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ABSTRACT: Polyethersulfone (PES) hollow fiber °
membranes were fabricated using dry-jet wet spinning
technique, a phase inversion method, with 16 and 20%
PES, N-methyl-2-pyrrolidone (NMP) as solvent and tap
water as nonsolvent, in order to evaluate if the amount
of polymer has a significant effect on its properties.
They were characterized using SEM for a
morphological analysis, a continuous system to measure
pure water permeability (PWP) and molecular weight 4
cutoff (MWCO), and a universal testing machine to WP | ==
tensile tests. The obtained results for PWP was an 3 ' k
average of about 220 L m2 h* bar? for the 16% PES
membrane and 174 L m?2 h? bar! for the 20% PES
membrane. The results of mechanical resistance and
MWCO did not present statistical differences. Thus, itis *
confirmed that the 16% PES membrane can be as good
as the 20%, despite using less polymer, a finding that "=
can further motivate membrane modification studies and F
other related works.
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1. Introduction

Polymeric hollow fiber membranes were first
developed by Dow Chemical in 1966 and since then,
due to their properties as high processability and low
cost, they are the most common material used for
membrane fabrication® *. Hollow fiber membranes are
used in several areas that demand a separation process,
such as pharmaceutical industry, food industry, water
and wastewater treatment plants and the petroleum
sector*®,

The method of phase inversion is one of the most
important techniques of membrane fabrication® for
hollow fibers. It is based on an extrusion of a polymer
solution through a spinneret, which will return to the
solid state®’. Dry-jet wet spinning follows this idea
with a phase inversion beginning with an induced
evaporation that occurs in the air gap and finishing in
the coagulation bath with a phase inversion induced by
diffusion®.

Polyethersulfone (PES) has been widely used
because it can tolerate a large range of pH, has a good
thermal stability and excellent chemical and
mechanical resistance®®°, This polymer and the
conditions for the solution spinning determine the
morphology and properties of hollow fiber membrane,
such as selectivity’*°.

Despite numerous studies related to hollow fiber
membranes composed of PESY'® and the known
advantages of membrane separation processes’ *’,
there is a worldwide concern with the amount of
microplastics that are emerging around the globe?®?
and not only with energy efficiency, pollutant
emissions and other sustainability issues. Lower
consumption of plastic is a policy growing in many
countries, seeking to encourage consumers to find a
way to reduce it on a daily basis®*.

Based on this tendency, the present work focuses on
studying the properties of hollow fiber membranes
made of 16 and 20% PES, evaluating if there are
significant differences among the results obtained that
justify the use of a bigger quantity of polymer. Future
studies of membrane modification can be based on
compositions using smaller amounts of polymer
without impairing its application, demonstrating its
importance.

2. Experimental
2.1 Materials

Polyethersulfone (VERADEL 3000P with MW =
63,000 g Mol-1) from Solvay Advanced Polymer was
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dried for 4 h in an oven at 100 °C before utilizing it for
fabrication of the dope solution. N-methyl-2-
pyrrolidone (NMP) with purity >99% from Labsynth
Produtos para Laboratorios Ltda. was used as received
as the solvent for the polymer. Tap water was used as
the nonsolvent agent, as bore fluid and in coagulation
bath.

2.2 Solution preparation

The dope solution was prepared with 16 and 20%
(weight/weight) concentration of PES, with the
remaining concentration (84 and 80%, respectively)
being of NMP. The polymer was slowly added to the
solvent, taking 1 h for complete addition, at room
temperature. Then, the solution remained for about 18
h at 200 r.p.m. stirring, assuring complete
solubilization of the polymer and homogenization, to
be finally degassed in an ultrasonic bath for 1 h,
eliminating any bubbles of air trapped into solution.

2.3 Hollow fiber production

The solution was spinning with a solution flow rate
of 2 mL min and a bore fluid flow rate of 4 mL min™,
using dry-jet wet spinning method with an air gap of
2cm and take-up speed of 4 mL min?, at room
temperature. A schematic representation of the
spinneret and fabricating hollow fiber membrane
processes is shown in Fig. 1.

Figure 1. Schematic representation of fabricating hollow
fiber membrane system.

Hollow fiber membranes were stored in
demineralized water to keep their integrity. To realize
some characterization procedures, these were dried
following the steps described elsewhere®.

2.4 Membrane characterization

The produced membranes were investigated about
its morphology, permeability, mechanical resistance
and MWCO (molecular weight cutoff). The data
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obtained were treated to remove outliers and statistical
analysis of the results was done using Minitab® 18.1,
from Minitab, Inc., assuming a significance level of
0.05 and equality of variances.

2.4.1 Morphological analysis

The cross-sectional of the hollow fiber membranes
was observed by a scanning electron microscope (Zeiss
SEM model EVO MA10) with an acceleration voltage
of 20 kV. For this, dried membranes were cut under
liquid nitrogen and sputter-coated with a thin film of
gold-platinum. These procedures under nitrogen are
necessary to produce a clean and brittle fracture and the
coating is required due to the nature of polymeric
material, not electrically conductive. Doing this way, it
is possible to see the microstructure of the produced
membranes.

2.4.2 Pure water permeability

Pure water permeability (PWP) measurements were
estimated in an experimental setup, where a module
made from low-density polyethylene (LDPE) was
utilized with two hollow fiber membranes with 30 cm
effective lengths, folded in half and fed topside in an
inside out mode.

A syringe pump with a constant flow rate of 0.5 mL
min? supplied demineralized water to the module and
the water production measurement was started after
thirty minutes to achieve steady-state conditions.
Records were made every five minutes for one hour,
similar to the procedure previously described®. The
permeation flux (Jy) through the membrane was
calculated following the Eq. 1:

%4
]W = AxtxAP (1)

where: J,, = Water permeability (L m2 ht bar?); V =
Volume of permeate (L); A = Inner surface area (m2); t
= Time (h); AP = Transmembrane pressure (bar).

2.4.3 Mechanical resistance

The mechanical resistance of the hollow fiber
membranes was investigated by means of tensile tests,
measured using an Instron universal testing system and
a 100 N load cell and constant rate of 1 mm s, with an
initial gauge length of 30 mm. The test method was
based on ASTM 1557-14 Standard Test Method for
Tensile Strength and Young’s Modulus of Fibers.
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Five dried samples with 100 mm length were tested
for each experimental result, determining membrane
tensile strength, elongation at break and Young’s
modulus.

2.4.4 Molecular weight cutoff (MWCO)

The MWCO was investigated using 200 ppm
polyethylene glycol (PEG) solution with molecular
weights of 10 kDa, 32 kDa, 90 kDa and 150 kDa, into
the same system and module described in 2.4.2.

The concentration of PEG in permeate and in
retentate  was analyzed by a  UV-VIS
spectrophotometer (WUV-M51, Weblaborsp) at a
wavelength of 254 nm and the MWCO was determined
from the rejection of PEG solution, following Eq. 2:

R=(1- i—") «100% @)

where: R = Rejection (%); C, = Permeate
concentration (Da); C, = Retentate concentration (Da).

3. Results and discussion
3.1 Morphological analysis

To evaluate the impact of polymer concentration on
the morphology of hollow fiber membranes, SEM was
used to observe its enlarged cross section and outside
face of the samples. Figures 2 and 3 show both
membranes resulted in an outside dense skin and a
double layered finger-like structure pore, but it is
possible to see that the 16% PES concentration
membrane has a bigger aperture at the end of the pores,
nearby their center.

Double layer finger-like and dense skin were
expected microstructure characteristics for these
membranes. They occur because water is a strong
nonsolvent for the polymer, that provides a fast
coagulation, and this formation is a consequence of it,
like reported previously'-?"?8,

The morphological analysis indicates that the
permeation flux tends to be better in the 16% PES
concentration membrane. This tendency is verified by
pure water permeability investigation results, but it can
happen because its pores had an opening larger than
the other membrane, facilitating the flow of the fluid
through it.
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Figure 2. SEM images of 16% PES sample: a) full cross section of the hollow fiber membrane, b) and c) cross section of the
hollow fiber membrane with different magnifications, and d) outer skin.
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Figure 3. SEM images of 20% PES sample: a) full cross section of the hollow fiber membrane, b) and c) cross section of the
hollow fiber membrane with different magnifications, and d) outer skin.
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3.2 Pure water permeability m2 ht bar? for the 16% PES concentration membrane

and 174 L m2 h'* bar? for the 20% PES concentration

The results of demineralized water permeation flux ~ membrane. These results agree with the SEM analysis

for the hollow fiber membranes produced are shown in ~ showed above and also with reports in the
Fig. 4. It shows an average permeability about 220 L literature®.
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Figure 4. Pure water permeability of 16% PES and 20% PES membranes.

Table 1 shows statistical analysis of the results of permeability presented. According to ANOVA evaluation,
there is a statistical difference between them.

Table 1. ANOVA statistical analysis of membranes PWP.
——————

Factor 12208 12207.90 56.11 0.000
Error 22 4787 217.60
Total 23 16995

3.3 Mechanical resistance
The results of the mechanical properties investigation for membranes are summarized in Tab. 2.

Table 2. Mechanical resistance properties of membranes.

Average Standard deviation Average Standard deviation Average Standard deviation
16% 220 9 15 2 180 47
20% 174 19 15 2 279 54
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These results show there is a small variance between the average of tensile strength, elongation at break and
Young's modulus. With the analysis of results, it is possible to note there is no relevant difference between the 16
and 20% PES membranes (Tabs. 3 to 5).

Table 3. ANOVA statistical analysis of membranes tensile strength.

Factor 0.0918 0.09177 0.884
Error 7 28.0531 4.00759
Total 8 28.1449

Table 4. ANOVA statistical analysis of membranes elongation at break.

Factor 167.6 167.6 0.339
Error 4 568.8 142.2
Total 5 736.4

Table 5. ANOVA statistical analysis of membranes Young’s Modulus.

Factor 14656 14656 0.075

Error 4 10235 2559

Total 5 24891

3.4 MWCO typical rejection curve is sigmoidal®®’, an

extrapolation was made with the results (Fig. 5 and 6).

The data obtained for MWCO were recorded up to
PEG 150 kDa MW and the membranes were not able
to remove 90% of this substance, which is the concept
of MWCO. Thus, to estimate this important
characteristic of membranes and knowing that the

Removal

0 100
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Based on the point that represents 90% of removal
in these curves, values of 271 kDa and 279 kDa are the
MWCO estimated of 16% PES membrane and 20%
PES membrane, respectively. The statistical analysis
does not show a relevant difference between both
results, as demonstrated in Tab. 6.

200 300 400
PEG MW / kDa

Figure 5. 16% PES membrane MWCO.
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200 300 400

PEG MW / kDa
Figure 6. 20% PES membrane MWCO.

Table 6. ANOVA statistical analysis of membranes MWCO.

Factor 0.00238
Error 14 1.81083
Total 15 1.81320

4. Conclusions

In this work, 16 and 20% PES membranes were
compared to verify whether the concentration of
polymer can determine a significant difference between
them. Based on results obtained, it is possible to
observe that the only relevant statistical difference was
PWP, which is almost 25% better in the 16% PES
membrane, implying a minor energy consumption to
produce the same volume of permeate compared to the
20% PES. All other results have no relevant statistical
difference among the compared membranes.

Future studies involving membrane modification
can benefit from this research and motivate researchers
to develop other works with related themes.
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