Revista Facultad de Ingenieria
ISSN: 0121-1129
ISSN: 2357-5328

Universidad Pedagdgica y Tecnoldgica de Colombia

Pastrana-Pardo, Manuel-Alejandro; Ordofiez-
Erazo, Hugo-Armando; Cobos-Lozada, Carlos-Alberto

Approach to the Best Practices in Software Development
Based on DevOps and SCRUM Used in Very Small Entities

Revista Facultad de Ingenieria, vol. 31, no. 61, €205, 2022, July-September
Universidad Pedagogica y Tecnolégica de Colombia

DOI: https://doi.org/10.19053/01211129.v31.n61.2022.14828

Available in: https://www.redalyc.org/articulo.oa?id=413973109005

How to cite

Complete issue Scientific Information System Redalyc
More information about this article Network of Scientific Journals from Latin America and the Caribbean, Spain and
Journal's webpage in redalyc.org Portugal

Project academic non-profit, developed under the open access initiative

https://www.redalyc.org/comocitar.oa?id=413973109005
https://www.redalyc.org/fasciculo.oa?id=4139&numero=73109
https://www.redalyc.org/articulo.oa?id=413973109005
https://www.redalyc.org/revista.oa?id=4139
https://www.redalyc.org
https://www.redalyc.org/revista.oa?id=4139
https://www.redalyc.org/articulo.oa?id=413973109005

Revista Facultad de Ingenieria, 31 (61), 2022, 14828

Revista Facultad de Ingenieria ,|INGENTER/A
Journal Homepage: https://revistas.uptc.edu.co/index.php/ingenieria

L (

Approach to the Best Practices Iin
Software Development Based on
DevOps and SCRUM Used in Very

Small Entities

Manuel-Alejandro Pastrana-Pardo?
Hugo-Armando Ordéiiez-Erazo?

Carlos-Alberto Cobos-Lozada?

Received: May 11, 2022 Accepted: September 22, 2022 Published: September 28, 2022

Citation: M.-A. Pastrana-Pardo, H.-A. Ordéfiez-Erazo, C.-A. Cobos-Lozada, “Approach to the
Best Practices in Software Development Based on DevOps and SCRUM Used in Very Small
Entities”, = Revista Facultad de Ingenieria, vol. 31 (61), e14828, 2022.
https://doi.org/10.19053/01211129.v31.n61.2022.14828

Abstract
Very small entities in software development have a maximum of 25 employees.

Their cash flow and time available for implementing improvements in their

1 Instituciébn Universitaria Antonio José Camacho (Cali-Valle del Cauca, Colombia).
mapastrana@admon.uniajc.edu.co. ORCID: https://orcid.org/0000-0002-6506-0659

2 Ph. D. Universidad del Cauca (Popayan-Valle, Colombia). hugoordonez@unicauca.edu.co. ORCID:
https://orcid.org/0000-0002-3465-5617

3 Ph. D. Universidad del Cauca (Popayan-Valle, Colombia). ORCID: https://orcid.org/0000-0002-6263-1911

Revista Facultad de Ingenieria (Rev. Fac. Ing.) Vol. 31 (61), €14828. July-September 2022. Tunja-Boyaca,
Colombia. L-ISSN: 0121-1129, e-ISSN: 2357-5328.
DOI: https://doi.org/10.19053/01211129.v31.n61.2022.14828

https://revistas.uptc.edu.co/index.php/ingenieria
https://doi.org/10.19053/01211129.v31.n61.2022.14828
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.19053/01211129.v31.n61.2022.14828
mailto:mapastrana@admon.uniajc.edu.co
https://orcid.org/0000-0002-6506-0659
mailto:hugoordonez@unicauca.edu.co
https://orcid.org/0000-0002-3465-5617
https://orcid.org/0000-0002-6263-1911

Approach to the Best Practices of Software Development Based on DevOps and SCRUM Used in Very Small
Entities

processes to enable them to be more competitive are limited, leading them to turn
to agile frameworks such as SCRUM to manage the software development
process. However, when they try to adopt these, they find that the documents only
suggest changes that can be made and not how to make them. As a result, the trial
and error process of discovering which techniques, events and artifacts ought to be
implemented is costly and, in some cases, unfeasible. The same applies to other
frameworks that can complement SCRUM, such as DevOps, a framework that
proposes a rapprochement between the development and operations areas, in
which as many tasks as possible are automated, and quality controls are increased
to obtain better quality products. This article presents three best practices based
on DevOps, its models of use and when these can be used within SCRUM to
facilitate its adoption in the smallest companies. A model is presented for the use
of versioning, integration, and continuous deployment and the particular moments
recommended for implementing these within SCRUM. The best practices most
widely reported in the literature for software development based on SCRUM and
DevOps were identified. Three were then selected, and a usage model was built
for each of them. Then, they were evaluated using a case study, and the results
were assessed. The practices were evaluated in three (3) very small entities,
obtaining changes in the support cases reported weekly and in the number of
successful deployments. The division of the development process into phases
reveals that the development and quality phase provides more possibilities for
splicing among the set of practices suggested by DevOps in SCRUM. Likewise, the
set of suggested practices points to the implementation of controls for quality
assurance, providing key information for development team learning and
improvement.

Keywords: DevOps; SCRUM; Software Engineering; Software Quality Assurance;
SQA.

Revista Facultad de Ingenieria (Rev. Fac. Ing.) Vol. 31 (61), €14828. July-September 2022. Tunja-Boyaca,
Colombia. L-ISSN: 0121-1129, e-ISSN: 2357-5328.
DOI: https://doi.org/10.19053/01211129.v31.n61.2022.14828

https://doi.org/10.19053/01211129.v31.n61.2022.14828

Manuel-Alejandro Pastrana-Pardo; Hugo-Armando Orddéfiez-Erazo; Carlos-Alberto Cobos-Lozada

Acercamiento a las buenas practicas para el desarrollo de software basado
en DevOps y SCRUM utilizadas en empresas muy pequefias

Resumen

Las empresas muy pequefias de desarrollo de software poseen un maximo de 25
empleados y tienen un limitado flujo de caja y tiempo para implementar mejoras en
Sus procesos que les permita ser mas competitivos. Esta es una de las razones
por las que estas empresas recurren a la implementacion de marcos de trabajo
agil como SCRUM para gestionar el proceso de desarrollo de software. Pero
cuando inician su adopcion, encuentran que los documentos solo sugieren los
cambios que se pueden realizar, pero no como hacerlos, tornando el proceso de
descubrir cuales técnicas, eventos y artefactos son los que deben implementar en
un enfoque de prueba y error costoso y en algunos casos inviable. Lo mismo
sucede con otros marcos que pueden ser complementarios a SCRUM como
DevOps, que propone un acercamiento entre el area de desarrollo y operaciones,
donde se automaticen la mayor cantidad de tareas y se incrementen los controles
de calidad para obtener mejores productos. Este articulo expone tres buenas
practicas basadas en DevOps, sus modelos de uso y en qué momentos dentro de
SCRUM pueden ser utilizadas para facilitar su adopcién en estas empresas. Se
tiene como como objetivo exponer un modelo para el uso de versionamiento,
integracion y despliegue continuos y los momentos recomendados para su
implementacion dentro de SCRUM. Se identificaron las buenas practicas mas
reportadas en la literatura para desarrollo de software basado en SCRUM vy
DevOps. Se seleccionaron tres de las mejores practicas y se construyé un modelo
de uso para cada una de ellas. Estas practicas se pusieron a prueba mediante un
caso de estudio y se evaluaron los resultados obtenidos. Las practicas fueron
evaluadas en 3 empresas, obteniendo cambios en los casos de soporte
reportados semanalmente y en el numero de despliegues exitosos. La division del
proceso de desarrollo en fases evidencia que la fase que representa mayor
posibilidad de empalme entre el conjunto de practicas sugeridas por DevOps en
SCRUM es la de desarrollo y calidad. El conjunto de practicas sugeridas apunta a

Revista Facultad de Ingenieria (Rev. Fac. Ing.) Vol. 31 (61), €14828. July-September 2022. Tunja-Boyaca,
Colombia. L-ISSN: 0121-1129, e-ISSN: 2357-5328.
DOI: https://doi.org/10.19053/01211129.v31.n61.2022.14828

https://doi.org/10.19053/01211129.v31.n61.2022.14828

Approach to the Best Practices of Software Development Based on DevOps and SCRUM Used in Very Small
Entities

la implementacion de controles para el aseguramiento de la calidad entregando
informacion clave para el aprendizaje y mejora del equipo de desarrollo.

Palabras clave: Aseguramiento de la Calidad de Software; DevOps; Ingenieria de
software; SCRUM; SQA.

Abordagem de boas praticas para desenvolvimento de software baseado em
DevOps e SCRUM utilizado em microempresas

Resumo

As empresas de desenvolvimento de software muito pequenas tém no maximo 25
funcionarios e possuem fluxo de caixa e tempo limitados para implementar
melhorias em seus processos que lhes permitam ser mais competitivas. Essa &
uma das razfes pelas quais essas empresas recorrem a implementacdo de
frameworks ageis como o SCRUM para gerenciar o processo de desenvolvimento
de software. Mas quando iniciam sua adocdo, descobrem que os documentos
apenas sugerem as mudancas que podem ser feitas, mas ndo como fazé-las,
tornando o processo de descoberta de quais técnicas, eventos e artefatos sdo os
anicos a serem implementados em uma tentativa e erro dispendiosa abordagem e,
em alguns casos, inviavel. O mesmo acontece com outros frameworks que podem
ser complementares ao SCRUM, como o DevOps, que propde uma aproximacao
entre a area de desenvolvimento e operacdes, onde o maior nimero de tarefas é
automatizado e os controles de qualidade sdo aumentados para obter melhores
produtos. Este artigo expBe trés boas praticas baseadas em DevOps, seus
modelos de uso e quando dentro do SCRUM podem ser utilizados para facilitar
sua adocdo nessas empresas. O objetivo é expor um modelo para uso de
versionamento, integracéo e deployment continuos e os momentos recomendados
para sua implementacdo dentro do SCRUM. Foram identificadas as boas praticas
mais relatadas na literatura para desenvolvimento de software baseado em
SCRUM e DevOps. Trés das melhores praticas foram selecionadas e um modelo
de uso foi construido para cada uma delas. Estas praticas foram postas a prova
através de um estudo de caso e os resultados obtidos foram avaliados. As praticas
foram avaliadas em 3 empresas, obtendo mudancgas nos casos de suporte

Revista Facultad de Ingenieria (Rev. Fac. Ing.) Vol. 31 (61), €14828. July-September 2022. Tunja-Boyaca,

Colombia. L-ISSN: 0121-1129, e-ISSN: 2357-5328.
DOI: https://doi.org/10.19053/01211129.v31.n61.2022.14828

https://doi.org/10.19053/01211129.v31.n61.2022.14828

Manuel-Alejandro Pastrana-Pardo; Hugo-Armando Orddéfiez-Erazo; Carlos-Alberto Cobos-Lozada

relatados semanalmente e no nimero de implanta¢cdes bem-sucedidas. A divisdo
do processo de desenvolvimento em fases mostra que a fase que representa a
maior possibilidade de juncéo entre o conjunto de préticas sugeridas pelo DevOps
no SCRUM ¢é a de desenvolvimento e qualidade. O conjunto de praticas sugeridas
aponta para a implantagcdo de controles para garantia da qualidade, fornecendo
informacdes fundamentais para aprendizado e aprimoramento da equipe de
desenvolvimento.

Palavras-chave: DevOps; Engenharia de software; Garantia de Qualidade de
Software; SCRUM; SQA.

Revista Facultad de Ingenieria (Rev. Fac. Ing.) Vol. 31 (61), €14828. July-September 2022. Tunja-Boyaca,
Colombia. L-ISSN: 0121-1129, e-ISSN: 2357-5328.
DOI: https://doi.org/10.19053/01211129.v31.n61.2022.14828

https://doi.org/10.19053/01211129.v31.n61.2022.14828

Approach to the Best Practices of Software Development Based on DevOps and SCRUM Used in Very Small
Entities

l. INTRODUCTION

Software development companies require early deployments of tools in production,
with high quality and minimum reprocessing when it comes to maintenance and
support to ensure project profitability, as indicated in [1]. The accelerated pace of
this type of company consequently requires effective quality controls, with early
feedback on the evolution of the product, allowing project participants to learn what
they are doing well and what they might improve on, as expressed in [2].

A key factor regarding best practices that make it possible to implement the quality
controls required by companies is their size: the most common classification is
given as very small entities, comprising a maximum of 25 employees, small entities
of more than 25 employees and less than 50, medium-sized entities that have
between 50 and 250 employees, and large entities that have more than 250
employees [3].

According to [4], very small entities (VSES) make up a large part of the industry
and suffer the most since their development processes are often empirical, lacking
practices such as code versioning, continuous integration (Cl) and continuous
deployment (CD), all of which enable better quality results, ensuring optimization of
profitability while becoming more competitive compared to larger companies.
According to [3], some of the problems that most affect these companies are the
overload of functions of various roles for the same person, the limited cash flow for
reinvestment in improving internal processes, the limited number of types of
projects they can access, the few quality controls, and little or insufficient
documentation.

This article reviews several practices recommended by DevOps that are common
in VSEs and for which the information they deliver can be used within SCRUM
events to ensure continuous improvement. The article is organized as follows:
Section 2 describes the motivation scenario, Section 3 outlines the methods,
Section 4 presents the results, and Section 5 lays out the conclusions and future

work.

Revista Facultad de Ingenieria (Rev. Fac. Ing.) Vol. 31 (61), €14828. July-September 2022. Tunja-Boyaca,
Colombia. L-ISSN: 0121-1129, e-ISSN: 2357-5328.
DOI: https://doi.org/10.19053/01211129.v31.n61.2022.14828

https://doi.org/10.19053/01211129.v31.n61.2022.14828

Manuel-Alejandro Pastrana-Pardo; Hugo-Armando Orddéfiez-Erazo; Carlos-Alberto Cobos-Lozada

Il. MOTIVATION SCENARIO

VSEs are able to take on a few projects simultaneously since a number of their
employees carry out multiple functions relating to different roles (work overload).
This may be considered a factor in the high turnover of personnel with which these
companies usually have to contend [4]. Most of their projects are carried out via
non-systematized practices based on the (empirical) experience of the
development group rather than on a formal software engineering process.
Depending on empirical processes, VSEs find it difficult to implement best
practices that lead to the continuous improvement of the company's processes,
especially those related to managing the evolution of development and its quality,
according to [5].

As a result, these kinds of entities, according to [5], would benefit from organizing
and centralizing the management of the source code, allowing traceability of the
history of changes and who has made them. In addition, they need to identify
whether or not the changes made to the project, when integrated, produce errors
when creating the release that will be put on the test or production servers.
Although there are many more practices, such as static code analysis, unit tests,
and functional test automation, according to [5], the most frequently adopted in the
early stages in VSEs are versioning, continuous integration, and continuous

deployment.

lil. METHODS

The process followed in this research comprises the following phases:)
identification of DevOps basic best practices in software development in VSESs; II)
identification of the relationship between SCRUM and DevOps; Ill) proposal for a
versioning model; IV) proposal for a continuous integration (Cl) model; and V)
proposal for a continuous deployment (CD) model. These phases are detailed

below.

Revista Facultad de Ingenieria (Rev. Fac. Ing.) Vol. 31 (61), €14828. July-September 2022. Tunja-Boyaca,
Colombia. L-ISSN: 0121-1129, e-ISSN: 2357-5328.
DOI: https://doi.org/10.19053/01211129.v31.n61.2022.14828

https://doi.org/10.19053/01211129.v31.n61.2022.14828

Approach to the Best Practices of Software Development Based on DevOps and SCRUM Used in Very Small
Entities

A. ldentification of Basic Best Practices in Software Development in VSEs

An investigation was carried out on DevOps and its best practices oriented to
preventive quality as an axis of continuous feedback for companies. The objective
of this stage was to determine the state of these issues and provide a starting point
for identifying the basic practices that VSEs should implement.

Initially, a definition of DevOps and its state of the art was sought, highlighting the
work of [6], who define the term as a collaboration between the software
development area and the operations area that supports all systems and company
services at the hardware level. It aims to automate the largest number of tasks
related to the management of applications built or under construction through a set
of best practices and rules of interaction. From this work, a strong interest can be
identified in the academic community regarding the problems that prevent its
implementation. Just as important, in [7], the problems for adopting the practices
suggested by DevOps and their integration with agile frameworks are laid out,
demonstrating a clear opportunity for the research community on this point.

In [8], there is a review related to the adoption of DevOps to achieve a continuous
delivery process, just as in [9], where this led to the implementation of scripts
called pipelines that allow integrating versioning practices Cl and CD automatically,
facilitating their adoption by companies. Additionally, in [10], it is confirmed that the
three practices mentioned above are the most common in companies that aim to
take the first steps in adopting DevOps.

Finally, the works presented in [5] and [8] indicate that integration is possible
between the practices of versioning, continuous integration, continuous
deployment, and agile frameworks such as SCRUM for the management of
changes and the evolution of the source code, the initial verification of the quality of
the deployable unit and the generation of information that supports the decision-
making in the management of software development projects and support for

already built systems.

Revista Facultad de Ingenieria (Rev. Fac. Ing.) Vol. 31 (61), €14828. July-September 2022. Tunja-Boyaca,
Colombia. L-ISSN: 0121-1129, e-ISSN: 2357-5328.
DOI: https://doi.org/10.19053/01211129.v31.n61.2022.14828

https://doi.org/10.19053/01211129.v31.n61.2022.14828

Manuel-Alejandro Pastrana-Pardo; Hugo-Armando Orddéfiez-Erazo; Carlos-Alberto Cobos-Lozada

B. Identification of the Relationship Between SCRUM and DevOps

According to [9], the software development cycle comprises analysis and planning,
design, development and quality, and deployment. These phases overlap with the
agile SCRUM framework and its recommended practices described in [10]. Table 1
below lists the SCRUM practices for each phase of the development cycle.

Table 1. SCRUM best practices by development cycle phase.

Development cycle phase SCRUM recommended practice
Analysis and planning) . .
Design Sprint Planning Meeting
Development and quality Daily SCRUM meeting / Sprint O
Deployment Sprint review / Sprint retrospective

Moreover, according to [15], DevOps proposes to reduce rework and improve
organizational culture through a quality environment that implements a set of
automatically synchronized practices that are always available as a feedback
mechanism, thus representing a complement for SCRUM. Versioning, Cl and CD
are the practices most widely used by companies in the early stages of DevOps
adoption, as indicated by [8]. A relationship between SCRUM and DevOps within
the software development lifecycle is presented in Table 2 below.

Table 2. Relationship between SCRUM and DevOps within the development cycle.

Development SCRUM DevOps recommended practice
cycle phase recommended
practice
Analysis and
planning Sprint planning * None.
Design meeting e Archetype design.

¢ Implementation of archetype for the development
Sprint 0 baseline.
e Configuration and implementation of the

Developmen SO
evelopment versioning model.

and quality

e Archetypal development baseline versioning.
Daily SCRUM e Cl model implementation.
meeting e CD model implementation.
Sprint review e CD to ensure sprint review.
Deployment . Rewe_w of information generated _by versioning
Sprint practices, Cl, and CD for retrospective analysis of
retrospective the sprint.

Revista Facultad de Ingenieria (Rev. Fac. Ing.) Vol. 31 (61), €14828. July-September 2022. Tunja-Boyaca,
Colombia. L-ISSN: 0121-1129, e-ISSN: 2357-5328.
DOI: https://doi.org/10.19053/01211129.v31.n61.2022.14828

https://doi.org/10.19053/01211129.v31.n61.2022.14828

Approach to the Best Practices of Software Development Based on DevOps and SCRUM Used in Very Small
Entities

Within the analysis and planning phase, the functional needs of the project are
compiled through user stories, where the functionalities of the applications are
described in the acceptance criteria section. When all user stories are built, they
are grouped in an artifact called product backlog. Once the above is complete, it is
required to estimate and prioritize it as indicated in [10] to finally determine how
long it takes to build the solution by calculating the number of sprints
(measurement of time that goes from 1 to 4 weeks). With this information clearly
defined, it is possible to decompose the activities that resolve "What will be done"
within the project, sprint by sprint, and create the SCRUM board, as mentioned in
[10].
Once the above is done, it is possible to start the design phase by building the
artifact called Software Architecture Document (SAD), where the non-functional
needs of the system are reflected by describing the quality attributes of the
architecture. These requirements are resolved through design patterns -existing
solutions to recurring problems, proven effective and found in the development
frameworks of the various programming languages as indicated [11]. These
decisions mark the architectural style of the solution and are reflected in UML
diagrams that respond to the different views of the SAD. It is then possible to
create a project archetype that responds to the characteristics detailed in the SAD,
allowing to establish and version the development baseline so that the whole team
can have it on starting development.
During the development and quality phase, it is required that at the beginning of
each project, according to [10], a sprint O or preparation for development is carried
out. This allows verifying that the entire team knows what will be done and how it
will be done, carrying out concept tests, building the archetype, creating the
repository for versioning and implementing the model to be used in it, configuring
the tools that support Cl and CD practices, versioning the development baseline
and verifying that all team members have access to the tools and configurations
required for the formal start of the project. Once sprint 0 has been completed,
development begins.

Revista Facultad de Ingenieria (Rev. Fac. Ing.) Vol. 31 (61), 14828. July-September 2022. Tunja-Boyaca,

Colombia. L-ISSN: 0121-1129, e-ISSN: 2357-5328.
DOI: https://doi.org/10.19053/01211129.v31.n61.2022.14828

https://doi.org/10.19053/01211129.v31.n61.2022.14828

Manuel-Alejandro Pastrana-Pardo; Hugo-Armando Orddéfiez-Erazo; Carlos-Alberto Cobos-Lozada

Each development sprint should start with the sprint planning meeting as indicated
[10], where it is ensured that the entire team knows what user story will be carried
out and what activities are required at the development level to complete them.
This way, they can break them down on the SCRUM board, where the daily follow-
up will be conducted. Additionally, the team verifies that the architectural decisions
that guide the structuring of the project are known and that they are reflected in the
baseline. It is also verified that all the members are linked to the repository so that
they can manage their changes there. They have furthermore downloaded the
development baseline built-in sprint O and are ready to start the construction of the
user story that each one selects. The teams must take as a best practice within the
organizational culture performing a pull (update of changes) on the integration
branch in which they are working within the versioner at the beginning of each
working day. Similarly, at the end of each working day, the changes made must be
uploaded to each developer's own branch to ensure that they are not lost. The
details of the versioning model will be described later for a better understanding.
During the evolution of the sprint, according to [10], an event called the daily
SCRUM meeting is held. This meeting aims to identify, through the presentation of
each one of the members, the advances of the previous day, what they are
planning to do during that day and the impediments they must overcome. This
promotes proper project management through a continuous flow of information that
allows knowing the real status of the project and reacting to delays in no more than
24 hours. Here the teams can use versioning as a practice to show the work done
the day before. In addition, each time a user story is completed, the versioned
changes of all collaborators must be integrated to ensure that the release can be
generated and deployed in the test environment that is required for the respective
functional review, which may be manual or automated. This meeting is held every
day of the sprint to identify whether or not the goals will be achieved as estimated
and what will be done about it.

Regarding the deployment phase, at the end of each integration of changes, it is
necessary to carry out the deployment. In this way, it is possible to have the latest
stable version placed in a test environment and ready to present the sprint review,

Revista Facultad de Ingenieria (Rev. Fac. Ing.) Vol. 31 (61), e14828. July-September 2022. Tunja-Boyaca,

Colombia. L-ISSN: 0121-1129, e-ISSN: 2357-5328.
DOI: https://doi.org/10.19053/01211129.v31.n61.2022.14828

https://doi.org/10.19053/01211129.v31.n61.2022.14828

Approach to the Best Practices of Software Development Based on DevOps and SCRUM Used in Very Small
Entities

as indicated in [10]. During this event, the team presents to the project
stakeholders what was done during the sprint according to the commitments. After
this, the team performs a final event called sprint retrospective that, according to
[10], allows a review of the positive aspects and opportunities for improvement that
are the product of the learning gained from the sprint execution. Here it is key to
review the versioning history to identify if its use was correct, in addition to knowing
how many stories were built without delay according to the planning, how many
required improvements and how many detected corrections after delivery.
Likewise, it is reviewed how often the continuous integration was unsuccessful and
for what reason. Moreover, it is observed whether or not there were some cases in
which continuous deployment was unsuccessful. All this information, together with
the use of retrospective techniques, allows the team to learn and improve sprint by

sprint continuously.

C. Proposal for a Versioning Model

Based on the work of [12], it is possible to identify that the starting point of a
process oriented to best practices in software development is versioning.
Versioners are tools that function as repositories that centralize changes and
ensure availability for all members of the development team (collective ownership
of the code). Additionally, all the changes stored by the tool are saved in a history
for traceability, and if an error is generated in integrating the changes, it returns to
the previous stable version without major delays (failure recovery).

To implement this practice, it is recommended first to understand the correct
structure of a versioning model, followed by the steps for its use and the practices
that must be implemented therein. Versioners comprise a local registry on the
user's machine and a repository registry that stores and integrates all changes
within the tool. The purpose of this tool is to synchronize local changes with the
version hosted in the tool. All changes are housed in a structural separation that
the tool creates called a branch, and usually, the initial branch that every versioner

creates is given the term master.

Revista Facultad de Ingenieria (Rev. Fac. Ing.) Vol. 31 (61), €14828. July-September 2022. Tunja-Boyaca,
Colombia. L-ISSN: 0121-1129, e-ISSN: 2357-5328.
DOI: https://doi.org/10.19053/01211129.v31.n61.2022.14828

https://doi.org/10.19053/01211129.v31.n61.2022.14828

Manuel-Alejandro Pastrana-Pardo; Hugo-Armando Orddéfiez-Erazo; Carlos-Alberto Cobos-Lozada

If the development team were to work only on the master branch, quiet conflicts
would be generated in integrating the changes, and there would not be a latest
stable version because the source code would be constantly being manipulated.
For this reason, it is recommended to detach another branch derived from the
master to fulfill the function of integrating the changes of all the participants. This
allows changes to be centralized in the integrations branch, and once these are
considered stable, the latest version is synchronized with the master, ensuring that
what it is holding in the master will always be the most recent and stable version of
the project. For greater control of changes, it is recommended to detach one
branch for each project collaborator from the integration branch. The objective of
this is for each developer to work on their specific activities until they are quite sure
they have finished, only uploading to the integrations branch when this is done.
Once the developer changes are integrated, the entire team should be notified,
seeking synchronization of everyone.

It is recommended to integrate changes from the developer branch into the
integrations branch through a pull request and not directly. This generates a
request submitted for review (manual code inspection) so that a team member
determines if the changes do not negatively affect the project and comply with the
development policies implemented in the team (code standard). If the changes are
authorized, the new is included (merged) in the desired branch through the
versioner, and the tool automatically notifies members of its success through email.
Otherwise, it indicates that it has been rejected, and the reason is supplied with the
aim that the developer who requested to upload the change can take the
necessary corrective actions and try again. Fig. 1 summarizes the step-by-step of
what has been mentioned. Additionally, it is recommended that all members
always download the changes from the integrations branch at the start of the
working day to work on the latest development version, and at the end of the day,

they should always upload the changes they have made to their branch.

Revista Facultad de Ingenieria (Rev. Fac. Ing.) Vol. 31 (61), €14828. July-September 2022. Tunja-Boyaca,
Colombia. L-ISSN: 0121-1129, e-ISSN: 2357-5328.
DOI: https://doi.org/10.19053/01211129.v31.n61.2022.14828

https://doi.org/10.19053/01211129.v31.n61.2022.14828

Approach to the Best Practices of Software Development Based on DevOps and SCRUM Used in Very Small
Entities

Is it the integrations

?
branch? Download Switch to o (" Push changes)
ves ~| development developer's functionaFI)ity made to your
baseline own branch & branch o
No (\

Finalize changes

and check quality
orihe by the developer

. ; S —

integration

v
brancn? = .(Pull request

Another developer
inspects the changes to
authorize or reject the ...

Check
which
branch
you are on

Developer
connects to
versioner

No Cambiar a la

rama de
integraciones

Is it ready

Rejection is
notified to be

corrected
Changes are)y
integrated
and notified Approved?

Fig. 1. Versioning model.

The changes are available for
the rest of the team to
download from the integrations

branch

Request is created
and is waiting to
be reviewed

D. Proposal for a Continuous Integration (Cl) Model

The practice of continuous integration (Cl) goes hand in hand with versioning,
according to [13]. Although versioning helps to centralize changes, maintain order,
and trace the evolution of the system being developed, it does not allow verifying
the impact of the changes generated on the deployable unit. Due to the above and
following [14], it is advisable to adopt the practice of continuous integration that can
validate this as part of the organizational culture.

To implement the CI, the implementation tool must be able to generate the
deployable unit through instructions from the console, depending on the
programming language and operating system. If the process was successful, the
team must be notified that the CI has finished correctly, and in case of failure, it will
notify who was the last to make changes so that they can make the pertinent

adjustments. The above is summarized in Fig. 2.

Revista Facultad de Ingenieria (Rev. Fac. Ing.) Vol. 31 (61), €14828. July-September 2022. Tunja-Boyaca,
Colombia. L-ISSN: 0121-1129, e-ISSN: 2357-5328.
DOI: https://doi.org/10.19053/01211129.v31.n61.2022.14828

https://doi.org/10.19053/01211129.v31.n61.2022.14828

Manuel-Alejandro Pastrana-Pardo; Hugo-Armando Orddéfiez-Erazo; Carlos-Alberto Cobos-Lozada

Developer Version the Perform pull Another developer
@ build changes request to ‘Request > reyiews whether the
functionality made integration branch | (' created | | request is approved
Is the release oF rejeded (COde
deployable? inSpGCﬁon)
Notify that the CI Yes Run OS commands Yes Is integration
; ‘ was completed to generate the approved?
Notify No | release No
[rejectionl
Fig. 2. Cl Model.

E. Proposal for a Continuous Deployment (CD) Model

When the source code is versioned, and the CI generates the deployable unit file,
which must be put on an application server for the software to be operational, the
CD is possible, according to [16]. The CD practice takes advantage of the fact that
the Cl has generated the deployable unit, so as not to repeat this process, and
transfers that file to the server (physical or in the cloud) where the application
server that will deploy it is hosted. Once the file has been taken to the server, it is
placed in the required location, depending on the application server. The operating
system-specific commands required to perform the deployment are then executed,
which in most cases cause the applications server, but not the physical server, to

require to restart its service. The above is summarized in Fig. 3.

(: N
[== 3:,:‘::::? Softi:/are Release was Identify release to Identify server 'df’""? Iac‘:et;‘
: generated in Cl work with URL credentials to the
Iniegrated L deployment server)

\

Report Was the i
deployment Riln cperating Upload release to Identify application

deployment 2 system) Connect to
failure successful? coltands the path required Sarer server and folder where

requited for by the application the source code should
Report q server be hosted
deployment deployment _
success

Yes

Fig. 3. CD Model.

Revista Facultad de Ingenieria (Rev. Fac. Ing.) Vol. 31 (61), €14828. July-September 2022. Tunja-Boyaca,
Colombia. L-ISSN: 0121-1129, e-ISSN: 2357-5328.
DOI: https://doi.org/10.19053/01211129.v31.n61.2022.14828

https://doi.org/10.19053/01211129.v31.n61.2022.14828

Approach to the Best Practices of Software Development Based on DevOps and SCRUM Used in Very Small
Entities

IV. RESULTS
Three companies were selected to review the impact of implementing the
suggested practices. For confidentiality reasons, they will be called COY1, COY2,
and COY3
Company COY1 has less than 25 employees and develops data analytics
solutions. Moreover, it uses code versioning, where there is a master branch that
hosts the latest completely stable version of the development and a branch that
integrates the work of all the developers that allows centralizing the constant
changes of the team during each sprint.
Having identified the above, the versioning model is exhibited for the refinement of
the practice, recommending that a branch should be created from the integration
branch for each developer that can be named with the first letter of the name
followed by the first surname. In the case of homonyms, the name to be assigned
in each branch is negotiated with those involved. This allows for maintaining
control over the evolution of the projects over time, identifying changes made by
each developer and recovering from syntax or logical errors that could affect the
dropdown and that are detected by the CI when a pull request is made to the
integrations branch. COY1 likewise implemented Cl to prevent syntactic errors
from generating the deployable unit correctly.
COY1 was aware of CD but had not implemented it. Once the CD model has been
exhibited, the process of adopting this practice begins. Since the Cl and the CD, in
some cases, can be implemented in the same tool (as happens with the COY1),
the file that allows the CI is modified to add the step of CD configuring the test
server path, permissions of access, and operating system commands for
deployment. With the above, it was achieved that every time a stable integration is
carried out, it is automatically deployed on the test server, and the quality team is
notified for review.
COY2 was characterized as a VSE with problems typical of this kind of company.
Its biggest limitation is that the development and technology area is made up of 9
people. Before adopting these best practices, all its projects were built in PHP and
Bootstrap using a code generator called PHPRUNNER. It did not use versioning
Revista Facultad de Ingenieria (Rev. Fac. Ing.) Vol. 31 (61), 14828. July-September 2022. Tunja-Boyaca,

Colombia. L-ISSN: 0121-1129, e-ISSN: 2357-5328.
DOI: https://doi.org/10.19053/01211129.v31.n61.2022.14828

https://doi.org/10.19053/01211129.v31.n61.2022.14828

Manuel-Alejandro Pastrana-Pardo; Hugo-Armando Orddéfiez-Erazo; Carlos-Alberto Cobos-Lozada

and was unaware of the model of working with versions. Therefore, the model was
exhibited and implemented. One of the direct impacts achieved with this was the
organization of work, the non-loss of information, the elimination of overload of
personnel who developed the same, the traceability of changes and the availability
of codes always for those who need them. Additionally, it identified this step as an
opportunity for the implementation of the other two practices, and even showed
total interest that once they have adopted the previous practice as part of its
organizational culture, it can explore the implementation of more practices aimed at
the preventive quality that optimizes its SCRUM-based development process.

The versioning tool implemented allows continuous integration, so it was natural in
its process to build the required configuration file and adopt the practice. The
impact was significant for COY2 for several reasons. The first was that it detected
that, on some occasions, two people worked on the same functionality at the same
time for different support cases. When doing this before the implementation of the
practices, the changes were overwritten. However, with the implementation of
versioning, it is prevented because whoever tries to upload the latest change is
forced to download the previous settings, unify everything locally and then upload
them to the versioner. The second reason is that the CI tool allows to automatically
detect if the changes are preventing the deployable unit from being generated. In
this case, the notification and attention to the situation are resolved by the last
person who uploaded the change. Additionally, COY2, through code reviews that
allow the integration to be approved, avoided reprocessing, and thus decongested
the support channel it provides to its products. The static analysis of the code also
helped to detect that it does not use any dependency manager for its programming
language, it generates a lot of unnecessary code, and the current architecture did
not fully meet the real needs of the company that have been sacrificed for speed of
development, making support more demanding for the entire team.

Company COY3 reflects an empirical and non-systematized software development
process. Therefore, it did not work with the best practices suggested in this article.
Its main function is to develop custom software in JAVA using Spring, JPA and
Swagger to construct a Rest API that exhibits the system's functionalities and that

Revista Facultad de Ingenieria (Rev. Fac. Ing.) Vol. 31 (61), e14828. July-September 2022. Tunja-Boyaca,

Colombia. L-ISSN: 0121-1129, e-ISSN: 2357-5328.
DOI: https://doi.org/10.19053/01211129.v31.n61.2022.14828

https://doi.org/10.19053/01211129.v31.n61.2022.14828

Approach to the Best Practices of Software Development Based on DevOps and SCRUM Used in Very Small
Entities

are consumed by the presentation layer, built in Dart with Flutter for web and
mobile. The three (3) practices were exhibited by creating repositories for both the
backend built in java and the frontend. Each repository has the structure described
in the proposed versioning model. This allowed greater traceability in the evolution
of its main application. Additionally, it allowed the company to organize support
cases according to who developed it. The practice of Cl and CD by the backend
was easy for the team to implement and adopt, allowing them to detect changes
that prevent the deployable unit from being built and quickly put it on the test
server. On the part of continuous deployment for the web, the script was created
without difficulty and deployed in an agile way. However, for the mobile case, the
tool does not cover the possibility of integrating with the Apple Store or Play Store
deployment platform, so it is recommended to expand the investigation to another
tool that does allow it. Table 3 summarizes what happened with the three

companies.
Table 1. Impact of implemented practices
Entity Detected Implemented Impact
practices practices
Ccoyl -~ Improved The versioning model is improved for greater
Versioning L
versioning control.
Cl CD Manual deployment is eliminated and automated.
COoY2 None Versioning Quality controls are implemented that decongest
Cl company supports.
cD Faster deployment speed with less rework.
COoY3 None Versioning Improved company support.
Cl
cb Elimination of manual deployments for web
applications.

Once the implementation of the suggested best practices was carried out, the first
measurement was the number of failures that appear after development and that
are reported by end users when the software is already operating (support cases).
This was measured before and after implementation to compare the impact
achieved.

COY1 reported 9 to 12 weekly requests before practices, COY2 had an average of
16 to 22, and COY3 had 5 to 8 weekly reports. Following the implementation of

Revista Facultad de Ingenieria (Rev. Fac. Ing.) Vol. 31 (61), €14828. July-September 2022. Tunja-Boyaca,
Colombia. L-ISSN: 0121-1129, e-ISSN: 2357-5328.
DOI: https://doi.org/10.19053/01211129.v31.n61.2022.14828

https://doi.org/10.19053/01211129.v31.n61.2022.14828

Manuel-Alejandro Pastrana-Pardo; Hugo-Armando Orddéfiez-Erazo; Carlos-Alberto Cobos-Lozada

best practices, COY1 reported a decrease of 41.7% of cases, reaching a report of
3 to 5 weekly requests, while COY2 indicated a decrease of 45.5%, achieving a
range of 8 to 10 reports per week. COY3 showed a decrease of 37.5% of the
reports reflected in only 2 to 3 weekly requests. The above results are summarized
in Fig. 4.

number of support cases

10
I. I .-

coy1l Ccoy2 Coy3

ON PO

Report by company

B Before MW After

Fig. 4. Support cases before and after the implementation of best practices.

The practices of versioning, CI and CD were significant for each company,
integrating the different changes in a controlled way and always being prepared to
face a production release. COY2 and COY3 suffered most from manual
deployments because, in some situations and due to response time pressure on
support, they directly handled the code deployed on the server to solve a problem,
not only losing control of the change but also occasionally generating inoperability
at times due to poor handling. Measurement of effective deployments before
implementing the practices shows that COY1 had a 90% success rate due to a
deployment checklist that is executed manually. After implementation, they
obtained 100%, and the manual review of the checklist disappeared, leaving the
developer in charge free to fulfill other functions. COY2 had a 50% rate of correct
deployment before the practices because its process is empirical and without any
control. After implementation, 100% correct deployments were obtained. COY3

had 80% correct deployments before the practices because it also had a checklist.

Revista Facultad de Ingenieria (Rev. Fac. Ing.) Vol. 31 (61), €14828. July-September 2022. Tunja-Boyaca,
Colombia. L-ISSN: 0121-1129, e-ISSN: 2357-5328.
DOI: https://d0i.org/10.19053/01211129.v31.n61.2022.14828

https://doi.org/10.19053/01211129.v31.n61.2022.14828

Approach to the Best Practices of Software Development Based on DevOps and SCRUM Used in Very Small
Entities

After implementation, they reached 100%. Fig. 5 summarizes the results presented

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0

coy1 coy2 Coy3

above.

Success rate

X

Report by company

W Before W After

Fig. 5. Successful deployments before and after the implementation of best practices.

V. CONCLUSIONS AND FUTURE WORK

The division by phases of the development process reflects that development and
quality present a high possibility of including best practices based on DevOps for
SCRUM, managing to approach an initial selection of best practices, detail them
and propose a way of implementation that was then tested in a case study.

From the case study, it was determined that the practice of versioning allows a
historical follow-up evidencing progress or delays in the project, when a change
was made and who makes it, ensuring that the code is always available for those
who need it. Additionally, unifying the work of all the collaborators through an
integration branch with the pull request command implies manually inspecting the
code whenever it is requested to merge the changes, which adds a quality filter at
that point in the process. Together with versioning, Cl implements another quality
filter, verifying if a modification has been uploaded that, by inadvertence, prevents
the deployable unit from being generated or not. Together, these practices
generate an environment of a preventive quality that implements significant
controls for the development process. Also, the implementation of CD allowed the

Revista Facultad de Ingenieria (Rev. Fac. Ing.) Vol. 31 (61), 14828. July-September 2022. Tunja-Boyaca,

Colombia. L-ISSN: 0121-1129, e-ISSN: 2357-5328.
DOI: https://doi.org/10.19053/01211129.v31.n61.2022.14828

https://doi.org/10.19053/01211129.v31.n61.2022.14828

Manuel-Alejandro Pastrana-Pardo; Hugo-Armando Orddéfiez-Erazo; Carlos-Alberto Cobos-Lozada

development teams to ensure a 100% effective deployment from the early stages
of a project, as seen in the results.

Moreover, there is evidence of a direct impact on the quality of what is developed
because the number of support cases that companies were required to address
decreased when quality controls were increased during development.

The research group hopes to explore as future work other approaches to the
current versioning model, such as replacing the name of each developer branch for
an attribute or characteristic (feature), as well as delving into the implementation of
unit tests and their automatic inspection through CI, analysis static code,

automated functional tests, and the integration of all practices to the current model.

AUTHORS’ CONTRIBUTION

Manuel-Alejandro Pastrana-Pardo: Conceptualization, methodology resources,
writing - original draft.

Hugo-Armando Ordofiez-Erazo: Conceptualization, methodology, resources,
writing - original draft, supervision, project administration, acquisition of funding.

Carlos-Alberto Cobos-Lozado: Supervision, writing-review and editing.

ACKNOWLEDGMENTS

The authors express their gratitude to the Institucion Universitaria Antonio José
Camacho for participating in the research project entitled "Implementation of
standardized best practices for the development of software based on SCRUM and
DevOps in very small companies.” Likewise, to the vice-rector for research office of
Universidad del Cauca for the support provided to the group of researchers in the
execution of this project.

REFERENCES

[1] S. Martinez-Fernandez, A. Vollmer, AJedlitschka, X. Franch, L. Lopez, P. Ram, P. Rodriguez, S.
Aaramaa, A. Bagnato, M. Choras, J. Partanen, “Continuously Assessing and Improving Software Quality
With Software Analytics Tools: A Case Study,” IEEE Access, vol. 7, pp. 68219-68239, 2019.
https://doi.org/10.1109/ACCESS.2019.2917403

Revista Facultad de Ingenieria (Rev. Fac. Ing.) Vol. 31 (61), €14828. July-September 2022. Tunja-Boyaca,
Colombia. L-ISSN: 0121-1129, e-ISSN: 2357-5328.
DOI: https://doi.org/10.19053/01211129.v31.n61.2022.14828

https://doi.org/10.19053/01211129.v31.n61.2022.14828
https://doi.org/10.1109/ACCESS.2019.2917403

Approach to the Best Practices of Software Development Based on DevOps and SCRUM Used in Very Small
Entities

(2]

(3]

(4]

(5]

(6]

(10]

(11]

(12]

(13]

(14]

P. Rodriguez, A. Haghighatkhah, L. E. Lwakatare, S. Teppola, T. Suomalainen, J. Eskeli, T. Karvonen, P.
Kuvaja, J. M. Verner, M. Oivo, “DevOps in practice: A multiple case study of five companies,” Information
and Software Technology, vol. 114, pp. 217-230, 2019. https://doi.org/10.1016/].infsof.2019.06.010
ISO/IEC JTC 1/SC 7/WG 24, ISO/IEC DTR 29110-5-6-3:2018, 1SO, 20109.
https://isotc.iso.org/livelink/livelink/open/jtclsc7wg24

M. Munoz, J. Mejia, A. Lagunas, “Implementation of the ISO/IEC 29110 standard in agile environments: A
systematic literature review,” in Iberian Conference on Information Systems and Technologies, 2018, pp.
1-6. https://doi.org/10.23919/CISTI.2018.8399332

A. Hemon, B. Lyonnet, F. Rowe, B. Fitzgerald, “From Agile to DevOps: Smart Skills and Collaborations,”
Information Systems Frontiers, vol. 22, no. 4, pp. 927-945, 2020. https://doi.org/10.1007/s10796-019-
09905-1

S. Badshah, A. A. Khan, B. Khan, “Towards Process Improvement in DevOps,” in Proceedings of the

Evaluation and Assessment in Software Engineering, 2020, pp. 427-433.
https://doi.org/10.1145/3383219.3383280
M. Z. Toh, S. Sahibuddin, M. N. Mahrin, “Adoption Issues in DevOps from the Perspective of Continuous

Delivery Pipeline,” in Proceedings of the 2019 8th International Conference on Software and Computer
Applications, 2019, pp. 173-177. https://doi.org/10.1145/3316615.3316619
A. Hemon, B. Lyonnet, F. Rowe, B. Fitzgerald, “Conceptualizing the transition from agile to DevOps: A

maturity model for a smarter is function,” in IFIP Advances in Information and Communication
Technology, 2019, pp. 209-223. https://doi.org/10.1007/978-3-030-04315-5 15

R. S. Pressman, B. R. Maxim, Software Engineering: A Practitioner’'s Approach, Eighth Edition, McGraw-
Hil. Boston, USA: McGraw-Hill, 2015.

K. Schwaber, J. Sutherland, L. Guia, D. de Scrum, L. Reglas, La Guia Definitiva de Scrum: Las Reglas

del Juego, 2020. https://scrumguides.org/docs/scrumguide/v2020/2020-Scrum-Guide-Spanish-

European.pdf
M. O. Onarcan, Y. Fu, M. O. Onarcan, Y. Fu, “A Case Study on Design Patterns and Software Defects in

Open Source Software,” Journal of Software Engineering and Applications, vol. 11, no. 5, pp. 249-273,
2018. https://doi.org/10.4236/JSEA.2018.115016

M. Pastrana, H. Ordofiez, A. Rojas, A. Ordofiez, “Ensuring Compliance with Sprint Requirements in

SCRUM: Preventive Quality Assurance in SCRUM,” in Advances in Intelligent Systems and Computing,
2019, pp. 33-45. https://doi.org/10.1007/978-981-13-6861-5 3

N. Railic, M. Savic, “Architecting Continuous Integration and Continuous Deployment for Microservice
Architecture,” in 20th International Symposium INFOTEH-JAHORINA, 2021.
https://doi.org/10.1109/INFOTEH51037.2021.9400696

Y. Zhao, A. Serebrenik, Y. Zhou, V. Filkov, B. Vasilescu, “The impact of continuous integration on other

software development practices: A large-scale empirical study,” in 32nd IEEE/ACM International
Conference on Automated Software Engineering, 2017, pp. 60-71.
https://doi.org/10.1109/ASE.2017.8115619

Revista Facultad de Ingenieria (Rev. Fac. Ing.) Vol. 31 (61), €14828. July-September 2022. Tunja-Boyaca,

Colombia. L-ISSN: 0121-1129, e-ISSN: 2357-5328.
DOI: https://doi.org/10.19053/01211129.v31.n61.2022.14828

https://doi.org/10.19053/01211129.v31.n61.2022.14828
https://doi.org/10.1016/j.infsof.2019.06.010
https://isotc.iso.org/livelink/livelink/open/jtc1sc7wg24
https://doi.org/10.23919/CISTI.2018.8399332
https://doi.org/10.1007/s10796-019-09905-1
https://doi.org/10.1007/s10796-019-09905-1
https://doi.org/10.1145/3383219.3383280
https://doi.org/10.1145/3316615.3316619
https://doi.org/10.1007/978-3-030-04315-5_15
https://scrumguides.org/docs/scrumguide/v2020/2020-Scrum-Guide-Spanish-European.pdf
https://scrumguides.org/docs/scrumguide/v2020/2020-Scrum-Guide-Spanish-European.pdf
https://doi.org/10.4236/JSEA.2018.115016
https://doi.org/10.1007/978-981-13-6861-5_3
https://doi.org/10.1109/INFOTEH51037.2021.9400696
https://doi.org/10.1109/ASE.2017.8115619

