

Análisis económico

ISSN: 0185-3937 ISSN: 2448-6655

Universidad Autónoma Metropolitana, Unidad Azcapotzalco, División de Ciencias Sociales y Humanidades

Ayvar Campos, Francisco Javier; Silva Trigueros, Jorge
Provisión de Infraestructura Básica en México: Un estudio a partir del Análisis Envolvente de Datos
Análisis económico, vol. XXXVI, núm. 93, 2021, Septiembre-Diciembre, pp. 51-66
Universidad Autónoma Metropolitana, Unidad Azcapotzalco, División de Ciencias Sociales y Humanidades

DOI: https://doi.org/10.24275/uam/azc/dcsh/ae/2021v36n93/Ayvar

Disponible en: https://www.redalyc.org/articulo.oa?id=41370425004

Número completo

Más información del artículo

Página de la revista en redalyc.org

abierto

Sistema de Información Científica Redalyc

Red de Revistas Científicas de América Latina y el Caribe, España y Portugal Proyecto académico sin fines de lucro, desarrollado bajo la iniciativa de acceso

Provisión de Infraestructura Básica en México: Un estudio a partir del Análisis Envolvente de Datos

Provision of Basic Infrastructure in Mexico: A study from the Data Envelopment Analysis

Recibido: 23/marzo/2021; aceptado: 20/julio/2021; publicado:01/septiembre/2021

https://doi.org/10.24275/uam/azc/dcsh/ae/2021v36n93/Ayvar

Francisco Javier Ayvar Campos*

Jorge Silva Trigueros**

RESUMEN

El presente documento tiene por objetivo analizar la eficiencia de las entidades federativas mexicanas en la utilización del Fondo de Infraestructura Social para las Entidades y el Capítulo 1000 del gasto corriente para la provisión de infraestructura básica, en el período 2014-2018. En virtud de que el uso adecuado de estos insumos económicos puede coadyuvar a la reducción de la pobreza y el rezago social a nivel nacional. La determinación de la eficiencia se llevó a cabo mediante el Análisis Envolvente de Datos. Los resultados revelaron que sólo Baja California Sur, Colima y Tlaxcala fueron eficientes. Por lo que es necesario la implementación de mecanismos que logren la eficiencia en el manejo de los recursos para generar las condiciones físicas esenciales suficientes que contribuyan a la disminución de las carencias sociales y la desigualdad.

Palabras clave: DEA; FISE; Capítulo 1000; Infraestructura Básica; México. **Clasificación JEL:** C67; E61; H54; I38; O29.

ABSTRACT

The objective of this document is to analyze the efficiency of the Mexican states in the use of the Social Infrastructure Fund for Entities and the Chapter 1000 of current expenditure for the provision of basic infrastructure, in the period 2014-2018. Given that the proper use of these economic inputs can contribute to the reduction of poverty and social backwardness at the national level. The determination of the efficiency was carried out by the Data Envelope Analysis. The results revealed that only Baja California Sur, Tlaxcala, and Colima were efficient. Therefore, it is necessary to implement mechanisms that make the management of economic resources more efficient to generate sufficient essential physical conditions that contribute to reduce the social deprivation and inequality.

Esta obra está protegida bajo una Licencia Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

^{*} Doctor en Ciencias del Desarrollo Regional. Profesor investigador del Instituto de Investigaciones Económicas y Empresariales de la Universidad Michoacana de San Nicolás de Hidalgo, México, [francisco.ayvar@umich.mx], [https://orcid.org/0000-0001-7342-4451]

^{**} Ingeniero Civil. Estudiante de la Maestría en Políticas Púbicas del Instituto de Investigaciones Económicas y Empresariales de la Universidad Michoacana de San Nicolás de Hidalgo, México, [0008083k@umich.mx], [https://orcid.org/0000-0001-8103-1367]

Keywords: DEA, FISE, Chapter 1000, Basic Infrastructure; Mexico.

JEL Classification: C67; E61; H54; I38; O29.

INTRODUCCIÓN

Actualmente, México enfrenta grandes retos relacionados a la pobreza y el rezago social, debido a que la población vulnerable por ingresos creció 1.7% y la población vulnerable por carencias sociales se incrementó 16.5% durante el período 2014-2018 (Benita & Gómez, 2013; Consejo Nacional de Evaluación de la Política de Desarrollo Social (CONEVAL) (2021a)). Para modificar este contexto, el Estado durante el período 2014-2018 destinó el 13.76% del Producto Interno Bruto al gasto en materia de desarrollo social, a través de diferentes programas y acciones orientadas a la satisfacción de las necesidades básicas de la sociedad; operadas mediante transferencias directas, acceso a los servicios de educación y salud, inserción laboral, y provisión de infraestructura (Centro de Estudios de las Finanzas Públicas (CEFP), 2019).

La política de desarrollo social se ha instrumentado en varios ejes, siendo uno de ellos el gasto federalizado. El cual, a través del Fondo de Aportaciones para la Infraestructura Social (FAIS), subdividido en un componente estatal (FISE) y otro municipal (FISM-DF), brinda a los gobiernos subnacionales los recursos económicos para la provisión de infraestructura básica que beneficie a la población en condición de pobreza y rezago social (H. Congreso de la Unión, 2018). Asimismo, mediante el Capítulo 1000 del gasto corriente contempla las remuneraciones al personal del Estado, cuya labor se orienta al desarrollo de actividades que permitan su funcionamiento y contribuyan a alcanzar sus fines económicos y sociales (Secretaría de Hacienda y Crédito Público (SHCP), 2009).

A pesar de la existencia de diversas acciones e iniciativas gubernamentales a favor del desarrollo y bienestar social, como la provisión de infraestructura básica a las comunidades en condición de carencias sociales y vulnerabilidad, la cantidad de población en situación de pobreza y rezago ha sido cada vez mayor (CONEVAL, 2021a). Por lo que resulta deseable robustecer la eficacia y eficiencia de las políticas públicas, sobre todo de aquellas que se vinculan al desarrollo social, y en las cuales, se invierten cantidades importantes de recursos financieros, humanos y técnicos. Dado lo anterior, el objetivo de la presente investigación es analizar la eficiencia de las entidades federativas mexicanas en la utilización de los recursos del FISE y el Capítulo 1000 para la provisión de obras de infraestructura básica, en el período 2014-2018.

Para cumplir este propósito, se parte del concepto de eficiencia, el cual consiste en la obtención de la máxima producción posible con los insumos disponibles (Ferguson & Gould, 1979). Ahora bien, para su determinación se utilizó el Análisis Envolvente de Datos (DEA, por sus siglas en inglés)² (Villarreal & Tohmé, 2017). Diseñando así un modelo DEA, que tuvo como unidades de análisis a las 32 entidades federativas de México, con orientación al *output* y estructurado bajo rendimientos variables a escala. A partir de la revisión teórica y la representatividad estadística, determinada a través del análisis factorial, se estableció como *output* el número de obras concluidas de infraestructura básica, y como *inputs* los recursos económicos del FISE y el Capítulo 1000 del gasto corriente del Estado.

El documento está organizado en cuatro secciones; en la primera, se efectúa el análisis de la infraestructura básica en México. Posteriormente, se presentan los elementos teóricos de la eficiencia y el DEA. En la tercera sección se muestran los rasgos metodológicos del modelo DEA. Después se analizan y discuten los resultados obtenidos. Finalmente, se presentan las conclusiones.

¹ Se entiende por infraestructura básica al desarrollo de obras públicas en los rubros de agua potable, alcantarillado, drenaje y letrinas, urbanización municipal, electrificación rural y de colonias pobres, infraestructura básica del sector salud, infraestructura básica del sector educativo, mejoramiento de vivienda y mantenimiento de infraestructura (Secretaría de Bienestar, 2021).

² El nombre DEA proviene del procedimiento aplicado a los datos que son utilizados para el establecimiento de la frontera de producción (Sarafoglou *et al.*, 2006).

I. ANÁLISIS CONTEXTUAL DE LA INFRAESTRUCTURA BÁSICA EN MÉXICO.

Durante el período 2014-2018 la población en situación de pobreza en México disminuyó 5.2%. A nivel de entidades destacaron Baja California Sur, Nuevo León, Coahuila, Aguascalientes, Chihuahua, Michoacán, Sinaloa, Hidalgo y Jalisco por lograr reducir el número de pobres; mientras que Tabasco, Campeche, Veracruz, el Distrito Federal y Chiapas presentaron aumentos en el indicador (CONEVAL, 2021b). En términos de pobreza extrema el país exhibió un decrecimiento del 18.6%, al pasar de 11.4 millones de personas en 2014 a 9.3 millones de personas en 2018. Sobresaliendo Nuevo León, Coahuila, Baja California Sur, Durango, Michoacán, Chihuahua, Tlaxcala, Hidalgo, Sinaloa y Querétaro por reducir el volumen de individuos en esta condición; situación opuesta a la de Tabasco, Guerrero, Veracruz, el Distrito Federal y Morelos que vieron crecer la cantidad de personas en pobreza extrema (CONEVAL, 2021b).

En relación a lo anterior, el CONEVAL (2021a) señala que el porcentaje de población con carencias educativas, de salud, vivienda y alimentación se redujo de manera notable durante el período 2014-2018. Asimismo, el CONEVAL (2021c) muestra que en 2015 cuatro entidades (Aguascalientes, Coahuila, Distrito Federal y Nuevo León) mantenían un índice de rezago social muy bajo, trece (Baja California, Baja California Sur, Colima, Chihuahua, Jalisco, Estado de México, Morelos, Querétaro, Quintana Roo, Sinaloa, Sonora, Tamaulipas y Zacatecas) lo conservaban bajo, cuatro (Chiapas, Guerrero, Oaxaca y Veracruz) lo tenían muy alto, seis (Campeche, Hidalgo, Michoacán, Puebla, San Luis Potosí y Yucatán) lo preservaban alto, y cinco (Durango, Guanajuato, Nayarit, Tabasco y Tlaxcala) lo sostenían en un nivel medio. Es así como, durante el período 2000-2015, veintidós estados (Tlaxcala, Zacatecas, Tabasco, Guanajuato, Nayarit, Durango, Hidalgo, Baja California Sur, Campeche, Sonora, Colima, Baja California, Chiapas, Distrito Federal, Tamaulipas, Estado de México, Nuevo León, Aguascalientes, Puebla, Chihuahua, San Luis Potosí y Jalisco) lograron una disminución en el índice, y diez (Querétaro, Sinaloa, Yucatán, Oaxaca, Guerrero, Quintana Roo, Coahuila, Michoacán, Morelos y Veracruz) presentaron aumentos (CONEVAL, 2021c).

El Estado mexicano, ante tal situación ha establecido una política social de combate a la pobreza y el rezago social, pero no ha podido reducir de manera significativa la cantidad de personas en esta condición (CONEVAL, 2010, 2021a-c; Prudencio & Ramones, 2014). De esta forma, la creencia de que el crecimiento económico conduciría a la reducción de la desigualdad, promoviendo el desarrollo y el bienestar social en un marco de equidad y justicia, ha quedado olvidada (Aguilar-Estrada *et al.*, 2018; CONEVAL, 2010). Actualmente, se ha adoptado un enfoque a favor de la mitigación de los efectos de la desigualdad (Rodríguez, 2012).

La Carta Magna de México establece que es obligación del Estado asegurar que la población acceda al desarrollo social, por lo que la política nacional debe buscar superar la pobreza y el rezago a través de la educación, la salud, la alimentación, el empleo, la seguridad social, el desarrollo de infraestructura básica y el fomento económico (H. Congreso de la Unión, 2015). Para ello, la Ley de Coordinación Fiscal (LCF) señala que las aportaciones federales son el mecanismo para transferir recursos a los gobiernos subnacionales (H. Congreso de la Unión, 2018). Una de estas contribuciones es el FAIS, que se subdivide en el FISE y el FISM-DF. Estos fondos deben de destinarse al financiamiento de obras que beneficien a la población de los municipios y localidades que presentan mayores niveles de pobreza y rezago social (H. Congreso de la Unión, 2018).

De acuerdo a cifras de la SHCP (2007, 2017), en el período 2014-2018, la Federación destinó 26.58% más recursos a las entidades, en el marco del FISE, para infraestructura básica, pasando de 7,019 millones de pesos en 2014 a 8,886 millones de pesos en 2018 (ver Tabla 1A del anexo). Por estados destacan Chiapas, Guerrero, el Estado de México, Oaxaca y Veracruz, cuyos ingresos por este rubro crecieron de manera significativa, lo que se explica por el volumen de personas en situación de pobreza y rezago social (SHCP, 2013, 2014, 2015, 2016, 2017).

El Instituto Nacional de Geografía y Estadística (INEGI) (2020, 2021) establece que, durante el período 2014-2018, el gasto corriente del Gobierno mexicano fluctuó de manera importante. En el caso particular del Capítulo 1000, éste ostentó un aumento generalizado del 17% durante el período de estudio. Sobresaliendo el Distrito Federal, Jalisco, el Estado de México, Veracruz y Puebla por contar con una dotación importante de este recurso. Sin embargo, entidades como Aguascalientes, Querétaro, Quintana Roo y Tabasco gestionaron disminuciones, lo cual puede ser explicado por la necesidad de reorientar el gasto al pago de deuda pública, sacrificando la remuneración de servicios personales y adelgazando el aparato burocrático (ver Tabla 1A y 2A del anexo) (Gobierno de la Ciudad de México, 2020; INEGI, 2020).

El número de obras de infraestructura básica desarrolladas en las 32 entidades federativas, en el período 2014-2018, crecieron un 246.9%, al pasar de 4,840 obras en 2014 a 16,794 obras en 2018, destacando Zacatecas, Veracruz, Tlaxcala, Chiapas, Hidalgo, Durango, Distrito Federal y Chihuahua por contar con la mayor cantidad de obras construidas; mientras que Nuevo León, Querétaro, Tamaulipas, Baja California Sur, Colima y Morelos tuvieron el menor número de obras concluidas (ver Tabla 1A del anexo) (Auditoria Superior de la Federación (ASF), 2013, 2014, 2015, 2016, 2017, 2018; SHCP, 2013, 2014, 2015, 2016, 2017).

A pesar del incremento de recursos económicos (FISE y Capítulo 1000) y de obras desarrolladas, la ASF determinó que los fondos no se destinaban a los fines establecidos, y que, en muchas ocasiones, el recurso no era utilizado en el ejercicio fiscal en que fue otorgado. Se observa entonces que factores secundarios, dependientes de las instituciones y los funcionarios públicos, incidieron negativamente en los registros contables, la participación ciudadana, la planeación, la ejecución y la evaluación; afectando la eficacia y eficiencia del programa (ASF, 2013, 2014, 2015, 2016, 2017, 2018).

II. ELEMENTOS TEÓRICOS DE LA EFICIENCIA Y EL DEA.

Afonso y Fernandes (2008), Álvarez (2013), Banker *et al.* (1984), Bankole *et al.* (2011), Charnes *et al.* (1978), Coelli *et al.* (2003), Ferguson y Gould (1979), Navarro y Torres (2003) señalan que entre menos insumos (*inputs*) se utilicen en la producción de un bien o servicio (*output*) o, más *output* se genere con los mismos *inputs*, mayor es la eficiencia. La idea de cuantificar la eficiencia surge con el trabajo de Farrell (1957), quien la determina a partir del establecimiento de una frontera de producción³ y del *benchmarking*⁴ de las Unidades de Análisis (*DMUs*, por sus siglas en inglés). En ese sentido, una *DMU* es eficiente solamente si se posiciona en la frontera de producción, dada la utilización optima de sus *inputs* para generar el *output* (Sarafoglou *et al.*, 2006).

El DEA, de acuerdo con Villarreal y Tohmé (2017), es una técnica no paramétrica determinística⁵ que utiliza algoritmos de programación lineal⁶ para determinar la eficiencia de un conjunto de *DMUs*. Según Charnes *et al.* (1994), los modelos DEA pueden estar orientados al *input* o al *output*. El primero, se enfoca

³ La frontera de producción es la curva que describe la producción de las *DMUs* que se consideran eficientes, y la distancia que hay entre las *DMUs* ineficientes y la frontera se supone como la razón entre la producción real y la máxima posible, de acuerdo a las condiciones tecnológicas dadas (Villa, 2003).

⁴ El *benchmarking* hace referencia al desempeño comparativo de una *DMU* respecto a las mejores de su tipo (Bemowski, 1991; Bogetoft & Otto, 2010).

⁵ Los modelos no paramétricos difieren de los paramétricos en que, no asumen una forma específica de la función de producción, y cuenta con la ventaja de que permite la inclusión de uno o varios *inputs* y *outputs* (Orozco, 2014). De esta forma, buscan evaluar la eficiencia relativa de una *DMU* con respecto de *DMUs* similares, por medio de fronteras deterministas (Ávila & Cárdenas, 2012).

⁶ El objetivo de la programación lineal aplicada los modelos DEA, es evaluar la eficiencia relativa de un conjunto de *n DMUs* que producen similares *outputs* a partir de *inputs* parecidos. En ese sentido, independientemente del *software* seleccionado para el análisis de eficiencia, el modelo DEA utiliza técnicas de programación matemática, mediante las cuales se puede considerar variables endógenas y categóricas, adaptando el método a determinadas situaciones concretas que se deseen considerar (Beltrán *et al.*, 1999).

a la utilización eficiente de los *inputs* para la consecución de ciertos niveles de *output*. El segundo, busca la maximización del *output* dado un cierto nivel de *inputs*. Asimismo, pueden ser considerados bajo suposiciones económicas de Rendimientos Constantes a Escala (CRS, por sus siglas en inglés) o de Rendimientos Variables a Escala (VRS, por sus siglas en inglés) (Banker *et al.*, 1984; Bankole *et al.*, 2011; Charnes *et al.*, 1978; Ngwenyama & Morawczynski, 2009).

El uso de esta herramienta ha crecido de manera significativa en los últimos años, siendo sus ámbitos de utilización, de manera enunciativa más no limitativa, el desempeño de las empresas, las escuelas, los hospitales, los sectores económicos, la prestación de servicios públicos, entre otros (Afonso & Fernandes, 2008; Ávila & Cárdenas, 2012; Fernández & Flórez, 2006; Loikkanen & Susiluoto, 2005; Martín, 2008; Orozco, 2014; Pérez-Romero *et al.*, 2017; Prior & Surroca, 2004).

Según Serrano (2014), existen tres enfoques utilizando el DEA para evaluar la eficiencia del Gobierno, que son: la eficiencia técnica global, la eficiencia asignativa y la eficiencia de escala. La eficiencia técnica global, cuya medición coincide con el modelo CRS, se define como la capacidad de una *DMU* para obtener la máxima producción posible a partir de los insumos y tecnología disponibles. Asimismo, la eficiencia técnica global puede descomponerse en eficiencia técnica pura y eficiencia de escala. La primera, que concuerda con el cálculo VRS, muestra en qué medida la *DMU* está extrayendo el máximo rendimiento de los insumos a su disposición; y, la segunda, producto del comparativo de las mediciones CRS y VRS, expresa si la *DMU* ha logrado alcanzar el punto óptimo de producción (Álvarez, 2013; Banker *et al.*, 1984; Coelli *et al.*, 2003; Jakobsen, 2010; Navarro, 2005; Villa, 2003). Por otro lado, la eficiencia asignativa es aquella que determina la combinación de *inputs* que generan el mínimo costo (Álvarez, 2013; Afonso & Fernandes, 2008; Coelli *et al.*, 2003). En todos los casos, la eficiencia adopta valores entre 0 y 1, representando cero la total ineficiencia y uno la total eficiencia posible; cualquier valor intermedio implica que la *DMU* opera por debajo de su frontera (Coll & Blasco, 2006; Navarro, 2005; Villa, 2003).

En lo conducente a las políticas públicas, uno de los principales objetivos es conocer los efectos que ha causado una intervención gubernamental, así como la evaluación de la eficacia y eficiencia de dicha acción. Para ello, el uso de métodos cuantitativos, como el DEA, resulta de gran importancia (De Borger *et al.*, 1994; Venetoklis, 2002). La evaluación de la eficiencia en el sector público suele ser compleja, ya que necesita una adecuada delimitación de las *DMUs*, los *inputs* y los *outputs* que se pretenden estudiar. Otra de las complicaciones se relaciona con la ausencia de un mercado para los productos públicos, ya que el Estado asume un papel de monopolio en la provisión de ellos (Álvarez, 2013; Coelli *et al.*, 2003). De forma que, el objetivo de la evaluación de la eficiencia tiene que ver con la exigencia de la sociedad de una gestión adecuada de los recursos, de la cual se obtenga la mayor cantidad de bienes y servicios dado los insumos que posee o, por el contrario, que se utilice la menor cantidad de estos para la generación de una cantidad determinada de productos (Álvarez, 2013).

III. RASGOS METODOLÓGICOS DEL MODELO DEA

Debido a que el Estado es el agente encargado de la provisión de infraestructura básica a la sociedad (H. Congreso de la Unión, 2015, 2018). La eficiencia en la generación de ésta debe ser entendida como la capacidad de un gobierno de convertir los recursos públicos en desarrollo social, a través de obras de infraestructura básica que contribuyan a disminuir la pobreza y el rezago de la población (Ávila & Cárdenas, 2012; Islas, 2012; Serrano, 2014; Torres, 1991). Ahora bien, el concepto de eficiencia administrativa al que hacen referencia la Constitución Política de los Estados Unidos Mexicanos, la Ley de Coordinación Fiscal, el Plan Nacional de Desarrollo y el Programa Nacional de Desarrollo Social se relaciona con (Wunder & Gabardo, 2018):

"1) ejercitar la potestad con la máxima celeridad, presteza, economicidad y productividad; 2) concretar fielmente la finalidad pública; 3) utilizar los medios más adecuados para el alcance óptimo

de los objetivos; 4) conferir la máxima efectividad del servicio a la sociedad beneficiaria; y 5) permanecer en línea con los derechos fundamentales y demás principios y reglas que orientan la actividad administrativa" (p. 137 y 138).

Por otro lado, la evaluación cuantitativa de la eficiencia no se encuentra contemplada por el CONEVAL como un medio para determinar técnicamente la forma en qué se ejercen los recursos, lo cual, imposibilita la realización de ajustes que mejoren los resultados. En vista de lo anterior, la aplicación de métodos cuantitativos, que permitan determinar los niveles de eficiencia de los gobiernos resulta no sólo deseable, sino necesaria (Athanassopoulos & Triantis, 1998; Loikkanen & Susiluoto, 2005).

Es debido a lo anterior que en la presente investigación se hace uso del DEA para determinar la eficiencia con la que las 32 entidades federativas mexicanas utilizaron los recursos del FISE y del Capítulo 1000 del gasto corriente para la provisión de infraestructura básica, en el período 2014-2018. La razón de utilizar esta técnica es que no se requiere el establecimiento *a priori* de la función de producción, tiene la capacidad de incorporar múltiples *inputs* y *outputs* expresados en distintas unidades de medida, caracteriza la eficiencia de la *DMU* mediante una única puntuación, y destaca las áreas de mejora de las *DMU* ineficientes (Coll & Blasco, 2006; Navarro, 2005).

A continuación, se presentan los aspectos metodológicos del modelo DEA diseñado para el presente estudio. Se estableció como período de análisis el lapso de 2014 a 2018, ya que durante estos años se promulgaron lineamientos de operación del FAIS, proporcionando las directrices generales para la gestión de los recursos económico del FISE. A su vez se consideró a las 32 entidades federativas de México como *DMUs*, dado que durante el período 2014-2018 todas ellas recibieron recursos del FISE y del Capítulo 1000, con la condición de que produjeran obras públicas dentro de los rubros establecidos en la Ley de Coordinación Fiscal (LCF).

La determinación del *output* y los *inputs* se basó en la representatividad teórica de las variables, la disponibilidad de información y el proceso estadístico de reducción de componentes. Los *outputs* más recurrentes en los estudios sobre eficiencia en la provisión de bienes y servicios públicos son: producción, beneficiarios, infraestructura, servicios públicos, desarrollo social, bienestar social y calidad de vida. Mientras que los *inputs* más referenciados son: cantidad de funcionarios públicos, gasto corriente (Capítulo 1000, Capítulo 5000, Capítulo 6000, entre otros), gasto de inversión (FISE), subsidios, y transferencias (Afonso & Fernandes, 2008; Athanassopoulos & Triantis, 1998; Ávila & Cárdenas, 2012; Balaguer-Coll *et al.*, 2002; Bankole *et al.*, 2011; De Borger *et al.*, 1994; Dincă *et al.*, 2016; Herrera & Francke, 2009; Islas, 2012; Loikkanen & Susiluoto, 2005; Serrano, 2014).

Con fundamento en la disponibilidad de información estadística en la ASF, el Gobierno de la Ciudad de México, el INEGI y la SHCP se procedió a realizar la reducción de variables a partir del análisis factorial⁷. De esta forma, la reducción factorial, de acuerdo con Castañeda *et al.*, (2010) y González *et al.*, (2013), se llevó a cabo a partir de tres fases. En la primera se estableció la matriz de correlación de Pearson, posteriormente se aplicaron las pruebas de Kaiser-Meyer-Olkin (KMO) y de Esfericidad de Bartlett, y, finalmente, se determinó la matriz de componentes rotados. Los resultados de este procedimiento dejaron ver que los recursos económicos del FISE y del Capítulo 1000 explican el comportamiento de la provisión de infraestructura básica. Es así como en la Tabla 1 se expresan el *output* y los *inputs* a utilizar en el modelo DEA.

⁷ El análisis factorial, como técnica de reducción de datos, permite encontrar a partir de una base de datos grupos homogéneos de variables (Espejel *et al.*, 2004).

Tabla 1
Inputs y Output del modelo DEA

Output	Descripción	Unidades
Obras de infraestructura básica	Cantidad de obras de infraestructura básica con un avance físico mayor al cincuenta por ciento, que contempla todas aquellas edificaciones clasificadas dentro de los rubros de agua y saneamiento, educación, salud, urbanización, vivienda y otros proyectos, que corresponden a los establecidos en la LCF.	
Inputs	Descripción	Unidades
FISE	Recursos monetarios asignados a cada entidad federativa, etiquetados para la ejecución de infraestructura física en los rubros de agua y saneamiento, educación, salud, urbanización, vivienda y otros proyectos.	
Capítulo 1000	Contempla todas aquellas remuneraciones destinadas al personal que se encuentra al servicio de los gobiernos. Entre ellos se consideran los sueldos, salarios, dietas, honorarios asimilables al salario, prestaciones y gastos de seguridad social, obligaciones laborales y otras prestaciones; pudiendo ser de carácter permanente o transitorio.	de pesos

Fuente: Elaboración propia con base en datos de la Tabla 1A y 2A del anexo.

Una vez determinadas las variables se procedió a la selección del modelo. De esta forma, se estableció un modelo DEA orientado al *output*, ya que se busca la maximización del número de obras infraestructura básica concluidas con los recursos económicos del FISE y el Capítulo 1000. Por otro lado, se determinó que el mismo fuera elaborado bajo supuestos de VRS, debido a que permitiría que las *DMUs* se compararan con aquellas de tamaño similar, y obtener una medición de la eficiencia técnica pura. La expresión matemática del modelo es (Cooper *et al.*, 2007):

$$\begin{aligned} & \text{Max } \emptyset \\ & s. \, a \\ & \left(\sum_{J=1}^{I} \lambda_{j} y_{rj} \right) - s_{r}^{+} = \emptyset y_{r0} \quad r = 1 \dots m \\ & \left(\sum_{J=1}^{I} \lambda_{j} x_{ij} \right) - s_{i}^{-} = x_{i0} \quad i = 1 \dots m \\ & \lambda_{i}, s_{r}^{+}, s_{i}^{-} \geq 0 \; ; \; \emptyset \; libre \; de \; signo \end{aligned}$$

Donde m es la cantidad de inputs utilizados para la producción de s cantidad de outputs, asignando al vector X_{ij} el input i utilizado por la DMU j. De tal forma, que el vector Y_{rj} equivale a la cantidad de output r que produce la DMU j. El peso de la DMU j que servirá para compararla con la DMU j como unidad virtual de referencia, se encuentra dado por λ_j . Si la DMU virtual no se puede construir a partir de la combinación lineal del resto de las DMUs, significa entonces que la DMU para la que el sistema se resuelve, se encuentra en eficiencia. ϕ es la mayor expresión radial de los outputs producidos por la unidad evaluada, cuyo rango se expresará en valores entre 0 y la 1, representando la unidad la eficiencia de la DMU. De esta forma, la DMU que operó de manera eficiente no tendría razón de aumentar sus outputs a través de mejoras en el uso de sus inputs; mientras que las ineficientes, con resultados entre 0 y 1, deberán de acrecentar su producción a partir de la reorganización de sus inputs (Cooper et al., 2007).

IV. ANÁLISIS Y DISCUSIÓN DE LOS RESULTADOS DEL MODELO DEA

En la Tabla 2 se aprecia que durante el período 2014-2018 los estados de Baja California Sur, Colima y Tlaxcala fueron eficientes en la utilización de sus insumos para la provisión de infraestructura básica a su población, con lo cual fue posible contribuir al combate a la pobreza y el rezago social (CONEVAL, 2021a-b). Estos resultados tienen como trasfondo que el incremento de recursos económicos a través del FISE y el Capítulo 1000 se vio acompañado de un aumento en la cantidad de obras consolidadas en el período de análisis. Resultados que convergen con lo expuesto por Afonso y Fernandes (2008), Athanassopoulos y Triantis (1998), Ávila y Cárdenas (2012), Balaguer-Coll *et al.*, (2002), Bankole *et al.* (2011), De Borger *et al.*, (1994), Dincă *et al.* (2016), Herrera y Francke (2009), Islas (2012), Loikkanen y Susiluoto (2005), y Serrano (2014) en el sentido de que existe una relación directa entre la utilización eficiente de los recursos, la provisión de infraestructura y el desarrollo social.

Tabla 2
Resultados de eficiencia en la provisión de infraestructura básica de las entidades federativas mexicanas. 2014-2018

DMU	2014	2015	2016	2017	2018
Aguascalientes	0.131949	0.2773	0.093732	1	1
Baja California	0.097477	0.180115	0.026538	0.05086	0.093678
Baja California Sur	0.077477	0.160113	0.020336	0.03000	0.073078
Campeche	0.056353	0.149362	0.036218	0.054389	0.172314
Chiapas	0.217353	0.29771	0.215936	0.090468	0.103582
Chihuahua	0.283918	0.348012	0.060493	0.133549	0.303324
Coahuila	0.206223	0.107266	0.014444	0.026642	0.074982
Colima	0.200223	0.107200	0.017602	0.239208	0.074702
Distrito Federal*	0.000951	0.005501	0.039154	0.408185	0.068409
Durango	0.265557	0.40458	0.045615	0.284868	0.120684
Guanajuato	0.176161	0.243003	0.05462	0.038503	0.117457
Guerrero	0.833326	0.253455	0.055208	0.17609	0.182317
Hidalgo	0.764609	1	0.027016	0.011847	0.413036
Jalisco	0.150745	0.136132	0.029366	0.044157	0.017748
México	0.155127	0.097964	0.111002	0.605008	0.046467
Michoacán	0.111306	0.185751	0.010376	0.055735	0.073249
Morelos	0.057583	0.54575	0.008623	0.040256	0.037458
Nayarit	0.090881	0.086427	0.005482	0.048735	0.093256
Nuevo León	0.003308	0.004811	0.019773	0.01077	0.006454
Oaxaca	0.492696	0.358663	0.026233	0.301292	0.491126
Puebla	0.129711	0.02799	0.022514	0.164243	0.260729
Querétaro	0.080409	0.053522	0.007439	0.014974	0.019288
Quintana Roo	0.593383	0.207994	0.007954	0.0351	0.047795
San Luis Potosí	0.233448	0.131511	0.185591	0.223748	0.073895
Sinaloa	0.654476	0.434479	0.038371	0.124933	0.149403
Sonora	0.001582	0.251648	0.046911	0.080533	0.041442
Tabasco	0.068361	0.068702	0.009984	0.029348	0.095837
Tamaulipas	0.001931	0.015384	0.000392	0.001077	0.130042
Tlaxcala	1	0.164598	1	1	1
Veracruz	0.005259	0.007634	0.301096	0.345988	0.57696
Yucatán	0.157095	0.122846	0.070478	0.060043	0.089706
Zacatecas	1	1	0.133908	0.41357	0.324944

Nota: * A partir del 30 de enero de 2016 cambió oficialmente su nombre a Ciudad de México.

Fuente: Elaboración propia con base en datos de la Tabla 1A del anexo, y utilizando el software MaxDea.

La Tabla 2 muestra también que Nuevo León, Tamaulipas, Querétaro, el Distrito Federal, Morelos, Sonora y Veracruz fueron las entidades más ineficientes, ello en virtud de que el flujo de recursos económicos se tradujo en un bajo número de obras concluidas. Es así como estos estados, considerados en muchos casos dinámicos en términos de su desempeño económico, deberán utilizar de mejor forma los insumos provenientes del FISE y el Capítulo 1000 para acrecentar su infraestructura básica.

El hecho de que solamente tres entidades hayan sido eficientes, durante el período 2014-2018, denota la imperiosa necesidad que tiene el Estado mexicano por hacer uso eficiente de sus recursos a favor de generar las condiciones físicas esenciales suficientes que contribuyan a que la sociedad supere los problemas de pobreza y rezago social. Este resultado converge con lo establecido por la Auditoria Superior de la Federación en sus distintos informes (ASF, 2013, 2014, 2015, 2016, 2017, 2018).

CONCLUSIONES

El Estado mexicano, a través del FISE y el Capítulo 1000 del gasto corriente, ha buscado la consolidación de infraestructura básica que coadyuve a la disminución de la pobreza y el rezago social en el país. Sin embargo, los indicadores económicos y sociales demuestran que las carencias sociales y la inequidad no se han logrado reducir de manera significativa (CONEVAL, 2010; Prudencio & Ramones, 2014). Ante este escenario, la presente investigación estableció como objetivo analizar qué tan eficientes fueron las entidades federativas en la utilización de los recursos del FISE y el Capítulo 1000 para la provisión de infraestructura básica, en el período 2014-2018. Debido a que un incremento en la eficiencia puede incidir en la reducción de personas en condición de pobreza, rezago y vulnerabilidad (Ávila & Cárdenas, 2012; Islas, 2012; Serrano, 2014; Torres, 1991).

La determinación de la eficiencia se realizó a través del DEA, elaborando así un modelo que tomó como DMUs a los 32 estados, se orientó al *output* y se estructuró bajo VRS. Estableciendo, a partir del análisis teórico y estadístico, como *output* la cantidad de obras concluidas y como *inputs* los recursos económicos del FISE y el Capítulo 1000 del gasto corriente. Los resultados del modelo revelaron que solamente Baja California Sur, Colima y Tlaxcala fueron eficientes. Lo que permite concluir que el Gobierno mexicano requiere implementar mecanismos administrativos focalizados para que los 29 estados restantes utilicen de manera adecuada los recursos e incrementen la construcción de infraestructura básica, con lo cual se podrá contribuir de mejor forma a la disminución de la pobreza, las carencias sociales y la vulnerabilidad. Elementos que aunado a las identificaciones de la incidencia de factores contextuales y espaciales en los resultados de eficiencia, mediante instrumentos cuantitativos y cualitativos, serán futuras líneas de investigación que se despenden del presente estudio.

REFERENCIAS

https://doi.org/10.24836/es.v28i51.503

Afonso, A., & Fernandes, S. (2008). Assessing and explaining the relative efficiency of local government. *The Journal of Socio-Economics*, Vol. 37(5), 1946–1979. https://doi.org/10.1016/j.socec.2007.03.007

Aguilar-Estrada, A., Caamal-Cahuich, I. & Portillo-Vázquez, M. (2018). Políticas públicas para los municipios más pobres de México. *Estudios Sociales*, Vol. 28(51), 1–24.

Álvarez, A. (2013). La medición de la eficiencia y la productividad. Madrid: Editorial Pirámide.

Athanassopoulos, A. & Triantis, K. (1998). Assessing aggregate cost efficiency and the related policy implications for Greek local municipalities. *INFOR: Information Systems and Operational Research*, Vol. 36(3), 66–83. https://doi.org/10.1080/03155986.1998.11732347

- Auditoria Superior de la Federación (ASF). (2013). *Diagnóstico sobre la opacidad en el gasto federalizado*. https://www.asf.gob.mx/uploads/56_Informes_especiales_de_auditoria/Diagnostico_sobre_la_Opacida d en el Gasto Federalizado version final.pdf
- ASF. (2014). *Informe General. Cuenta Pública 2014*. https://www.asf.gob.mx/Trans/Informes/IR2014i/index.html#0
- ASF. (2015). *Informe General. Cuenta Pública 2015*. https://www.asf.gob.mx/Trans/Informes/IR2015i/index.html#0
- ASF. (2016). *Informe General. Cuenta Pública 2016*. https://www.asf.gob.mx/Trans/Informes/IR2016ii/index.html#0
- ASF. (2017). *Informe General. Cuenta Pública 2017*. https://www.asf.gob.mx/Trans/Informes/IR2017c/index.html#0
- ASF. (2018). *Informe General. Cuenta Pública 2018*. https://www.asf.gob.mx/Trans/Informes/IR2018c/index.html
- Ávila, J. & Cárdenas, O. (2012). El impacto de las transferencias condicionadas en la eficiencia técnica de las entidades federativas. *Revista Finanzas Públicas*, Vol. 4(8), 89–124.
- Balaguer-Coll, M., Prior-Jiménez, D. & Vela-Bargues, J. (2002). *Efficiency and quality in local government management. The case of spanish local authorities (No. 2002/2)*. Barcelona: Universitat Autònoma de Barcelona. http://selene.uab.es/dep-economia-empresa/document.htm
- Banker, R., Charnes, A. & Cooper, W. (1984). Some models for estimating technical and scale inefficiencies in data envelopment analysis. *Management Science*, 30(9), 1078–1092. https://doi.org/10.1287/mnsc.30.9.1078
- Bankole, F., Osei-Bryson, K. & Brown, I. (2011). *ICT infrastructure utilization in Africa: Data Envelopment Analysis based exploration*. Proceedings of SIG Globdev AMCIS Workshop. Detroit. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.463.8045&rep=rep1&type=pdf
- Beltrán, M., Bernal, O. & Vicente, J. (1999). Eficiencia de la dotación en infraestructura y equipamiento en Castilla y León a través del Análisis Envolvente de Datos. *Revista de Investigación Económica y Social de Castilla y León*, (2), 27–40.
- Bemowski, K. (1991). The benchmarking bandwagon. Quality Progress, 24(1), 19–24.
- Benita, F. & Gómez, M. (2013). El rezago social en áreas metropolitanas de México. *Estudios Económicos*, 28(2), 265–297.
- Bogetoft, P. & Otto, L. (2010). *Benchmarking with DEA, SFA, and R.* New York: Springer. https://doi.org/10.1007/978-1-4419-7961-2
- Castañeda, M., Cabrera, A., Navarro, Y. & Vries, W. (2010). *Procesamiento de datos y análisis estadísticos utilizando SPSS*. Porto Alegre: ediPUCRS.
- Centro de Estudios de las Finanzas Públicas (CEFP). (2019). *La pobreza y el gasto social en México, 1990-2018*. https://www.cefp.gob.mx/publicaciones/presentaciones/2019/precefp0032019.pdf
- Charnes, A., Cooper, W., Lewin, A. & Seiford, L. (1994). Basic DEA models. En A. Charnes, W. Cooper, A. Lewin & L. Seiford (Eds.), *Data Envelopment Analysis: Theory, methodology and applications* (pp. 23–47). https://doi.org/10.1007/978-94-011-0637-5_2
- Charnes, A., Cooper, W. & Rhodes, E. (1978). Measuring the efficiency of decision making units. *European Journal of Operational Research*, 2(6), 429–444. https://doi.org/10.1016/0377-2217(78)90138-8

- Coelli, T., Estache, A., Perelman, S. & Trujillo, L. (2003). *Una introducción a las medidas de eficiencia para reguladores de servicios públicos y de transporte*. Bogotá: Banco Mundial & Alfaomega Colombiana.
- Coll, V. & Blasco, O. M. (2006). Evaluación de la eficiencia técnica mediante el análisis envolvente de datos. Valencia: Universidad de Valencia.
- Consejo Nacional de Evaluación de la Política de Desarrollo Social (CONEVAL). (2010). Evolución y determinantes de la pobreza de las principales ciudades de México 1990-2010. https://www.coneval.org.mx/Informes/Pobreza/Pobreza urbana/Evolucion determinantes de la pobreza urbana.pdf
- CONEVAL. (2021a). Evolución de las dimensiones de la pobreza 1990-2018. https://www.coneval.org.mx/Medicion/Paginas/Evolucion-de-las-dimensiones-de-pobreza-.aspx
- CONEVAL. (2021b). *Medición de la Pobreza 2008-2018*. https://www.coneval.org.mx/Medicion/MP/Paginas/Pobreza-2018.aspx
- CONEVAL. (2021c). *Índice de rezago social* 2015. https://www.coneval.org.mx/Medicion/IRS/Paginas/Indice_Rezago_Social_2015.aspx
- Cooper, W. W., Seiford, L. M., & Tone, K. (2007). *Data Envelopment Analysis. A Comprehensive Text with Models, Applications, References and DEA-Solver Software* (2nd ed.). New York: Springer Science & Business Media. https://doi.org/10.1007/978-0-387-45283-8
- De Borger, B., Kerstens, K., Moesen, W. & Vanneste, J. (1994). Explaining differences in productive efficiency: An application to Belgian municipalities. *Public Choice*, 80(3–4), 339–358. https://doi.org/10.1007/BF01053225
- Dincă, M., Dincă, G. & Andronic, M. (2016). Efficiency and Sustainability of Local Public Goods and Services. Case Study for Romania. *Sustainability*, 8(8), 1–24. https://doi.org/10.3390/su8080760
- Espejel, A., González, I. & Perón, E. (2004). El índice de deterioro ambiental en los municipios de Tlaxcala: Una propuesta metodológica. *Gaceta Ecológica*, 70(1), 19–30.
- Farrell, M. (1957). The measurement of productive efficiency. *Journal of the Royal Statistical Society*. *Series A (General)*, 120(3), 253–290. https://doi.org/10.2307/2343100
- Ferguson, C. & Gould, J. (1979). *Teoría Microeconómica*. Ciudad de México: Fondo de Cultura Económica. Fernández, Y. & Flórez, R. (2006). Aplicación del modelo DEA en la gestión pública. Un análisis de la eficiencia de las capitales de provincia españolas. *Revista Iberoamericana de Contabilidad de Gestión*, (7), 165–202.
- Gobierno de la Ciudad de México. (2020). *Informe de Avance Trimestral*. https://servidoresx3.finanzas.cdmx.gob.mx/documentos/iapp.html
- González, C., Lise, A. & Felpeto, A. (2013). *Tratamiento de datos con R, Statistica y SPSS*. Madrid: Ediciones Díaz Santos.
- H. Congreso de la Unión. (2015). *Constitución Política de los Estados Unidos Mexicanos*. Diario Oficial de la Federación. http://www.ordenjuridico.gob.mx/Constitucion/cn16.pdf
- H. Congreso de la Unión. (2018). *Ley de Coordinación Fiscal*. Diario Oficial de la Federación. http://www.diputados.gob.mx/LeyesBiblio/pdf/31_300118.pdf
- Herrera, P. & Francke, P. (2009). Análisis de la eficiencia del gasto municipal y de sus determinantes. *Economía*, 32(63), 113–178.
- Instituto Nacional de Estadística y Geografía (INEGI). (2020). *Censo nacional de gobierno, seguridad pública y sistema penitenciario estatales*. https://www.inegi.org.mx/programas/cngspspe/2020/

- INEGI. (2021). *Finanzas públicas estatales y municipales*. https://www.inegi.org.mx/programas/finanzas/default.html#Tabulados
- Islas, V. (2012). *Inversión en infraestructura de transporte terrestre y productividad regional en México,* 1980-2000 (un análisis DEA). Sanfandila, Querétaro: Instituto Mexicano del Transporte. https://imt.mx/archivos/Publicaciones/PublicacionTecnica/pt376.pdf
- Jakobsen, M. (2010). The effects of new public management: Activity-based reimbursement and efficiency in the scandinavian hospital sectors. *Scandinavian Political Studies*, 33(2), 113–134. https://doi.org/10.1111/j.1467-9477.2009.00241.x
- Loikkanen, H. & Susiluoto, I. *Cost efficiency of finnish municipalities in basic service provision*. 45th Congress of the European Regional Science Association: Land Use and Water Management in a Sustainable Network Society. Ámsterdam, Holanda. http://hdl.handle.net/10419/117399
- Martín, R. (2008). La medición de la eficiencia universitaria: Una aplicación del análisis envolvente de datos. *Formación Universitaria*, 1(2), 17–26. http://dx.doi.org/10.4067/S0718-50062008000200004
- Navarro, J. (2005). La eficiencia del sector eléctrico en México. Morelia: ININEE-UMSNH.
- Navarro, J. & Torres, Z. (2003). La evaluación de la eficiencia en el sector eléctrico: Un análisis de la frontera de datos (DEA). *Ciencia Nicolaita*, (35), 39–58.
- Ngwenyama, O. & Morawczynski, O. (2009). Factors affecting ICT expansion in emerging economies: An analysis of ICT infrastructure expansion in five Latin American countries. *Information Technology for Development*, 15(4), 237–258. https://doi.org/10.1002/itdj.20128
- Orozco, A. (2014). *Una aproximación regional a la eficiencia y productividad de los hospitales públicos colombianos*. Cartagena, Colombia: Banco de la República. https://www.banrep.gov.co/docum/Lectura_finanzas/pdf/dtser_201.pdf
- Pérez-Romero, C., Ortega-Díaz, M., Ocaña-Riola, R. & Martín-Martín, J. (2017). Análisis de la eficiencia técnica en los hospitales del Sistema Nacional de Salud español. *Gaceta Sanitaria*, 31(2), 108–115. https://doi.org/10.1016/j.gaceta.2016.10.007
- Prior, D. & Surroca, J. (2004). Eficiencia y sector público: Cómo mejorar el control de la gestión pública. *Revista Asturiana de Economía*, (31), 51–68.
- Prudencio, D. & Ramones, F. (2014). Los efectos del Fondo de Aportaciones para la Infraestructura Social sobre la pobreza en México. *Región y Sociedad*, 26(60), 63–88. https://doi.org/10.22198/rys.2014.60.a9
- Rodríguez, F. (2012). *Pobreza, desigualdad y desarrollo. Conceptos y aplicaciones*. Ciudad de México: UNAM.
- Sarafoglou, N., Andersson, A. M., Holmberg, I. & Ohlsson, O. (2006). Spatial infrastructure and productivity in Sweden. *Yugoslav Journal of Operations Research*, 16(1), 67–83. https://doi.org/10.2298/YJOR0601067S
- Secretaría de Bienestar. (2021). *Fondo de Aportaciones para la Infraestructura Social*. Bienestar. https://www.gob.mx/bienestar/documentos/fondo-de-aportaciones-para-la-infraestructura-social-fais
- Secretaría de Hacienda y Crédito Público (SHCP). (2007). *Presupuesto de Egresos de la Federación para el Ejercicio Fiscal 2008*. Diario Oficial de la Federación. http://dof.gob.mx/index_113.php?year=2007&month=12&day=13
- SHCP. (2009). *Clasificación por Objeto del Gasto*. Diario Oficial de la Federación. http://www.dof.gob.mx/index_111.php?year=2009&month=12&day=09
- SHCP. (2013). *Presupuesto de Egresos de la Federación para el Ejercicio Fiscal 2014*. Diario Oficial de la Federación. http://dof.gob.mx/index_113.php?year=2013&month=12&day=03

- SHCP. (2014). *Presupuesto de Egresos de la Federación para el Ejercicio Fiscal 2015*. Diario Oficial de la Federación. http://dof.gob.mx/index_113.php?year=2014&month=12&day=03
- SHCP. (2015). *Presupuesto de Egresos de la Federación para el Ejercicio Fiscal 2016*. Diario Oficial de la Federación. http://dof.gob.mx/index_113.php?year=2015&month=11&day=27
- SHCP. (2016). *Presupuesto de Egresos de la Federación para el Ejercicio Fiscal 2017*. Diario Oficial de la Federación. http://dof.gob.mx/index_113.php?year=2016&month=11&day=30
- SHCP. (2017). *Presupuesto de Egresos de la Federación para el Ejercicio Fiscal 2018*. Diario Oficial de la Federación. http://dof.gob.mx/index_113.php?year=2017&month=11&day=29
- Serrano, T. (2014). El cumplimiento de las instituciones presupuestarias como determinante de la eficiencia de los gobiernos estatales en el uso de aportaciones: El caso del Fondo de Infraestructura Social Estatal [tesina de maestría, CIDE]. Repositorio institucional. http://datos.cide.edu/handle/10089/17066
- Torres, L. (1991). Indicadores de gestión para las entidades públicas. *Revista Española de Financiación y Contabilidad*, 20(67), 535–558.
- Venetoklis, T. (2002). *Public policy evaluation: Introduction to quantitative methodologies*. VAAT Research Reports Helsinki (No. 90). Helsinki, Finlandia. https://www.doria.fi/bitstream/handle/10024/148541/t90.pdf?sequence=1&isAllowed=y
- Villa, G. (2003). *Análisis por Envoltura de Datos (DEA): Nuevos modelos y aplicaciones* [tesis de doctorado, Universidad de Sevilla]. Repositorio institucional. https://idus.us.es/handle/11441/15412
- Villarreal, F. & Tohmé, F. (2017). Análisis envolvente de datos. Un caso de estudio para una universidad argentina. *Estudios Gerenciales*, 33(144), 302–308. https://doi.org/10.1016/j.estger.2017.06.004
- Wunder, D. & Gabardo, E. (2018). El principio constitucional de eficiencia administrativa: contenido normativo y consecuencias jurídicas de su violación. Cuestiones Constitucionales. *Revista Mexicana de Derecho Constitucional*, (39), 131–167. http://dx.doi.org/10.22201/iij.24484881e.2018.39.12652

ANEXO

Tabla 1A Evolución de los indicadores financieros y de infraestructura básica en México, 2014-2018

	Obras de infraestructura básica						os j ac	FISE		- Susteu	Capítulo 1000						
Entidad	Cantidad de obras						M:11.	ones de p	0000		Millones de pesos						
Federativa	2014	2015	2016		2018	2014	2015	2016		2018	2014	2015		2017	2018		
A 1'				2017					2017				2016	-			
Aguascalientes	8	15	59	137	587	28	29	34	41	39	1203	1278	1133	1046	1192		
Baja California	36	46	65	98	194	36	37	41	50	64	12734	12477	13247	13662	13708		
Baja California Sur	2	6	62	86	80	13	14	15	20	35	849	889	1012	1116	1118		
Campeche	32	62	185	202	534	73	74	78	86	95	5101	5483	5881	6113	6237		
Coahuila	123	44	61	82	226	55	56	60	69	82	14654	15078	15252	17849	17537		
Colima	99	66	5	67	125	13	13	18	23	27	1856	2153	2011	2086	2178		
Chiapas	248	234	1103	336	321	1222	1231	1275	1364	1470	12511	11457	12910	13746	14150		
Chihuahua	281	250	309	496	940	135	137	144	158	169	8491	8863	9528	9501	10192		
Distrito Federal*	1	4	200	1516	212	93	94	99	112	123	72447	75955	79586	81822	89919		
Durango	303	318	233	1058	374	102	103	107	116	123	10788	11309	11254	11255	12052		
Guanajuato	201	191	279	143	364	261	263	271	292	307	21877	23973	24541	25527	27040		
Guerrero	361	137	282	654	565	608	614	630	680	746	3945	5488	5764	6052	6378		
Hidalgo	148	363	138	44	1280	216	218	229	249	264	1988	2119	2237	2194	2313		
Jalisco	172	107	150	164	55	171	174	179	198	200	30783	32971	33310	34715	35206		
México	177	77	567	2247	144	454	459	497	557	645	45916	49221	52151	52753	55511		
Michoacán	127	146	53	207	227	283	287	305	341	361	26452	27622	29049	29351	29182		
Morelos	8	74	30	116	78	64	65	71	81	93	1651	1752	1737	1829	1728		
Nayarit	27	21	28	181	289	64	65	71	81	89	2879	3250	3391	3287	3249		
Nuevo León	3	3	101	40	20	81	82	88	98	102	14783	15651	15981	16189	15848		
Oaxaca	248	183	134	1119	1522	685	690	729	791	886	4518	4913	5447	5175	4877		
Puebla	148	22	115	610	808	566	571	595	648	657	27597	28162	28543	30078	31388		
Querétaro	20	10	38	52	43	69	70	73	82	86	2439	2379	2172	1997	1781		
Quintana Roo	109	34	33	93	125	71	72	77	87	94	1913	2015	1878	1763	1919		
San Luis Potosí	154	78	948	831	229	227	230	235	253	267	5795	6486	6960	7518	7493		
Sinaloa	223	168	196	464	463	89	90	95	106	117	3190	4794	4504	3574	5147		
Sonora	1	110	211	271	117	58	59	63	74	78	7870	7564	8121	8544	8733		

Tabasco	78	54	51	109	297	138	140	147	165	190	16659	15291	15930	16768	15044
Tamaulipas	2	11	2	4	403	92	93	98	109	117	17131	19218	19790	20463	21628
Tlaxcala	186	25	5108	3714	3099	65	66	70	79	83	1926	1971	2082	2066	2092
Veracruz	6	6	1538	1285	1788	723	729	773	846	960	41466	46351	43954	46324	48389
Yucatán	167	94	360	223	278	165	167	174	189	200	9090	9752	10256	11122	11721
Zacatecas	1141	786	684	1536	1007	100	102	105	114	119	9726	10146	10782	11265	11737
Total	4840	3745	13328	18185	16794	7020	7091	7445	8160	8886	440229	466032	480391	496752	516683

Nota: * A partir del 30 de enero 2016 cambió oficialmente su nombre a Ciudad de México

Fuente: Elaboración propia con datos de la ASF (2013, 2014, 2015, 2016, 2017, 2018), el Gobierno de la Ciudad de México (2020), el INEGI (2020 y 2021), y la SHCP (2013, 2014, 2015, 2016, 2017).

Tabla 2A Evolución de los indicadores financieros y de infraestructura básica en México, 2014-2018

			onarios pú					pítulo 50			Capítulo 6000					
Entidad Federativa			Personas				Millo	ones de p	oesos		Millones de pesos					
	2014	2015	2016	2017	2018	2014	2015	2016	2017	2018	2014	2015	2016	2017	2018	
Aguascalientes	33591	16423	21508	26259	36366	136	154	176	170	138	4322	2729	1248	1153	1761	
Baja California	53492	53468	54583	54030	55407	396	738	563	411	302	624	956	919	1107	1303	
Baja California Sur	20166	22003	23421	23458	24216	43	49	58	59	51	663	1104	906	1634	1133	
Campeche	24642	24766	25024	24673	24703	40	115	129	163	102	1549	980	700	1315	2046	
Coahuila	24442	25707	26130	26383	26213	311	275	325	261	609	1869	1701	2108	2648	4154	
Colima	22480	21930	22632	22968	23560	228	174	214	133	146	541	390	723	496	741	
Chiapas	133026	51327	50971	46948	46969	198	287	132	175	265	5900	4412	4880	4759	4124	
Chihuahua	84723	87354	94371	94610	97022	726	349	386	383	307	2692	2249	960	733	1198	
Distrito Federal*	237428	245509	240146	218504	244912	6529	7243	9751	7033	5708	15805	16935	22402	23877	21795	
Durango	52202	53360	53430	53207	58459	212	124	117	98	301	2382	2884	2402	1578	2591	
Guanajuato	106388	109581	111590	112378	114227	614	1691	991	1141	926	3656	5630	3878	3741	5543	
Guerrero	118087	108603	116503	116421	118519	256	210	122	104	82	940	877	874	1364	1906	
Hidalgo	83274	74202	85217	86416	88172	235	301	120	56	64	829	811	575	270	349	
Jalisco	155609	150364	149342	150049	146958	568	733	554	792	394	1455	2609	2209	2098	3893	
México	290195	295054	295582	297973	299971	649	328	553	318	274	19300	16662	21160	23916	21492	
Michoacán	47768	48742	57254	77992	81122	135	188	215	86	198	8145	1281	906	1272	1010	
Morelos	42540	41872	40347	18872	38668	356	243	156	258	123	2313	1293	1859	1381	1587	
Nayarit	38115	37632	38861	35951	37362	61	37	53	29	56	697	381	818	821	339	
Nuevo León	104212	40475	99040	151029	107148	753	497	520	1487	1341	710	431	72	1217	914	
Oaxaca	35458	27779	38907	39492	39529	312	286	732	196	136	3029	2113	2597	1260	1399	

Puebla	46094	43925	42262	42987	43182	1151	287	323	149	338	5446	3841	5755	4093	3030
Querétaro	9403	30451	37010	39697	39082	360	78	100	263	546	946	2359	4151	2303	3522
Quintana Roo	24205	25256	40570	40554	41992	202	396	130	326	314	1971	2676	885	849	823
San Luis Potosí	62421	60958	61167	61083	61229	5	1	549	569	64	1722	1353	1899	2713	2730
Sinaloa	25701	26532	25948	26910	28334	35	51	58	671	935	4050	2854	2082	3450	5651
Sonora	47887	49379	50852	104071	68829	417	187	197	763	459	7205	873	1858	2134	2126
Tabasco	87053	84989	84868	84128	85981	232	169	280	379	394	896	826	772	1218	1186
Tamaulipas	89532	91167	90367	89272	84279	655	500	414	290	442	1528	2538	2551	1559	4375
Tlaxcala	27015	30189	27927	26957	33739	97	235	312	68	203	1052	1373	1269	816	1294
Veracruz	172472	196115	190545	191521	194733	437	115	18	840	1080	9863	5514	3025	1216	3185
Yucatán	49843	63281	64407	69428	67869	435	500	236	158	157	398	171	150	390	391
Zacatecas	45171	45259	47161	47280	48806	233	366	103	323	287	1464	1870	928	1130	1029
Total	2394635	2283652	2407943	2501501	2507558	17016	16907	18587	18153	16744	113963	92676	97518	98512	108619

Nota: * A partir del 30 de enero 2016 cambió oficialmente su nombre a Ciudad de México.

Fuente: Elaboración propia con datos del Gobierno de la Ciudad de México (2020), el INEGI (2021) y la SHCP (2013, 2014, 2015, 2016, 2017).