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ABSTRACT: In this study, a novel experimental approach for the optimal selection of an
actuator-based control strategy is presented. The proposed approach is a two-stage
method: first, a two-level factorial experiment design with n factors (2n) was applied
to compare different control schemes. Schemes comparison was carried out in terms
of energy consumption and closed-loop performance. For the best relative scheme, a
Central Composite Face-centered (CCF) design was completed obtaining the controller
parameters that optimize the performance in terms of the Integral Absolute Error (IAE)
while operating in a region of low energy consumption. The proposed approach was
experimentally tested using real data obtained from a laboratory prototype plant. Some
experimental tests illustrating the suitability of our method are shown at the end of this
article.

RESUMEN: En este estudio se presenta un nuevo enfoque experimental para la selección
óptima de una estrategia de control basada en el actuador. El enfoque propuesto
es un método de dos etapas: primero se aplica un diseño de experimento factorial
de dos niveles con n factores (2n) para comparar diferentes esquemas de control.
La comparación de esquemas se lleva a cabo en términos de consumo de energía y
rendimiento de circuito cerrado. Para el mejor esquema relativo, se completa un Diseño
Central Compuesto Centrado en las Caras (CCF, por sus siglas en inglés) obteniendo
parámetros de controlador que optimizan el rendimiento, en términos del Error absoluto
integral (IAE, por sus siglas en inglés), mientras operan en una región de bajo consumo
de energía. El enfoque propuesto se probó experimentalmente utilizando datos reales
obtenidos de una planta prototipo de laboratorio. Algunas pruebas experimentales que
ilustran la idoneidad de nuestro método se muestran al final de este artículo.

1. Introduction

Controllers are a vital part of industrial processes,
and plants around the world use predominantly
proportional-integral-derivative (PID) controllers to
keep important process variables at desired setpoints. It
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is estimated that over 90% of control loops employ PID
control, quite often with the derivative gain set to zero,
i.e., PI control [1]. Although academic research in control
theory has developed tools for tuning controllers and
measuring performance, only about 32% of control loops
have acceptable performance, and 36% of the processes
are operating in open-loop because of problems with the
controller [2].

Tuning equations are a tool to adjust controller
parameters, which, due to their versatility and
generalization capabilities, provide a way to optimize
the response of processes finding specific parameters
according to performance requirements. For example,
to preserve the integrity of actuators, some parameters
can be found to minimize the variation of the controller
output [3]. Tuning equations for a PID controller based on
Internal Model Control (IMC), where the IAE is minimized
for a second-order inverse response system with a time
delay have been developed [4]. Also, tuning equations for
PID controllers to be implemented in photobioreactors,
by optimizing the IAE and variance for both controller
output and process variables have been investigated [5].
For instance, tuning equations to optimize the process
performance using PID controllers for heat exchangers
and thermal processes have been used [6].

New tuning approaches for PID controllers include
the use of genetic algorithms to obtain controller
parameters [7], and metaheuristic algorithms like swarm
optimization, which use as a performance index the
IAE [8]. In other swarm intelligence algorithms, the
estimated mathematical models of systems or processes
can be used to modify the parameters of PID controllers.
These adaptive control strategies can be implemented in
commercial programmable logic controllers (PLC) [9, 10].

No doubt, control loops are the most critical components
in automation systems. Energy and raw material
consumption, operation safety, product quality, and thus,
the financial profitability are directly or indirectly linked
to the performance of process control systems [11].
Hence, a vital interest for any company must be to reach,
restore, and maintain top performance of control loops.
However, most of the process control systems currently
used are complex, usually comprising many hierarchical
levels; thus, it is almost impossible for plant personnel
to maintain them on top performance. Additionally,
determining a feasible operating region within acceptable
variable ranges and optimal performance is a difficult
task in process engineering; therefore, several works
investigate the correlation between performance criteria
and controller parameters or structure. For instance,
using the knowledge from the feasible operating region
to design the controller structure for a flash distillation

process, where the improved design outperforms the
classical configuration [12].

The use of the design of experiments (DoE) methods,
such as the response surface methodology, as a design
tool, is widely accepted to be a powerful approach to
simultaneously optimize complex processes in terms
of various response variables, for instance, system
performance and energy consumption [13, 14]. The
response surface methodology can also be used together
with simulation studies to investigate the effects that
factors have upon response variables [15].

In this work, a novel experimental-based approach to
reach an optimal performance is proposed. The core of
our method is DoE. The flow control process from the
TecQuipment’s Process Trainer is used in a two-stage
method: first, a two-level factorial experiment design with
n factors (2n) was applied to compare different control
schemes. The scheme comparison is carried out in terms
of energy consumption and closed-loop performance.
For the best relative scheme, a central composite
face-centered (CCF) design was completed obtaining
controller parameters which optimize performance, in
terms of the integral absolute error (IAE) index, while
operating in a region of lowest energy consumption.
Notice that it is not necessary to develop a complex
first principle model of the process to be controlled,
enabling the use of our approach in industrial process
plants. This work’s main motivation was to propose an
experimental approach to find a controller parameter
within an acceptable search space, which yielded an
optimal system response regarding variables related to
the system outputs. In the case presented, using the
response surface methodology and defining the limits of
the search space with a traditional tuning method, optimal
controller parameters were found with respect to the
response variables IAE and energy consumption.

2. Methodology

In this section, a case study is presented, where a control
scheme is selected, and the optimal tuning of a flow control
loop is performed, for which experimental data collected
from plant operating conditions.

2.1 System description

The prototype plant CE117 Process Trainer from
TecQuipment (see Figure 1) was utilized to validate
the proposed approach.

The CE117 Process Trainer is a fully integrated
laboratory-scale process control plant equipped with
valves, pumps, power supplies, and ancillaries to allow the
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Figure 1 TecQuipment’s process trainer

implementation of flow, level, temperature, and pressure
control strategies. More precisely, in the flow control loop,
the prototype plant consists of a reservoir tank from which
water is lifted by a hydraulic pump (P1) into a process
tank; in this line, a servo-controlled proportional valve (V1)
and a flow transmitter (FT) are situated. Additionally, after
the pump, there is a process loop bypass valve (V2), which
will be used within the framework of this study to simulate
disturbances due to leaks. The piping and instrumentation
diagram (P&ID) describing the process under study is
presented in Figure 2. The drivers of the components of
the plant use analog signals with a range from 0.0 to 10.0
Volts. Further technical data are presented in Table 1.

2.2 Control Schemes

Two actuator-based control strategies were considered
for the flow control loop of the process: in the first one,
the actuator of the final control element is the pump (P1).
In contrast, in the second one, both the pump (P1) and
the proportional valve (V1) are considered as actuators.
In both cases a proportional-integral (PI) controller was
considered.

Control schema 1: in this scheme, the hydraulic pump
is driven by the PI controller while the proportional valve
is held open with its driver at a constant value of 8.0 V;
in Figure 3, a piping and instrumentation diagram of this
scheme is presented.
Control schema 2: in this case, both the pump and
the proportional valve drivers are manipulated by PI
controllers, with flow being the controlled variable in both
cases. The piping and instrumentation diagram of this
strategy is shown in Figure 4.

 

 

Figure 2 Piping and instrumentation diagram of the process

 

 

Figure 3 P&ID of the pump-based control strategy

2.3 Benchmark process

To evaluate the control strategies regarding both energy
consumption and closed-loop performance, a setpoint
signal consisting of a sequence of three steps with
amplitudes of 5.0 L/min, 2.0 L/min, and 3.0 L/min,
respectively, with a total duration of 150 seconds was
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Figure 4 P&ID of the pump and valve-based control strategy

established as the benchmark. Figure 5 shows the
setpoint signal. To assess energy consumption, a Belkin
WeMo Insight Switch is used to obtain two instantaneous
power measurements during each cycle.

 

 

Figure 5 Setpoint sequence for flow control loops

The power measurements are averaged and multiplied
by the process duration to calculate energy consumption
(Ec) in [W/h]; this is one of the process variables analyzed
in the DoE. Considering that the energy consumption of
the pump is significantly higher than that of the valve,
the controller for the valve is tuned and kept invariant
throughout this work. In contrast, the controller for the
pump is investigated using the proposed methodology.

2.4 Tuning for the Valve PI-Controller

A process step test was carried out as follows: 1) with the
system in open loop, a step change in the manipulated
variable was applied. It is important to remark that
the magnitude of the change should be large enough to
generate a measurable change in the transmitter signal,
in this case, a change in the valve driver is made from
2.0 V to 9.0 V, while keeping the pump driver at 8.0 V. 2).
The response of the transmitter output signal is recorded,
making sure that the resulting plot of the controlled
variable versus time covers the entire test period from
the introduction of the step test until the system reaches
a new steady state. Using the output response of the
plant, i.e., liquid flow as a time series, the dynamic
behavior of the system can be identified. In this case,
the maximum rate of change can be observed as soon as
the input step was applied, with a small time-delay. This
response can bemodeled as a first-order system plus dead
time; for this reason, a linear model was identified with
a First-Order-Plus-Dead-Time (FOPDT) structure using
the MATLAB System Identification Toolbox. The model is
described by the transfer function in (1), and themodel and
real plant response are plotted in Figure 6.

Gv (s) = e−0.1 0.3870

2.3s+ 1
(1)

 

 

Figure 6 FOPDT model and actual responses for the
proportional valve

The model was then used to find the parameters for
the PI Controller of the valve. With the help of the
interactive PID-Tuner interface in Matlab, the gains in
the controller are tuned to obtain closed-loop stability,
adequate performance, and robustness [16]. In a parallel
configuration, the gains for the PID are set to kc = 3.0 and
ki = 1.9, which results in a not too aggressive control of the
flow via the valve. For a unit step, the closed-loop model
had a rise time under 3 seconds, a settling time under 10
seconds with an overshoot of less than 3%.

A FOPDT model is obtained for the pump (2), with a
procedure like the one used to obtain the valve model,
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varying the pump driver from 2.0 V to 7.0 V.

Gv (s) = e−0.2s 0.76

0.56s+ 1
(2)

For the pump, tuning is accomplished using the rules
of Internal Model Control [17]. Before presenting this
procedure, the DoE methodology must be introduced,
considering that the value of the tuning parameter
is selected according to the experimental conditions
described in the DoE methodology.

2.5 DoE methodology

A full factorial (24, n = 1) experimentwith two levels for each
factor is conducted initially to screen for significant factors.
The experimental conditions are shown in Table 1. Based
on the results, a Central Composite Face-centered (CCF)
is carried out and examined in Section 3, to determine
optimum areas of operation from which a new operating
point is proposed and tested in the real plant.

Table 1 Conversion details for components of the system

Component Conversion details

Flow Transmitter
1.0 L/min per Volt
0.0 V = No Flow

Proportional Valve
0.0 V - Closed
10.0 V - Open

Pump
0.0 V - No Flow
10.0 V - Maximum Flow

The coded (1) and (-1) PI-controller gains kc and ki,
in a parallel configuration, are obtained by varying the
parameter λ from the tuning rules by internal model
control [17–19]. Both values for the parameter λ (0.1 and
2.0) yield acceptable process closed-loop performance.
The equations for a PI-Controller are given by Equation 4,
and ki = kcτ in the PI parallel configuration. The values of
kp = 0.760, τ = 1.560 and t0 = 0.200 refer to the FOPDTmodel
in (3) and (4).

kc =
τ

kp (λ+ t0)
(3)

Ti = τ (4)

Thus, the natural values for Factors B and C, are found and
shown in Table 2 for the complete set of Factors.

3. Experiments

The factorial experimental design and the results for
both process variables are presented in Table 3, in
the randomized order of the runs. Data analysis was
performed using the software Statgraphics Centurion XVII.

3.1 Screening energy consumption

Before discussing the results of the analysis of variance
(ANOVA), the assumptions of normality, homogeneity of
variance, and independence of the residuals were tested
for both process variables (Appendix).

Consequently, after examining the normal probability
plot of the ANOVA, interactions with a low level of
significance were removed from the analysis of variance
sequentially. Factor B, its interactions, and the interaction
between Factor C and D are excluded from the ANOVA,
thus remaining with the factors shown in the ANOVA
results in Table 4.

From the ANOVA results, the factors with higher effects
are A and D, which can also be seen in Figure 7.

 

 

Figure 7 Main effects plot for Ec

It could be inferred apriori that Factor D plays a significant
role in energy consumption. When the bypass valve is
opened, to maintain the same flow setpoint, a higher
energy input is necessary. For Factor A, the performed
analysis suggests that the pump and valve control scheme
has lower energy consumption. It furthermore shows that
the integral gain on the controller affects both controller
schemes differently in terms of energy consumption.

3.2 Screening closed-loop performance

A similar procedure is conducted with the results of the
ANOVA using the normal probability plot for the IAE, and
sequentially excluding interactions and factors with low
levels of significance. It is concluded that based on the
conducted experiment, only Factor B has a significant
effect on the closed-loop performance in terms of the IAE,
as can be seen in the Pareto in Figure 8.

3.3 Central Composite Face-centered (CCF)
DoE

According to Montgomery [14], the Response surface
methodology (RSM) is a set of powerful statistical
techniques that can be used to model problems where
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Table 2 Experimental conditions

Controlled factors

Experimental factor
Factor level

low (-1) high (+1)
A – Categorical factor representing which
control strategy is employed

Pump Control
Pump and Valve
Control

B – Proportional gain, kc 5.7, λ = 0.1 0.612, λ = 2.0
C – Integral gain, ki 3.66, λ = 0.1 0.392, λ = 0.2
D – Disturbance: Bypass-Valve Closed Open

Table 3 Screening experiment

Run
Coded Factors Process Variables

A B C D Ec IAE
1 1 -1 -1 -1 2.42 18.41
2 -1 -1 -1 1 2.63 21.44
3 -1 1 -1 1 2.58 18.74
4 1 1 -1 -1 2.39 19.16
5 1 -1 1 1 2.72 17.45
6 1 -1 1 -1 2.51 18.72
7 -1 1 1 1 2.56 21.04
8 1 1 1 1 2.78 21.76
9 -1 1 -1 -1 2.55 26.48
10 -1 -1 -1 -1 2.48 15.74
11 -1 -1 1 1 2.57 19.43
12 1 1 -1 1 2.59 32.63
13 1 -1 -1 1 2.56 15.87
14 -1 -1 1 -1 2.43 21.75
15 1 1 1 -1 2.59 25.24
16 -1 1 1 -1 2.49 31.60

Table 4 Analysis of variance for Ec

Source of Variation Sum of Squares DoF Mean Square F0 P-Value
A 0.0172 1 0.017 14.36 0.0035
C 0.0045 1 0.004 3.76 0.0813
D 0.0190 1 0.019 15.83 0.0026
AC 0.0430 1 0.043 35.84 0.0001
AD 0.0076 1 0.007 6.37 0.0301
Error 0.0120 10 0.001
Total 0.1597 15

 

 

Figure 8 Pareto chart of the effects for the IAE

one or many independent variables are influenced by
several other variables. The analysis of problems using
this method can optimize these response variables, where
the analytical nature between the response variables
and the independent variables is unknown. Normally,
a low order polynomial in the region of interest defined
by the independent variables is used to investigate the
relationship. The CCF is a class of DoE and is the most
popular design structure to identify second-order models,
where the curvature of the independent variable is of
interest.

Based on the conclusion drawn from the previous
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Table 5 Central composite face-centered

Run
Coded Factors Process Variables
A B C D Ec IAE

1 1 -1 -1 -1 2.42 18.41
2 1 1 -1 -1 2.39 19.16
3 1 -1 1 -1 2.51 18.72
4 1 1 1 -1 2.59 25.24
5 1 0 1 -1 2.63 25.126
6 1 1 0 -1 2.58 20.015
7 1 0 -1 -1 2.44 22.013
8 1 -1 0 -1 2.50 14.827
9 1 0 0 -1 2.51 17.524
10 1 0 0 -1 2.49 17.918

Table 6 CCF-analysis of variance for Ec

SoV Sum of Squares DoF Mean Square F0 P-Value
C 0.0384 1 0.038 20.43 0.002
Error 0.0150 8 0.001
Total 0.0534 9
Adjusted R-Squared = 68.33 %

screening experiment, the relation between factors B
and C for the pump and valve control scheme is further
explored, i.e., Factor A equals 1 and fixing the bypass
valve to closed; thus, Factor D equals -1. A CCF design is
completed with axial points located at the centers of the
faces of the squared region, defined by the experimental
conditions used in the screening experiment, with
two central points. The new experimental conditions
associated with Factors C and D equal to zero are found
by interpolating the parameter λ from the tuning rules
by internal model control (IMC). For the region between
the coded values -1 and 1 and natural values 0.1 and 2.0,
respectively, the center yields for the coded value 0, the
natural value λ = 0.95. Following the IMC tuning rules with
the new parameter λ, the new levels for the factors are
found to be kc = 1.210 and ki = 0.774. The CCF design with
the values for the output variables is presented in Table 5.

Using the ANOVA results to analyze the response variable
energy consumption, first interactions among factors are
sequentially eliminated, and the ultimately factor B is
removed from the analysis of variance. It is clear that the
information extracted from the ANOVA, presented in Table
6, indicates that the Integral Constant of the PI-Controller
significantly affects the consumption of energy. That can
be explained with the impact of changing the slope with
which the response moves towards the reference, when
this tracking is slow for small values of the parameter
ki, in this case towards the point Factor C equal to 1,
consumption increases as seen in Figure 9.

The results of the ANOVA for the IAE response, after

 

 

Figure 9 CCF-Plot of main effects for Ec

 

 

Figure 10 CCF-Response Surface for the estimated IAE
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Table 7 CCF-analysis of variance for IAE

SoV Sum of Squares DoF Mean Square F0 P-Value
B 25.86 1 25.86 6.79 0.0403
C 15.05 1 15.05 3.95 0.0939
CC 36.00 1 36.00 9.46 0.0218
Error 22.84 6 3.807
Total 99.77 9
Adjusted R-Squared = 77.10 %

removing the interactions with a low level of significance,
are shown in Table 7. The response surface plot resulting
from the regression model of the analysis is shown in
Figure 10.

3.4 Analysis of the results

The operating conditions that minimize the estimated IAE
are shown in Table 8, with their coded values, and in Table
9, their mapped natural values are listed.

Table 8 IAE response optimization for the estimated IAE

Factor Optimal Operation Point
B -1
C -0.205

Optimal Value ÎAE = 15.33.

Table 9 Natural values of the optimal operating condition

Factor Coded Value Natural Value
B - Kp -1 5.7
C - Ki -0.2 2.36

The found optimal operation conditions are then tested
in the real process, obtaining the results for Energy
consumption and IAE shown in Table 10.

The closed-loop response of the real system using
the optimal operating conditions for the controller gains
is shown in Figure 11, and the authors qualify it as an
excellent performance. The control effort for the pump
and the proportional valve using the controller gains for
the optimal operating condition are shown in Figure 12.
The closed-loop performance of the experimental
condition corresponding to the CCF run number 8 is better
in terms of the IAE; However, its energy consumption

Table 10 Actual performance of the optimal point

Run
Coded Factors Process Variables

A B C D Ec IAE
23 1 -1 -0.2 -1 2.38 15.92

 

 

Figure 11 The closed-loop response of the system at the
optimal operating point

is higher since consumption is highly correlated to the
control effort of the pump. In Figure 13, the control effort
for both experimental conditions, CCF-Run 8, and the
optimal operating point are presented. Notice that the
pump control effort for the experimental condition deemed
optimal by the regression model and the response surface
methodology is considerably lower than the control effort
for the CCF-Run 8.

 

 

Figure 12 Control effort for the optimal operating point

4. Conclusions

The response surface methodology (RSM) is a mighty
collection of techniques that, if used appropriately,
become tools to optimize complex processes where
several response variables are affected by numerous
identified factors. The statistical information abstracted
from the data collection representing a stochastic and even
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Figure 13 Pump control effort for CCF-Run8 (1, -1, 0, -1) and
Optimal point

dynamic process allows the methodology’s user to explore
the true response function. Regression models manage
to extract the natural error of the system and perform
system optimization without analytically determining the
complicated relationship between response variables and
factors of influence.

An objective parameter to compare the energy
consumption of two different control architectures was
proposed. Following a DoE approach for the assessment,
two-level factorial experiments were used for screening
Factors, and a comparison of controller schemes was
completed in a real process.

Within this work, the RSM was used successfully to
minimize two variables of interest, Energy consumption,
and closed-loop performance, of a specific process,
by exploring the gains in a controller as Factors. The
found optimal operating condition is tested in the real
system. The regression model predicted at the optimal
operating conditions an ÎAE = 15.33, and the real system
responded with an IAE = 15.92. The difference between
them is only 3.8%, with energy consumption considerably
lower than most of the operating conditions explored in
the data collection process. This is a clear indication of the
benefits of the proposed approach.

The regression model from the proposed methodology
found controller parameters, which were used as a
new experimental condition. Subsequently, using these
parameters for the controller, the response showed
a lower control effort than all the other experimental
conditions. This was because the control effort for the
pump in this new experimental condition required a
lower voltage causing lower energy expenditure. The
proportional gain was set close to one of the boundaries
causing a fast response to the step changes followed by a
smooth error elimination phase whose rate depends on
the integral time.
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