Souza Silva, Rafaela; Fontes da Silva, Marcílio Wagner; Barbosa Bezerra, Giselle; Souza Ramos, Clécio
Chemical profiles and antimicrobial activities of plants utilized in Brazilian traditional medicine
Eclética Química, vol. 46, no. 1, 2021, pp. 35-40
Universidade Estadual Paulista Júlio de Mesquita Filho
Brasil

Chemical profiles and antimicrobial activities of plants utilized in Brazilian traditional medicine

Rafaela Souza Silva, Marcílio Wagner Fontes da Silva, Giselle Barbosa Bezerra, Clécio Souza Ramos

1. Universidade Federal Rural de Pernambuco, Departamento de Química, Recife, Pernambuco, Brazil.

+Corresponding author: Clécio Souza Ramos, Phone: +55 81 3320-6379, Email address: clecio.ufrpe@gmail.com

ARTICLE INFO

Article history:
Received: September 05, 2019
Accepted: May 25, 2020
Published: January 01, 2021

Keywords
1. Antimicrobial activity
2. Anacardium occidentale
3. Handroanthus impetiginosus
4. Bumelia sartorum
5. Zornia brasiliensis
6. Cnidosculus urens

ABSTRACT: Medicinal plants are used for primary health care in many countries. In Brazil, there are hundreds of street markets selling a wide variety of herbs for medicinal purposes without quality control or scientific evidence; instead, their purported efficacy is based exclusively on empirical ethnobotanical knowledge. The present study evaluated the effectiveness of five medicinal plants widely utilized in Brazil to treat infections, as well as determined their chemical profiles. The results revealed that the five plants investigated (Anacardium occidentale L., Handroanthus impetiginosus Mart., Bumelia sartorum Sw., Zornia brasiliensis Vogel and Cnidosculus urens Pohl) demonstrated moderate to strong antimicrobial activity against most fungi and bacteria tested, principally for infections caused by gram-negative bacteria. The extracts of four plants exhibited MIC of 19.5 µg mL⁻¹ against the bacterium Escherichia coli. The results also confirmed that these five traditional medicinal plants are efficient and inexpensive alternative sources of substances to treat infections. The samples of the commercially marketed plants did not have consistent chemical compositions in at least one type of HPLC, GC/MS, UV or 'H NMR analysis.

Samples of Handroanthus impetiginosu

<table>
<thead>
<tr>
<th>MIC (µg mL⁻¹)</th>
<th>Klebsiella pneumoniae</th>
<th>Candida albicans</th>
</tr>
</thead>
<tbody>
<tr>
<td>625</td>
<td>78.1</td>
<td></td>
</tr>
<tr>
<td>19.5</td>
<td>156.2</td>
<td></td>
</tr>
<tr>
<td>1250</td>
<td>>2500</td>
<td></td>
</tr>
</tbody>
</table>

Chemical profile variation
Changes MIC values
1. Introduction

Since the beginning of human civilization, plants have been utilized for a wide array of purposes\(^1\). It is estimated that around 80% of the global population relies on medicinal plants for primary health care\(^2\,3\). It is also estimated that more than 65% of commercial pharmaceutical preparations contain active ingredients from natural sources, 32% being natural compounds or derivatives\(^4\). Over a period of 30 years (1981 to 2014), 43.5% of the medicines in the world approved for the treatment of infections caused by bacteria, fungi, parasites and viruses were obtained from natural products\(^5\). Morphine, isolated from *Papaver somniferum* L., penicillin, obtained from fermentative processes of *Penicillium chrysogenum* Thom, and taxol, isolated from *Taxus brevifolia* Nutt., are among drugs developed from natural sources\(^6\). Despite the advantages of using medicinal plants, such as their lower cost, fewer side effects, greater protection and easier accessibility, there are still considerable risks to consumers due to problems of self-dosing, variability in the chemical standards and inflated marketing claims regarding herbs\(^7\).

Brazil has the largest biodiversity in the world and 50% of plant species of the family Leguminosae have been reportedly used in folk medicine\(^8\). Hence, it is not surprising that street markets flourish selling myriad species of herbal and plant cures for an array of common ailments. Moreover, 66% of the Brazilian population has no full access to commercial medicines\(^9\). Indeed, medical anthropologists have verified the existence of time-tested ethnobotanical knowledge among cultures worldwide\(^10\), including in Brazil\(^11\,12\). There is no doubt about the importance of medicinal plants for the treatment and prevention of diseases. As part of the systematic study of phytochemicals and biological activity, previously we demonstrated the antidiarrheal property of *Solamun paniculatum*, L. roots, used in Brazil for culinary purposes and to treat gastric dysfunctions\(^13\). However, a lack of information about the origin, taxonomic identification, storage and chemical standardization of plants is a potential drawback to their safe consumption, posing possible health risks to users, particularly those in poor health\(^14\). Hence, the present study aimed to determine the chemical profile and antimicrobial potential of five medicinal plants (*Anacardium occidentale* L., *Handroanthus impetiginosus* Mart., *Bumelia sartorum* Sw., *Zornia brasiliensis* Vogel and *Cnidoscolus urens* Pohl) popularly used in Brazil for the treatment of infections.

A. occidentale, known in Brazil as purple cashew, used in the form of tea and juice, is indicated for treatment of infections via oral administration and for wound healing by topical application\(^15\,16\). The stems and flowers of *H. impetiginosus*, known as purple Ipê, are used to make poultices or concentrated as tea for the treatment of diseases caused by microorganisms\(^17\,18\). Stems of *B. sartorum*, known as quixaba, are used in Northeast Brazil to prepare for treatment of various conditions, such as diabetes mellitus, inflammation, genital sores, colic, bruises, ulcers and others\(^19\). Extracts of leaves of *Z. brasiliensis*, known as urinana, are used for their molluscicidal, spasmolytic, muscle relaxant and anticonvulsant properties and reportedly possess antioxidant, antibacterial, cytotoxic, antinociceptive, anti-inflammatory and antitumor activities\(^20\). Extracts from roots of the white nettle, *C. urens*, are indicated for the treatment of cancer, inflammation, infection and dermatological lesions, besides being used for their antiseptic, expectorant, tonic, antispasmodic, diuretic, sedative and hemostatic activities\(^21\).

2. Experimental

2.1 Plant material

2.1.1 Plant selection

The plant species were selected based on professed traditional ethnobotanical knowledge. Ten suppliers selling herbs at the São José market in the city of Recife (the state capital of Pernambuco, population 1,645,727; 2020) were interviewed by researchers and asked to identify the medicinal plants most frequently purchased by their customers for treating common infectious diseases. *Anacardium occidentale* (stems), *Handroanthus impetiginosus* (stems), *Bumelia sartorum* (stems), *Zornia brasiliensis* (leaves) and *Cnidoscolus urens* (roots) were the plant species most frequently indicated by the herb vendors and thus, were selected for the study. Samples of these five plant species were purchased from three different medicinal plant suppliers in March 2018.

2.1.2 Obtaining extracts

The five selected plants were dried at 50 °C for 48 h. The plants were milled and extracted separately with ethanol (3 × 100 mL). The extract obtained was concentrated under reduced pressure at 45 °C to yield the crude extract (Tab. 1). The extracts were subjected to chromatographic and spectrometric analysis (HPLC, GC/MS, UV-VIS e \(^1\)H NMR).
Table 1. Yields values of extracts obtained with ethanol from the five plants selected.

<table>
<thead>
<tr>
<th>Samples</th>
<th>Dried plants (g)</th>
<th>Crude extracts (g)</th>
<th>Yielding (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. occidentale</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1Ao</td>
<td>18.4</td>
<td>0.7</td>
<td>2.0</td>
</tr>
<tr>
<td>2Ao</td>
<td>19.1</td>
<td>0.6</td>
<td>3.0</td>
</tr>
<tr>
<td>3Ao</td>
<td>40.3</td>
<td>0.8</td>
<td>2.0</td>
</tr>
<tr>
<td>H. impetiginosus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1Hi</td>
<td>43.4</td>
<td>1.0</td>
<td>2.2</td>
</tr>
<tr>
<td>2Hi</td>
<td>32.2</td>
<td>2.1</td>
<td>6.7</td>
</tr>
<tr>
<td>3Hi</td>
<td>26.7</td>
<td>1.4</td>
<td>5.3</td>
</tr>
<tr>
<td>B. sartorum</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1Ba</td>
<td>56.4</td>
<td>1.2</td>
<td>2.2</td>
</tr>
<tr>
<td>2Ba</td>
<td>29.9</td>
<td>0.9</td>
<td>2.8</td>
</tr>
<tr>
<td>3Ba</td>
<td>36.4</td>
<td>2.6</td>
<td>7.3</td>
</tr>
<tr>
<td>Zornia sp</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1Zs</td>
<td>18.9</td>
<td>0.5</td>
<td>2.7</td>
</tr>
<tr>
<td>2Zs</td>
<td>17.3</td>
<td>0.5</td>
<td>3.2</td>
</tr>
<tr>
<td>3Zs</td>
<td>23.5</td>
<td>0.65</td>
<td>2.7</td>
</tr>
<tr>
<td>C. urens</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1Cu</td>
<td>20.5</td>
<td>0.5</td>
<td>2.9</td>
</tr>
<tr>
<td>2Cu</td>
<td>24.0</td>
<td>0.3</td>
<td>1.1</td>
</tr>
<tr>
<td>3Cu</td>
<td>21.5</td>
<td>0.2</td>
<td>1.0</td>
</tr>
</tbody>
</table>

2.2 Instruments

GC/MS analysis were carried out using a Perkin Elmer, model Clarus 589/Clarus SQ 8S capillary column (cross linked 5% phenyl methyl silicone, 0.25 mm i.d. x 30 m, Palo Alto, CA, USA), with oven temperature programmed from 100 to 250 °C at 10 °C min⁻¹ rate and a carrier gas (helium) flow rate of 1 mL min⁻¹. IR spectra were measured in KBr pellets with a Varian infrared spectrometer. The VIS-UV analyses were carried out in an Agilent 8453 UV-Vis spectrophotometer in the interval from 200 to 400 nm, using 10-mm quartz cuvettes. ¹H NMR analyses were recorded at 300 MHz using a Varian Unity Plus equipment. Samples were dissolved in CDCl₃ with TMS as the internal standard. HPLC analyses of extracts and pure compounds were performed in a Shimadzu LC 20AT instrument using a Luna C₁₈ reverse phase column (250 × 4.6 mm × 5 μm, Phenomenex) and eluted in gradient mode starting with 0.001 % formic acid/methanol (3:7) for 5 min, rising to 90% formic acid after 30 min, with diode array detector. TLC was performed on pre-coated silica gel 60 F₂₅₄ plates. Spots were visualized under UV light (254 and 365 nm).

2.3 In vitro assay for antimicrobial activity

The antimicrobial assay with crude extracts of the five plants studied was evaluated against the gram-positive bacteria Bacillus subtilis (UFPEDA 86), Enterococcus faecalis (UFPEDA 138), the gram-positive bacteria Escherichia coli (UFPEDA 224) and Klebsiella pneumoniae (UFPEDA 396), as well as against the fungi Candida albicans (ATCC 1007) and Candida krusei (UFPEDA 1002). The microorganisms were maintained in nutrient agar (NA), stored at 4 °C. The antimicrobial activity evaluation was performed by determination of the values of minimum inhibitory concentrations (MIC), as previously reported²³.

3. Results and discussion

The chemical profiles of the ethanolic extracts of A. occidentale (stems), H. impetiginosus (stems), B. sartorum (stems), Z. brasiliensis (leaves) and C. urens (roots) marketed as medicinal plants in Recife, Pernambuco, Brazil and indicated for the treatment of common infectious diseases were obtained by HPLC, TLC, GC/MS, UV and ¹H NMR analysis. Based on the interpretations of the spectroscopic and chromatographic analyses (see Supplementary Material, Figures S1-S15), some plant samples showed qualitative and quantitative differences in the chemical profiles in at least one type of analysis. The chemical profiles of B. sartorum specimens had the greatest chemical similarity among the five plants analyzed. The ¹H NMR spectra of the ethanolic extracts of B. sartorum samples revealed signals from the region of 0.9 to 5.5 ppm as bassic acid. Previous isolates from B. sartorum root bark and bassic acid have demonstrated anti-inflammatory activity²⁴. Despite the small variation in the chemical profiles among the B. sartorum samples, the antimicrobial potential of B. sartorum showed a variation of MIC values, especially for sample 3Ba, which presented lower activity against the bacterium Escherichia coli and the fungus Candida albicans (Tab. 2).
The chemical profile of *H. impetiginosus* sample 1Hi presented a difference when compared to the chemical profiles of samples 2Hi and 3Hi, mainly in the HPLC and UV analyses. *H. impetiginosus* exhibited strong antimicrobial activity with MIC of 19.5 µg mL$^{-1}$ against the bacteria *E. coli*, *B. subtilis* and *K. pneumonia*, but the MIC values varied among the samples due to their different chemical profiles.

The chemical profiles of ethanolic extracts of the *Z. brasiliensis* samples showed differences when analyzed by HPLC, UV and 1H NMR, especially sample 2Zs. It was observed in the 1H NMR spectrum of the *Z. brasiliensis* extract the presence of doublets at δ 7.6 and 7.30 ppm, an intense singlet from the methoxy group at δ 3.9 ppm, while the UV spectrum showed absorption in the 380 to 560 nm. These signals indicate the presence of flavonoids in the extract. Flavonoids as chalcones and flavones have been previously reported of *Z. brasiliensis*. It was inactive against the fungi *C. albicans*, *K. krusei* and the fungus *C. albicans*, with MIC of 19.5 µg mL$^{-1}$. The 1H NMR spectra of *C. urens* extracts did not indicate the presence of hydrogen signals for aromatic compounds but showed standard signals of triterpenoids between δ 5.0 and 0.8 ppm, identical to the triterpenoid signals previously obtained for ethanolic extracts of *C. urens*.

Extracts from the *A. occidentale* samples exhibited strong antimicrobial activity against the bacteria tested, mainly against the gram-negative bacteria *K. pneumonia* and *E. coli*, corroborating previous studies which demonstrated the antimicrobial potential of *A. occidentale*. The 1H NMR analysis of *A. occidentale* samples revealed chemical signals characteristic of flavonoids and benzoic acid derivatives, such as quercetin, kaempferol, rhamnetin and 2-hydroxy-6-pentadecylbenzoic acid, previously observed in extracts of *A. occidentale* tissues.

4. Conclusions

In summary, the five medicinal plants popularly indicated for treating common infectious diseases in Recife, Brazil, showed moderate to strong antimicrobial activity against most of the fungi and bacteria tested, principally gram-negative bacteria, responsible for most infection-related deaths.

The results confirmed that these five traditional medicinal plants are efficient low-cost sources of extracts to treat infections, especially for the 5.1 million of Brazilians living in abject poverty who have limited access to conventional medicines, as well as for other people seeking natural cures. The study also revealed that samples of the commercially marketed plants failed to have a consistent chemical...
composition in at least one type of HPLC, GC/MS, UV or \(^1\)H NMR analysis. Another drawback noted was the lack of information about the authenticity of herbs on the packaging. The samples’ variability suggests a need for more rigorous quality control of informally marketed herbal medicines in this setting to avoid potential risks to consumers’ health.

Acknowledgments

This work was funded by grants from PRPPG/UFRPE. RSS thanks CAPES for providing a scholarship. The authors are indebted to the Centro de Apoio a Pesquisa (CENAPESQ), UFRPE, for the laboratory facilities.

References

entale_extract_on_egg_yolk_induced_hypercholesterolaemic_rabbits.pdf.

