and National 

Interconnected System (SIN). 

The Short-Term Energy Market operates based on an economic dispatch process described in the 

General Provisions of the Short-Term Energy Market of the Electricity Market Rules (2015). Rule 9.1.8 

provides the process for assigning hourly electricity price for each network connectivity node with physical 

delivery and energy withdrawal (NodeP), which is considered equal to the marginal cost of its generation, 

determined by the variable cost at which the last megawatt-hour was dispatched. This marginal cost of 

supply is called Local Marginal Price (LMP). By applying CENACE’s economic dispatch algorithm, the 

LMP is calculated for each of the NodePs of the Day-ahead market (MDA) and Real-time market (MTR); 

the price estimation result will have three marginal components: energy, losses, and congestion. 

It is essential to keep in mind that the demand for electricity depends on factors related to the 

weather, such as temperature, rainfall, wind speed, etc., and daily consumption regarding market intensity 

and consumer activities during weekdays, weekends, holidays, etc. It is worth mentioning that seasonality 

is one of the main characteristics that make price dynamics behave differently concerning other financial 

assets, since it presents daily, weekly, monthly, and annual levels. These characteristics, described by Weron 



Ramírez y Saucedo, Hedging Electricity Price Volatility Applying Seasonal and Trend Decomposition                    145 

 

 

(2014), cause LMP volatility dynamics, which can produce significant differences between the projected 

price and the trading price in the short-term market, leading to substantial financial losses for the market 

participants who do not have adequate financial hedging. Electricity price volatility can be twice as high in 

magnitude as that of another commodity or any financial asset, as described by Weron (2014), which 

represents a source of risk if a proper hedging price volatility strategy is not in place. 

Due to the price dynamics described above, electricity price series behavior analysis is of utmost 

importance to have solid quantitative elements that facilitate making estimations with reasonable levels of 

accuracy, with which hedging products can be designed in the event of an extreme change in the LMP. It is 

also important to have a robust risk management strategy, to achieve financial results within the defined 

margins, and avoid severe economic losses in a market in which generation costs and sales prices are highly 

volatile, such as the electricity market. By implementing this practice, market participants and consumers 

have electricity price certainty, ensuring better financial planning, which is essential for any productive 

economy sector in terms of efficiency, productivity, and financial stability. 

Although competitive electricity prices benefit the productive sectors in terms of efficiency and 

productivity, there will not always be evidence of a causal relationship between electricity production (EP) 

and Gross Domestic Product (GDP). In this sense, Massa and Rosellón (2020) prepared a study for the case 

of Mexico for the period 1965-2018 to identify the Granger causality directions between EP and GDP. Their 

results suggested a neutral effect, which led them to the conclusion that policy implementation focused on 

EP improvement may not have any impact (positive or negative) on the GDP. They also concluded that 

neutrality should be considered as an opportunity because a secondary Electricity Reform objective is 

related to the energy transition which aims to achieve 50% of electricity generation with clean energies, 

especially solar and wind, by 2050. They state that the energy transition would not have any effect on 

economic performance and would also be an opportunity to develop a national competitive electric power 

sector that relies less on US electricity imports. Sarmiento et al. (2021) mention that achieving the 50-50% 

generation goal, has already implied fast short-run developments of natural gas and renewable infrastructure 

in Mexico, such as investments to increase the pipeline systems and solar and wind auctions. 

 According to Energy Generated by Technology Type (2021), clean electricity generation (wind and 

solar) represents 11%, while combined-cycle plants represent 59% of electricity generated by July 2021. 

From this statistic it can be assumed that the Mexican electricity industry relies on coal, diesel, fuel oil, and 

natural gas for electricity generation through combined-cycle plants. In this sense, Sarmiento et al. (2021) 

state the crucial role of natural gas in the energy systems of Mexico and the United States. They analyzed 

the impact of different natural gas prices on the power generation matrix across both nations, showing an 

explicit dependency of Mexican electricity generation on natural gas, wind, and solar technologies. Their 

study mentions that market liberalization reforms have increased reliance on U.S. shale gas based on 

economic arguments of liberalization, competition, and cost minimization. The study also states that 

importing shale gas from the U.S. represents an economic solution to meet Mexico's growing natural gas 

demand and is linked to the development of combined-cycle power generation. 

From the perspective of hedging electricity price volatility, events that cause market and electricity 

price disruptions should be considered. One of the most disruptive events in modern history is the current 

case of the economic crisis related to the pandemic caused by the SARS-COV-2 virus, which has forced 

people to change their habits, resulting in socioeconomic changes, due to the sanitary restrictions and 

lockdowns that have been implemented globally. In this sense, Corpus-Mendoza et al. (2021) evaluated the 

impact of the pandemic on urban mobility, electricity consumption, and 𝑁𝑂2 emissions using data from 26 

countries, including Mexico, finding that the pandemic has had a decreasing effect on average electricity 

consumption (around 7% in Mexico). They conclude that such changes could be attributed to a reduction in 

industrial activity, transit station and retail sector operations, as well as to the adoption of home-office. 

Some studies have been conducted in an endeavor to determine the impact of the pandemic on electricity 
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demand. Micheli et al. (2021) found that electricity demand decreased 11% in the Spanish Electricity 

Market, while Abdeen et al. (2021) estimated that electricity demand increased 12% in the Canadian 

household market owing to the pandemic. 

This analysis proposes a methodology for hedging and forecasting electricity prices, focusing on 

applying the STL decomposition model for seasonal adjustment following the utilization of NIG distribution 

to obtain NIG parameters from empirical series to generate a NIG simulated series, and finally verifying 

simulated series fitted to NIG distribution empirical parameters through the application of goodness-of-fit 

tests. Since it is known that the logarithmic returns of financial prices do not fit the Normal distribution, the 

aim is to demonstrate that LMP returns can be modeled as a financial asset using the NIG distribution to 

achieve a better fit compared to the Normal distribution when performing a numerical hedging valuation 

that has LMP returns as an underlying asset. 

The present analysis has two main contributions. First, we propose utilizing the LMP Marginal 

Energy Component as the underlying asset for hedging price volatility, since said component is the same 

for all NodePs belonging to the same electrical system; we also develop a detailed description of the 

reference node selection criteria for each electricity market, as well as a description of LMP components. 

Second, we propose the first methodology for hedging electricity price volatility for the Mexican Electricity 

Markets, considering for this analysis two time periods, the population of data that includes the pandemic 

period and the period related to the pandemic. Empirical results obtained indicate that the price dynamics 

of electricity can be captured and simulated through this methodology for every economic situation, even 

for periods of economic crisis. 

This analysis is organized as follows: In Section 1, the literature review is carried out on the 

techniques used to model electricity price series and electricity derivatives valuation, and a review of heavy-

tailed distributions that can improve financial asset series is performed. Section 2 describes the data series 

selection criteria for the present study, while the data series are described in Section 3. In Section 4, the STL 

decomposition model is described. Section 5 develops the methodology used to demonstrate that the 

deseasonalized LMP energy component logarithmic returns fit NIG distribution, and finally we present the 

conclusions of the analysis. 

 

I. LITERATURE REVIEW 

 

Janczura and Weron (2013) mention that to model electricity price series, their particular characteristics are 

related to seasonality at the annual, monthly, weekly, and daily levels, while mean reversion and spikes in 

prices must also be taken into consideration. According to Weron (2014), seasonality is one of the main 

characteristics that make price dynamics behave differently from other financial assets, since it presents 

daily, weekly, and annual levels. Cleveland et al. (1990) developed the STL model of seasonal and trend 

decomposition based on LOESS; the model is a filtering procedure to decompose a time series into its trend, 

seasonal, and remainder components. The model was developed mainly to have a decomposition process, 

which could be implemented computationally. The main characteristics of this model include the flexibility 

to specify the amount of variation in the trend and seasonal components and that it provides the capacity to 

specify the number of observations per cycle of the seasonal component, obtaining robust trend and seasonal 

components that are not distorted by the transient aberrant behaviors of the data, which are relevant for the 

present analysis. Sun et al. (2019) used Seasonal and Trend decomposition by LOESS decomposition (STL) 

to forecast monthly electricity sales, by decomposing the electricity sales series into their seasonal, trend, 

and remainder components, carrying out the analysis of each component independently, trying to identify 

the factors that influence each component and then integrate again an adjusted series with which it is possible 

to make reliable sales forecasts. 
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The development of valuation models for electricity derivatives has been treated from the 

perspective of financial mathematics and econometrics. Vehviläinen (2002) stated that modeling the 

electricity spot price process utilizing Black and Scholes's model assuming Geometric Brownian Movement 

is not recommended for the electricity market. His analysis proposes a mathematical model attached to 

traditional financial theory, where he describes that since electricity is not an asset that can be stored, it must 

be modeled differently compared to other commodities. As electricity is consumed when it is generated, the 

spot price also depends significantly on the system's stability, since a failure in a network component can 

cause unexpected jumps, spikes, and high price volatility. 

Brager et al. (2010) present a model that considers jumps and spikes, which can be calibrated for 

the price series once both parameters are a function of time. They mention that since electricity cannot be 

stored (at an acceptable cost), there is no formula to estimate "cost-of-carry," so there is no specific 

relationship between the spot price and the future price, explaining that the expected spot price is directly 

influenced by supply and demand in the future. Expected demand is influenced by weather forecasts, 

business cycles, customer behavior, etc. Moreover, the expected supply depends on the futures of other 

commodities used for electricity generation, such as oil, gas, and coal, which cause high volatility in future 

prices. 

From an econometric perspective, Chan et al. (2008) comment on developing a model that can 

accurately capture the underlying asset's characteristics, especially the number and intensity of the asset 

jumps that occur. Chan et al. (2008) mention that, continuing with the seminal work of Johnson and Barz 

(1999), various studies have been carried out where the jump-diffusion model commonly used in asset prices 

and interest rates has been adopted to model electricity prices, Escribano et al. (2011), Geman and Roncoroni 

(2006), to name a few. 

Chan et al. (2008) also consider the work of Andersen et al. (2007) which describes the jump-

diffusion model as a combination of two components, first, a smooth continuous sample path process and, 

second, a discontinuous component of the jump process. Chan et al. (2008) state that although the reference 

framework of a jump-diffusion process is intuitive theoretically, its econometric implementation has some 

relevant shortcomings. Chan et al. (2008) remark on the difficulty in identifying the jump components and 

the smoothing variations process in the price, since the results obtained using jump-diffusion models do not 

allow the identification of these components. Chan et al. (2008) also mention the work carried out by Jiang 

(1999), which states that conditional volatility, the size of the spikes, and frequency are not observable 

variables, so they must be estimated as dynamic variables, making it challenging to identify a diffusion 

model with jumps capturing the characteristics of the underlying price. 

As has been mentioned, mathematical and econometric models have some limitations in capturing the 

characteristics of electricity prices, especially concerning the magnitude and frequency of observed jumps 

and spikes. These shortcomings have generated the motivation to analyze the behavior of the underlying 

asset by fitting a distribution, in the case of electricity prices, the NIG distribution may capture the dynamics 

of jumps and spikes since it is a heavy-tailed distribution, which can be used to carry out the valuation of 

electricity options or futures numerically and for electricity price forecasting. 

Given this context and the difficulty of having a general differential equation for any class of 

financial asset, a group of researchers has taken an approach that encompasses applying different families 

of probability distributions. In particular, the Generalized Hyperbolic family has proven to be an ideal choice 

given the presence of heavy tails. 

The Generalized Hyperbolic family proposed by Barndorff-Nielsen (1977) is specified by five 

parameters, one of them "λ". If this parameter is set to -0.5, Normal-Inverse Gaussian (NIG) is obtained. 

Barndorff-Nielsen (1995) also used NIG distribution to model observations with heavy tails. 

It is essential to mention that the Generalized Hyperbolic family not only fits financial asset returns such as 

the IPC and S&P 500 indices, as stated by Trejo et al. (2006), but is also capable of fitting cryptocurrency 
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returns. On this particular point, Núñez et al. (2019) point out the ability of the NIG distribution to fit 

Bitcoin's returns concerning seven of the leading global currencies for periods with explosive behavior and 

subsequent collapse (financial bubble). In addition, NIG distribution can model and fit the indices of Brazil, 

Russia, India, and China (BRIC) for different periods and even during economic recessions and crises, as 

demonstrated by (Núñez et al. 2018). 

 

II. METHODOLOGY DESCRIPTION 

 

The following section describes the models and techniques used to develop the proposed methodology to 

capture the behavior of the LMP Marginal Energy Component. 

 

Logarithmic Returns Estimation 

 

Logarithmic returns were obtained as follows: 

 𝑟𝑖 = ln(𝑝𝑖) − ln(𝑝𝑖−1) ∀ 𝑖 = 2, … , 𝑇 (1) 

 

Data Series Unit Root Test 

 

The Augmented Dickey-Fuller is applied to verify that the data series first difference is stationary as defined 

by Dickey and Fuller (1979): 

 

Δ𝑦𝑖 = 𝛽0 + 𝛽1𝑦𝑖−1 + ∑ 𝛾𝑗

𝑝

𝑗=1

Δ𝑦𝑖−𝑗 + 𝜀𝑖 

 

(2) 

 

𝐻0: 𝛾 = 0 (𝑈𝑛𝑖𝑡 𝑅𝑜𝑜𝑡 𝐸𝑥𝑖𝑠𝑡𝑠) 𝑦 𝐻𝑎: 𝛾 < 0 (𝑆𝑒𝑟𝑖𝑒𝑠 𝑖𝑠 𝑆𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑟𝑦) 

 

LMP Return Data Series Modeling Using STL Decomposition 

 

The STL Decomposition Model developed by Cleveland et al. (1990) was applied. The model is a filtering 

procedure for performing the decomposition of a time series into its trend, seasonal, and remainder 

components, which is denoted as follows: 

 𝑌𝜈 =  𝑇𝜈 + 𝑆𝜈 + 𝑅𝜈    (3) 

 

Where: 𝑌𝜈 corresponds to the original time series, 𝑇𝜈 the trend component, 𝑆𝜈 the seasonal 

component, and 𝑅𝜈 the remaining component, for 𝜈 = 1 𝑎 𝑁. 

The following criteria, described by Cleveland et al. (1990), justify the selection of the STL 

decomposition model to perform the seasonal adjustment of Electricity Price Returns (EPR): “Flexibility to 

specify the variation amounts in trend and seasonal components provides the capacity to specify the number 

of observations per cycle of the seasonal component to any integer greater than 1, and robust trend and 

seasonal components that are not distorted by transient, aberrant behavior in the data are obtained”. 

 

Analysis of STL Decomposition Parameter Selection 

 

The following section describes parameter values used to perform the seasonal adjustment of EPR, 

according to Cleveland et al. (1990). 
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The seasonal component 𝑛(𝑝), refers to the number of observations in each cycle and defines the 

number of observations in each seasonal component cycle present in data series within an annual periodicity. 

Parameter 𝑛(𝑖), establish the number of times the Inner Iterative Loop will be executed, and 

parameter 𝑛(𝑜), the number of times the Outer Iterative Loop will be executed; this parameter is directly 

related to data series distribution. If the data series is not normally distributed, and extreme variations can 

be observed, the robust estimation will be performed through the outer iterative loop.  

Parameter  𝑛(𝑙), the low-pass filter smoothing parameter, 𝑛(𝑙) can be selected as the smallest odd 

number equal to or greater than 𝑛(𝑝). 

Parameter  𝑛(𝑠), Seasonal Smoothing Parameter, must be an odd integer greater than or equal to 7. 

The selection of this parameter determines the seasonal data component variation. Since this parameter has 

a certain degree of ambiguity because the correct selection depends on the characteristics of the data series, 

there is more than one option when decomposing the data series. 

The Trend Smoothing Parameter 𝑛(𝑡),  must be an odd number, since as the value 𝑛(𝑡) increases, the 

trend component is smoothed. Parameter 𝑛(𝑡) is kept small to avoid trend variations to be captured by the 

seasonal component of the data series; the value of 𝑛(𝑡) should be the smallest odd number that meets the 

following inequality: 

 
𝑛(𝑡 ) ≥

1.5𝑛(𝑝 )

1 − 1.5𝑛𝑠
−1 

(4) 

 

Obtaining Deseasonalized Data Series 

 

According to Cleveland et al. (1990), the STL decomposition model is based on an additive procedure, 

establishing that the original series is the arithmetic sum of the seasonal, trend, and remainder components, 

as shown in equation (3). 

Starting from this statement, we can take advantage of this property to subtract the seasonal 

component from the original data series and eliminate the seasonality component and thus the 

Deseasonalized Energy Price Returns (DEPR) series that is a stationary series without seasonality: 

 𝐷𝜈 =  𝑇𝜈 + 𝑅𝜈 −  𝑆𝜈    (5) 

 

Where 𝐷𝜈 is the Deseasonalized series 

 

Methodology for Adjusting NIG Distribution to Deseasonalized Returns  

 

To fit the NIG distribution to the DEPR, obtained in the section above, the methodology proposed by Núñez 

et al. (2018) was applied as follows. 

 

Descriptive statistics 

 

Descriptive statistics estimations of DEPR are performed to determine the mean, variance, skewness, and 

kurtosis values empirically. In this case, the data series distribution is not expected to fit the Normal 

distribution. 
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Normality tests 

 

Normality tests are used to determine whether the data series fits the Normal distribution. If not, NIG 

distribution would be an ideal candidate and can be used to adjust the DEPR. The following Normality Tests 

are considered as part of the methodology: Anderson and Darling (1954) “Anderson-Darling”, Pettitt (1976) 

“Cramer-von Mises”, Jarque and Bera (1980) “Jarque-Bera”, Lilliefors (1967) “Lilliefors”, and Shapiro and 

France (1972) “Shapiro-France”.  

 

Obtaining NIG distribution parameters by MLE 

 

Barndorff-Nielsen (1997) presented The Normal Inverse Gaussian (NIG) distribution, as a variance-mean 

mixture distribution, to construct stochastic processes for statistical modeling purposes, such as turbulence 

and finance; its density function is defined as follows: 

 
NIG(𝑥; 𝛼, 𝛽, 𝜇, 𝛿) = 𝑎(𝛼, 𝛽, 𝜇, 𝛿)𝑞 (

𝑥 − 𝜇

𝛿
) −1𝐾1 (𝛿𝛼𝑞 (

𝑥 − 𝜇

𝛿
)) exp(𝛽𝑥) 

 

(8) 

Where: 

 𝑎(𝛼, 𝛽, 𝜇, 𝛿) =  𝜋−1𝛼 exp (𝛿√ 𝛼2 −  𝛽2) − 𝛽𝜇) 
(9) 

And: 

 𝑞(𝑥) = √1 + 𝑥2 
(8) 

Where , 𝜇 ∈ ℝ , 𝛿 > 0 and, 0 ≤ |𝛽| ≤ 𝛼. 

NIG parameters were estimated from each of the DLMPR by Maximum Likelihood Estimation 

(MLE). 

 

Simulating NIG distributed data series 

 

Data series simulation was performed using numerical NIG distribution simulations with the parameters 

obtained from each of the empirical DEPR considered into the analysis. Each simulated series was created 

considering the same number of observations as the original series. 

 

Goodness-of-Fit Tests 

 

Goodness-of-fit tests were used to determine the similarities between the empirical and NIG simulated 

DEPR distribution and obtain conclusive statistical elements to demonstrate that the empirical series can be 

fit into the NIG distribution. The Anderson and Darling (Stephens,1979) “Anderson-Darling”, Massey 

(1951) “Kolmogorov-Smirnov”, and Kruskal and Wallis (1952) “Kruskal-Wallis” goodness-of-fit tests were 

estimated.  

 

III. DATA DESCRIPTION 
 

Reference Node and Marginal Energy Component 

 

The Short-Term Energy Market Manual establishes in base 4.4.8 that: "For each hour of the operating day, 

the Local Marginal Price components depend on the selection of a reference node in each interconnected 

system”. Table 1 shows the Reference Nodes for LMP estimation (2021) chosen by CENACE for each 

interconnected system.  
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Table 1 

Reference Nodes for the LMP estimation 

Source: Reference Nodes CENACE. 

 

The criteria used to select the reference node for each interconnected system are mentioned below, 

according to CENACE: 

• The node was selected since it is located in the center of the system, for numerical stability reasons. 

• It was intended to be a substation with high reliability and a voltage level greater than or equal to 

230 kV. 

• There must be no load or generation at the node and, therefore, there will be no settlement for any 

market participant and LMP will not be estimated for reference nodes. 

 

As previously mentioned, "the components of the LMP depend on the selection of a reference node 

in each interconnected system". Hence, a series of parameters are defined in the Physical Network Model 

and the Commercial Market Model to estimate the LMP components for each of the interconnected system 

nodes. However, the information of the reference node parameters is classified and reserved for market 

participants and trusted external users. Nevertheless, it is known that (i) the marginal energy component of 

the LMP is the same for all NodePs in the same interconnected system, for each hour of the day of operation, 

and that (ii) the marginal component of losses and congestion in the reference node is equal to zero for the 

reference node. With these statements it can be concluded that the LMP Marginal Energy Component (ECP) 

of any NodeP would be equivalent to the Reference Node Price Series (RNP) within each interconnected 

system. Thus, the ECP can be selected to perform the hedging valuation methodology. 

 

Data Selection 

 

For this statistical analysis, the ECP of a NodeP for each of the three interconnected systems were used. To 

maintain consistency with the name and code of the reference node assigned by CENACE, the NodePs 

selected are those placed in the same location as the Reference Node of each of the interconnected system. 

Some NodeP and reference node code similarities can be observed due to this selection criteria. It is 

important to mention that the reason for choosing the ECP is because, as described above, it is equivalent 

to the RNP. It should be mentioned that the Reference Nodes are not considered NodePs and therefore do 

not exist within the CENACE NodeP catalogue. However, there is a NodeP within the catalogue with the 

same name as the Reference Node but different characteristics. Table 2 shows the names and codes of the 

NodePs from which the EP was obtained. 

Interconnected system Reference Node 

Node Code Name Voltage 

Level  

Charging 

Zone 

Regional Control 

Center  

National (SIN) 03QRP-400 Querétaro Potencia 400 Querétaro Occidental  

Baja California (BCA) 07PJZ-230 Presidente Juárez 230 Tijuana Baja California 

Baja California Sur 

(BCS) 

07OLA-230 Olas Altas 230 La Paz Baja California Sur 
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Table 2 

ECP NodePs  

System Charging Zone Name NodeP  Reference Node  

SIN Querétaro Querétaro Potencia 03QRP-115 03QRP-400 

BCA Tijuana Presidente Juárez 07PJZ-115 07PJZ-230 

BCS La Paz Olas Altas 07OLA-115 07OLA-230 

Source: Own estimations with information from the CENACE "NodeP Catalogue and reference nodes." 
 

ECP empirical observation frequency is on an hourly basis, seven days a week. For the present 

analysis, two scenarios are considered. The first scenario analyzes the ECP of each of the interconnected 

systems considering the entire population of data up to 09/07/2021. The second scenario examines the ECP 

of each of the interconnected systems for the period corresponding to the SARS-COV-2 pandemic between 

01/04/2020, the day when the health contingency was established, and 09/07/2021. Figure 1 shows the ECP 

graphic for each scenario considered; all the observations shown in the graphics correspond to data 

population, and the sample in red corresponds to the SARS-COV-2 health contingency period.  

 

Figure 1 

ECP Data Series Scenarios 

SIN.Price 

 
BCA.Price 

 
 
  



Ramírez y Saucedo, Hedging Electricity Price Volatility Applying Seasonal and Trend Decomposition                    153 

 

 

BCS.Price 

 
Note: (Blue) and (Red) series corresponds to data population, (Red) series corresponds to the SARS-COV-2 health contingency. 

Source: Own estimations with information from CENACE. 

 

The Maximum Daily LMP Marginal Energy Component Data Series (MECP) was obtained from 

the hourly-basis series of the ECP. It was assumed that the MECP could be the price of the underlying asset 

of an option or a future at the exercise time. To evaluate any of these instruments it is first necessary to 

verify whether the MECP can fit the NIG distribution and subsequently determine the hedging price by 

numerical simulations. The resulting MECP has a daily frequency. Table 3 shows the characteristics of each 

series. 

Table 3 

Maximum LMP Energy Component Data Series (MECP) 

Series System NodeP Hourly Basis Daily Max. Range 

SIN.P SIN 03QRP-115 49356 2049 01/29/2016 - 04/14/2020 

BCA.P BCA 07PJZ-115 49200 2049 01/29/2016 - 04/14/2020 

BCS.P BCS 07OLA-115 41423 1725 12/18/2016 - 04/14/2020 

SIN.C SIN 03QRP-115 12600 525 04/01/2020 - 04/14/2020 

BCA.C BCA 07PJZ-115 12600 525 04/01/2020 - 04/14/2020 

BCS.C BCS 07OLA-115 12600 525 04/01/2020 - 04/14/2020 

Note: “.P” refers to Population series, and “.C” refers to Health Contingency sample.  

Source: Own estimations with information from CENACE. 

 

IV. RESULT ANALYSIS 

 
Stationary Data Series Estimation 

 

After obtaining the MECP logarithmic returns (MECPR) according to equation (1), the Augmented Dickey-

Fuller statistical test was performed following equation (2); each data series was found to be stationary.  

 

Analysis of STL Decomposition Parameter Selection 

 

It is worth mentioning that each MECPR series was decomposed using the same selected parameters, so as 

to maintain standardization while the analysis was being performed. 
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For the case of the data series considered during this analysis, 𝑛(𝑝) = 52  was selected as a starting 

value following the model suggested by Cleveland et al. (1990), which states that components should be 

estimated  successively, starting with 𝑛(𝑝) = 52  for weekly seasonality, 𝑛(𝑝) = 12  for monthly seasonality, 

𝑛(𝑝) = 4  for quarterly seasonality, and 𝑛(𝑝) = 1 for annual seasonality. It was not possible to adjust the 

weekly seasonality using this technique. Finally, to identify if the series Seasonality responded to a specific 

cycle observation size, tests with different 𝑛(𝑝) values were performed.  It was found that with 𝑛(𝑝) = 7, it 

is possible to correct the series seasonality.  

From the statistical analysis perspective, it was possible to adjust the series seasonality by selecting 

𝑛(𝑝) = 7, which can be interpreted as the seasonal cycle series being between 50-55 days. By analyzing 

𝑛(𝑝) = 7  from a financial perspective, it could be assumed that the generating companies’ price forecasting 

horizon may correspond to that period, due to budgeting processes, acquisition of gas, oil, coil, and exchange 

rate futures contract processes, achieving proper hedging to obtain the fixed cost of generation. 

The Jarque-Bera normality test was performed on the MECPR to determine 𝑛(𝑜) value. If the series 

is Normally distributed 𝑛(𝑜)= 0 will be taken, otherwise 5 ≤𝑛(𝑜)≤ 10. The Jarque-Bera test determined that 

the data series are not normally distributed. In this case, 5 ≤ 𝑛(𝑜) ≤  10  is defined because the series is not 

normally distributed, and the robust estimation of the data is required, while 𝑛(𝑖) = 1 is established. 

The low-pass filter smoothing parameter 𝑛(𝑙) was selected as the smallest odd number equal to or 

greater than 𝑛(𝑝), thus following the criteria 𝑛(𝑙) = 7. For the Seasonal Smoothing Parameter 𝑛(𝑠), it was 

found that with 𝑛(𝑠) = 43, the better fit is obtained. To carry out the data series decomposition, 𝑛(𝑡) = 11 

was selected, since previously 𝑛(𝑝) = 7 and 𝑛(𝑠) = 43 had been selected, thus obtaining 𝑛(𝑡) = 10.8795. 

 

STL Decomposition Model Selected Parameters 

 

The parameters applied for the decomposition of each of the MECPR are shown in Table 4. 

 

Table 4 

STL Decomposition Model Parameters 

Parameter Value 

𝑛(𝑝) 7 

𝑛(𝑖) 1 

𝑛(𝑜) 10 

𝑛(𝑙) 7 

𝑛(𝑡) 11 

𝑛(𝑠) 43 

Source: Own estimations, according to the suggested values of Cleveland et al. (1990). 

 

Obtaining Deseasonalized Data Series 

 

Deseasonalized Maximum LMP Marginal Energy Component Return Data Series (DMECPR) were 

obtained by following equation (5). Figure 2 shows the graphics of the DMECPR, superimposed on the 

MECPR. It can be observed that, although the seasonal component has been subtracted, the DMECPR do 

not suffer significant changes in their structure or volatility.  
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Figure 2 

Empirical vs Deseasonalized Series Graphics 
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SIN.C 

 
BCA.C 

 
BCS.C 

 
Note: Empirical Series in First Differences (Blue), Deseasonalized Series in First Differences (Red) 

Source: Authors’ elaboration with information from CENACE. 
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Adjusting NIG Distribution to Deseasonalized Data Series  

 

Stationary tests 

 

Before adjusting the DMECPR, it is necessary to perform the Augmented Dickey-Fuller test to ensure that 

the data series were stationary. The test was performed using equation (2). The DMECPR were found to be 

stationary.  

 

Descriptive statistics 

 

Descriptive statistics estimations were performed to determine the skewness and kurtosis values empirically 

and ascertain whether the DMECPR distribution fits the Normal distribution. Data series are moderately 

skewed and have excess kurtosis, which conforms to a leptokurtic distribution well above the Normal 

distribution values. Table 5 shows the descriptive statistics values. 

 

Table 5 

DMECPR Descriptive statistics 

  Mean Variance Skewness Kurtosis 

SIN.P 7.94E-05 0.096296 -0.09085 6.148028 

BCA.P 7.49E-04 0.173045 0.280854 9.705862 

BCS.P 6.81E-04 0.033515 0.072498 19.67955 

SIN.C 0.001144 0.125836 -0.17204 6.232717 

BCA.C 0.003661 0.228151 0.212672 5.659703 

BCS.C 0.003262 0.042733 0.479968 11.34691 

Source: Own estimations with information from CENACE. 

 
Normality Test 

 

The results of every normality test applied to each of the DMECPR, a p-value <0.05 was obtained, as shown 

in Table 6, leading to the conclusion that the series are not normally distributed. Due to the skewness and 

excess kurtosis observed, this type of series can be adjusted to the NIG distribution, as Núñez et al. (2018) 

demonstrated. 

 

Table 6 

DMECPR Normality Test Results 

  

Anderson 

Darling 

Shapiro 

Francia Lilliefors 

Cramer.Von 

Mises 

Jarque 

Bera 

SIN.P 3.70E-24 4.24E-23 1.04E-28 7.37E-10 0 

BCA.P 3.70E-24 2.46E-32 3.11E-76 7.37E-10 0 

BCS.P 3.70E-24 3.82E-44 4.58E-216 7.37E-10 0 

SIN.C 3.59E-22 3.27E-12 1.72E-13 7.37E-10 0 

BCA.C 4.98E-13 1.62E-09 5.26E-07 1.79E-09 0 

BCS.C 3.70E-24 9.31E-23 1.32E-64 7.37E-10 0 

Source: Own estimations with information from CENACE. 
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NIG Distribution Parameters Estimation. 

 

The Maximum Likelihood Estimation (MLE) procedure was applied to obtain the DMECPR distribution 

parameters. Table 7 shows the NIG distribution parameters estimated for each data series. For the case of 

the NIG distribution, λ = -1⁄2 is established. 

 

Table 7 

NIG distribution parameters estimation 

  mu delta alpha beta 

SIN.P 0.012298 0.2313 2.345913 -0.12403 

BCA.P -0.00674 0.179736 0.913091 0.038094 

BCS.P 0.000885 0.035045 0.775046 -0.00433 

SIN.C 0.019599 0.222814 1.685252 -0.13927 

BCA.C -0.02955 0.378777 1.620195 0.141725 

BCS.C 0.00125 0.050913 0.887991 0.035005 

Source: Own estimations with information from CENACE. 

 

Series Simulation Based on Obtained NIG Distribution Parameters 

 

For each DMECPR, a simulated series was generated with the same parameters 𝛼, 𝛽, 𝜇, 𝛿 obtained and the 

same number of observations as the original empirical series. Figure 3 shows the graphics of the empirical 

series density, the simulated NIG density, and the Normal density, making it possible to observe that a better 

fit of the empirical data is obtained with NIG distribution, QQ, and PP graphs of the NIG distribution's 

simulated density are also shown for each DMECPR. The NIG distribution shows greater flexibility to fit 

the heavy-tailed distributions than the Normal (Gaussian) distribution. 

 

Figure 3: 

Density function, NIG adjustment, Q-Q and P-P graphics 

SIN.P 
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BCS.C 

 

  
Note: Normal Distribution (Black), Empirical Distribution (Blue), and Simulated NIG Distribution (Red). 

Source: Own estimations with information from CENACE. 

 

Goodness-of-fit test results 

 

The Goodness-of-fit test results, Anderson-Darling (AD), Kolmogorov-Smirnov (KS), and Kruskal-Wallis 

(KW), are shown in Table 8. A p-value≥0.05 was obtained in each of the goodness-of-fit tests applied to 

DMECPR, leading to the conclusion that the empirical series fit the NIG distribution since 𝐻0 is not rejected.  

This result demonstrates that DMECPR can be fitted to the NIG distribution for numerical hedging 

estimation and for electricity price forecasting. 

Table 8 

Goodness-of-fit test results 

  A-D K-W K-S 

SIN.P 0.56837 0.466849 0.549553 

BCA.P 0.06108 0.75825 0.128432 

BCS.P 0.9497 0.963914 0.993506 

SIN.C 0.9118 0.80429 0.917195 

BCA.C 0.4342 0.431429 0.491129 

BCS.C 0.72437 0.748775 0.591099 

Source: Own estimations with information from CENACE. 
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CONCLUSION 

 

This work analyzes the Mexican Wholesale Electricity Market (MEM). One of the contributions of the study 

is the definition of the marginal energy component of the LMP as the series of prices that should be used as 

an underlying asset for the valuation of derivative instruments in the MEM, or to carry out Electricity Price 

Forecasting (EPF). Furthermore, the description of the reference node selection criteria for each of the 

electricity markets that make up the MEM is considered relevant. Although the contributions mentioned 

above are relevant for the MEM analysis, the original contribution of this study is to propose a methodology 

to hedge electricity price volatility, taking into consideration that a financial product of this type is not 

currently available in the Mexican market. This study could be considered a starting point for future research 

related to derivative electricity prices, EPF, or any other research related to electricity prices in the MEM. 

The study shows that the dynamics of the DMLMPER of the MEM interconnected systems could 

be captured by the NIG distribution. For this reason, it would be appropriate to use this distribution when 

applying numerical simulation models to establish electricity hedging prices and electricity price 

forecasting. NIG distribution has greater adjustment flexibility with its four parameters than the Normal 

distribution, producing the possibility of hedge prices being much more precise, since it captures heavy tails 

values and, therefore, better adjusts to the empirical data. 

It is relevant to mention that the methodology proposed in this work could be used to analyze the 

electrical systems of other countries or regions, not just the MEM, since the behavior of energy prices has 

specific characteristics that are consistent across different markets, as mentioned by Weron (2014). 

The development of an electricity prices hedging valuation methodology by adjusting the 

DMLMPER to a heavy-tailed distribution, such as the NIG distribution by numerical simulations using 

electricity price returns as an underlying asset, is highly relevant in the current global context due to the 

establishment of energy policies focused on achieving more significant electricity generation from 

renewable energy sources. This could have an impact in the future on electricity prices because it would 

bring about changes in the distribution of commodities used during the electricity generation process. In 

addition, the difficulty of estimating the levels of electricity generation through renewable sources that are 

related to climatic factors is considered, so that climate change could become a crucial aspect of electricity 

price volatility. 

Factors that cause high volatility events in electricity demand must also be considered. The most 

relevant case at present is related to the pandemic caused by the SARS-COV-2 virus. Different studies have 

found that lockdowns and sanitary measures are related to electricity demand decrease; in this sense, 

Corpus-Mendoza et al. (2021) determined that electricity demand in the Mexican market decreased by 7% 

for January - March 2020 relative to the same period of 2019. In this type of situation, it becomes much 

more relevant to have a robust risk analysis methodology and hedging instruments that help electricity 

market participants prevent financial losses. In this sense, this work demonstrated that the utilization of 

semi-heavy tail distributions, such as NIG Distribution, is essential to capture electricity price dynamics in 

the presence of extreme events that could be related to economic crisis. 

It is essential to mention that financial instruments of this type are generally traded in mature 

electrical markets, where there are many participants, different exchangers that offer a wide variety of 

hedging products, and where participants operate under open-market principles. The MEM can be 

considered as an emerging market in which there is a limited number of participants, with only one exchange 

through which electricity can be traded at LMP; Clean Energy Certificates (CELs) are also traded, but, as 

was previously stated, it is not yet possible to trade derivative contracts. One of the main challenges that the 

MEM has faced to achieve a greater degree of maturity is related to the changes in energy policy promoted 

by the government since December 2018. Hernández Ibarzábal et al. (2020) suggest that the changes in 
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energy policy are focused on achieving what the government calls "energy sovereignty and security," with 

the hydrocarbon and electricity sector as its scope. 

Changes in energy policy implemented in the energy sector since 2018 have focused on 

strengthening the Federal Electricity Commission (CFE), a state company seeking to retake the monopoly 

of the electricity sector supply chain, which could be considered, to a certain extent, as protectionist 

measures. These strengthening efforts have discouraged private investment, because the government has 

sought to make investments with its resources, leaving aside public-private associations for the development 

of projects. On the other hand, an environment of great uncertainty has developed, since the government 

canceled the electricity auctions, has breached contracts, revoked licenses, and changed market operation 

rules, which has caused disagreements and conflicts that have had to be resolved in court. Another factor of 

uncertainty is related to the constitutional reform to the electricity sector that the president sent to the 

Congress in September 2021, thereby strengthening the CFE; the acceptance of this reform could have 

consequences for the development of a competitive electric power market. 

In a market environment such as the current one, offering derivative instruments in the short and 

medium-term to hedge electricity price volatility is challenging. There would have to be a radical change in 

the current government's energy policies, and the certainty that the operating conditions of the markets will 

remain unchanged so that the necessary investments can be made for the MEM to continue its growth and 

maturity process. 
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