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ABSTRACT: The rapid growth of the Internet of Things (IoT) has extended its concept to
underwater environments. However, the implementation of these systems via wired
communication still represents a technological challenge, mainly due to the high cost of
their deployment. Therefore, wireless communications are seen as an interesting solution
for the deployment of underwater communications systems. Preliminary research indicated
that underwater acoustic wireless communication could be used for some Internet of
Underwater Things applications, mainly due to the wide range of communications involved.
However, a significant disadvantage of acoustic systems is their low transmission data rate;
thus, studies and analyses to improve this disadvantage must be carried out. Considering
that new waveforms have been proposed to improve the performance of terrestrial wireless
communications systems, this work presents the development of general analytical
expressions that allow the performance evaluation of the Generalized Frequency Division
Multiplexing (GFDM) waveform in underwater environments. These analytical expressions
were obtained considering a continuous-time model for the GFDM signal and modeling
the underwater acoustic communication channel as a time-varying multipath channel.
Numerical results were obtained for many different systems and channel parameters,
allowing a quantitative evaluation of the system performance degradation.

RESUMEN: El rápido crecimiento de Internet de las cosas (IoT) ha extendido su concepto a
entornos subacuáticos. Sin embargo, la implementación de estos sistemas a través de
comunicación cableada todavía representa un desafío tecnológico, principalmente debido
al alto costo de su implementación. Por lo tanto, las comunicaciones inalámbricas se
consideran una solución interesante para el despliegue de sistemas de comunicaciones
subacuáticos. Investigaciones preliminares indican que la comunicación inalámbrica
acústica subacuática se puede utilizar para algunas aplicaciones de Internet de las cosas
subacuáticas, principalmente debido al amplio rango de comunicación que tiene. Sin
embargo, una desventaja significativa de los sistemas acústicos es su baja velocidad de
transmisión de datos, por lo tanto, se deben realizar estudios y análisis para mejorar esta
desventaja. Teniendo en cuenta que se han propuesto nuevas formas de onda para mejorar
el rendimiento de los sistemas de comunicaciones inalámbricas terrestres, este artículo
presenta el desarrollo expresiones analíticas generales que permiten la evaluación del
rendimiento de la forma de onda de Multiplexación por división de frecuencia generalizada
(GFDM) en entornos subacuáticos. Estas expresiones analíticas se obtuvieron considerando
un modelo de tiempo continuo para la señal GFDM y modelando el canal de comunicación
acústica subacuática como un canal multitrayecto variable en el tiempo. Se obtuvieron
resultados numéricos para muchos parámetros diferentes del sistema y del canal, lo que
permitió una evaluación cuantitativa de la degradación del rendimiento del sistema.
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1. Introduction

Recently, both academia and industry have been interested
in implementing the Internet of Things (IoT) technology
(commonly used in terrestrial environments) but in
underwater environments [1, 2]. Some applications
proposed using IoT in underwater environments
include Submarine pollution monitoring [3], fish
farm monitoring [4], climate change monitoring [5],
and ocean data collection [6]. Mainly due to costs,
wireless communications play an important role in the
deployment of these applications. However, underwater
wireless communications present new challenges
when compared to terrestrial wireless systems. In
the literature, it is possible to find some solutions
to implement underwater wireless communications:
Radio-Frequency communications can also be used in
underwater environments, although it is possible to
achieve high transmission data rates, the communication
range is extremely short [7, 8]. Another solution is the
use of optical communications [9, 10], which has a high
transmission data rate but necessarily requires an aligned
line of sight, so its use becomes unfeasible in mobile
wireless systems. Finally, another solution proposed and
widely studied is the use of acoustic modems [11, 12],
which, although it has a relatively low transmission data
rate, has a great communication range and allows total
mobility of the transmitter and receiver.

Studies that can be found in the literature about acoustic
modems include: Location algorithms [13, 14], channel
estimation [15, 16], performance analysis [17, 18], and
implementation techniques [19, 20]. At this point, it is
important to note that most of these and other studies
[21, 22] consider the use of the Orthogonal Frequency
Division Multiplexing (OFDM) as the main waveform
for transmitting the information. In recent years, new
waveforms with better features than OFDM have been
proposed and analyzed [23–25]. The new waveform
known as Generalized Frequency Division Multiplexing
(GFDM) has been considered by many researchers as
the most promising, mainly due to the flexibility of this
waveform. GFDM is a block-based non-orthogonal
multicarrier waveform whose block is composed of M
sub-symbols and N sub-carriers which are cyclically
filtered by a shaping pulse that is shifted into frequency
and time domains [26]. In the literature, it is possible
to find several studies about GFDM that include, among
others: channel estimation [27], equalization [28], receiver
design [29–31], and performance evaluation [32–34]. Even
with the considerable advantages of this new waveform,
its application in underwater systems has been little
explored. A first attempt to analyze the use of GFDM
in underwater acoustic communications systems was
presented in [35], where mathematical expressions of the

power spectral density were derived. This work presents
the derivation of general analytical expressions to evaluate
the performance of the GFDM waveform operating over
underwater acoustic communication channels in terms
of the out-of-band emissions and the symbol error
probability.

The remaining sections of this work are organized as
follows. In Section 2, the system model is introduced:
mathematical expressions for the GFDM transmitter,
the underwater acoustic communication channel, and
the GFDM receiver are presented. In Section 3, the
development of analytical expressions for the out-of-band
emissions and symbol error probability are presented.
Using these analytical expressions, numerical results for a
particular underwater acoustic communication system are
obtained and presented in Section 4. Finally, conclusions
are drawn in Section 5.

2. System model

2.1 GFDM transmiter

The block diagram of the GFDM transmitter
continuous-timemodel is presented in Figure 1. According
to this diagram, the GFDM symbol x̃k(t) can be expressed
as presented in Equation 1 [32].

x̃k(t) =
N−1∑
n=0

M−1∑
m=0

Xk,n,m gm(t)ej
2πnt
Ts (1)

with N denoting the number of sub-carriers, M the
number of sub-symbols, and Ts the symbol duration. Still
in (1),Xk,n,m represents the transmitted symbol and gm(t)
the transmission filter given by the product of a windowing
pulse w(t) of duration T = MTs and a shifted version of a
periodic shaping pulse g(t), that is given by Equation 2.

gm(t) = w(t)g(t−mTs). (2)

As presented in [32], Equation 3 shows the power spectral
density (PSD) of the GFDM symbol defined in Equation 3.

Sx̃k
(f) =

Ex

T

N−1∑
n=0

M−1∑
m=0

∣∣∣∣Gm

(
f − n

Ts

)∣∣∣∣2 (3)

where Ex represents the mean energy of the complex
symbols Xk,n,m, and Gm(f) denotes the Fourier
transform of gm(t) (see Equation 4)

Gm(f) =
1

T

∞∑
i=−∞

GT (i/T )W (f − i/T )e−j 2πmi
M (4)

with W (f) denoting the Fourier transform of the
windowing pulse w(t) and GT (f) denoting the Fourier
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Figure 1 Continuous-time block diagram of GFDM transmitter

transform of one period of the shaping pulse g(t).

Figure 2 presents the PSD of GFDM symbols for different
numbers of sub-symbols. These PSDs were obtained
assuming a raised cosine shaping pulse, a rectangular
windowing pulse, and using (3) and (4). This figure shows
that the spectral behavior of the transmitted GFDM symbol
is improved when high values ofM are chosen. Note that
whenM = 1, the waveform is the classic OFDM.
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Figure 2 PSD of transmitted GFDM symbols with different
numbers of sub-symbols

2.2 Underwater communication channel

Equation 5, presents the baseband impulse response of
the underwater acoustic communication channel that was
considered as being a time-varying multipath channel [35–

38].

h̃(t, v) =
P−1∑
p=0

apµp(t)δ(v − vp) (5)

with ap and vp representing the path amplitude and
the time-varying path delay, respectively. Still in (5),
P represents the number of channel paths, µp(t) is a
complex Gaussian random process with zero mean and
δ(·) denotes the impulse function.

Assuming that complex processes µp1
(t) and µp2

(t) are
jointly wide-sense stationary and uncorrelated for p1 ̸= p2,
Equation 6 presents the autocorrelation function of the
underwater acoustic communication channel.

Rh̃(τ, v1, v2) =

P−1∑
p=0

|ap|2Rµp(τ)δ(v1−vp)δ(v2−vp) (6)

where Rµp(τ) represents the autocorrelation function of
the complex process µp(t), that is, defined by Equation 7.

Rµp
(τ) = E[µp(t)µ

∗
p(t+ τ)]. (7)

2.3 GFMD receiver

In this work, the GFDM receiver is considered to be a
matched filter receiver whose block diagram is presented
in Figure 3. Thus, the mathematical expression of the
received symbol is presented in Equation 8:

X̂k,n,m =

∫ ∞

−∞
r̃k(t)g

∗
m(t)e

−j2πnt
Ts dt. (8)

Where r̃k(t) is given by Equation (9):
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Figure 3 Continuous-time block diagram of GFDM receiver.

r̃k(t) =

∫ ∞

−∞
h̃(t, τ)x̃k(t− τ)dτ + ñ(t) (9)

with h̃(t, τ) representing the impulse response of the
underwater acoustic channel and ñ(t) an additive white
Gaussian noise (AWGN) with zero mean and varianceN0.

Using (1) in (9), amore compact version of (8) can bewritten
as Equation 10 (See details in Appendix A):

X̂k,n,m = Rn,mXk,n,m + Ik,n,m +Nk,n,m (10)

where the mathematical expressions of Rn,m, Ik,n,m
and Nk,n,m are presented in Equations 11, 12 and 13
respectively.

Rn,m =

∞∫
−∞

∞∫
−∞

h̃(t, τ)gm(t− τ)g∗m(t)e−j
2πn1τ

Ts dtdτ,

(11)

Ik,n,m =
N−1∑
n1=0
(n1 ̸=n,

M−1∑
m1=0
m1 ̸=m)

Xk,n1,m1
R(n,m)

n1,m1
, (12)

Nk,n,m =

∞∫
−∞

ñ(t)g∗m(t)e
−j2πnt

Ts dt. (13)

The mathematical expression of R
(n,m)
n1,m1 in (12), is

presented in Equation 14.

R(n,m)
n1,m1

=

∞∫
−∞

∞∫
−∞

h̃(t, τ)gm1
(t−τ)g∗m(t)ej

2π[t(n1−n)−n1τ]
Ts dtdτ.

(14)

3. System performance

The performance evaluation of GFDM in underwater
acoustic communication systems is carried out based

on its out-of-band emissions (OOBe) and symbol error
probability. Thus, general analytical expressions of these
performance measures are presented below.

3.1 Out-of-band emissions

The received GFDM signal can be expressed as Equation
15:

ỹk(t) =

∫ ∞

−∞
h̃(t, τ)x̃k(t− τ)dτ. (15)

Using (5) in (15) and after some mathematical
manipulations, ỹk(t) can be rewritten as presented
in Equation 16.

ỹk(t) =
P−1∑
p=0

apµp(t)x̃k(t− vp). (16)

The autocorrelation function of yk(t) defined by (17):

Rỹk
(t, τ) = E[ỹ∗k(t+ τ)ỹk(t)] (17)

can be expressed as (18):

Rỹk
(t, τ) =

P−1∑
p=0

|ap|2Rµp(τ)Rx̃k
(t− vp, τ) (18)

where Rx̃k
(t, τ) and Rµp

(τ) represents the
autocorrelation function of x̃k(t) and µp(t), respectively.
The mean in time of Rỹk

(t, τ) is presented in Equation 19
(See details in Appendix B):

R̄ỹk
(τ)= lim

T→∞

1

T

∫
T

Rỹk
(t, τ)dt=

P−1∑
p=0

|ap|2Rµp
(τ)R̄x̃k

(τ)

(19)
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and the PSD of the received GFDM signal is given by the
Fourier transform of R̄ỹk

(τ), that is, given by Equation 20.

Sỹk
(f) =

P−1∑
p=0

|ap|2Sµp(f) ∗ Sx̃k
(f) (20)

with Sµp(f) denoting the Fourier transform ofRµp(τ) and
Sx̃k

(f) denoting the PSD of the transmitted GFDM symbol
defined in (3). Still in (20), “∗” denotes the convolution
operator.

Finally, assuming that the useful bandwidth of the received
GFDM symbol is B, Equation 21 shows the OOBe defined
as the relationship between the energy outside and inside
that useful band.

OOBe =

∫
f /∈B

Sỹk
(f)df∫

f∈B
Sỹk

(f)df
. (21)

3.2 Symbol Error Probability

Considering Equation 10, the decision variable, Dk,n,m,
conditioned to a certain value ofRn,m = α, can be written
as Equation 22.

Dk,n,m|(Rn,m = α) =
X̂k,n,m

α
= Xk,n,m + Zk,n,m(α)

(22)
where (23):

Zk,n,m(α) =
Ik,n,m +Nk,n,m

α
. (23)

Then, the symbol error probability can be obtained by using
Equation 24:

Pn,m(e) =

∫ ∞

−∞
Pn,m(e|Rn,m = α)pRn,m

(α)dα (24)

where pRn,m
(α) represents the probability density

function of Rn,m and the conditional error probability of
the right side of (24) depends on the digital modulation
used. Expressions for this conditional error probability
can be found in the literature; for instance, for PSK and
QAM digital modulations, these expressions are shown in
Equations 25 and 26, respectively [39].

Pn,m(e|Rn,m = α) ≈ 2Q

(√
2γn,m(α) sin

( π

M

))
(25)

Pn,m(e|Rn,m = α) ≈ 4Q

(√
3γn,m(α)

M− 1

)
(26)

In (25) and (26), M represents the modulation order and
γn,m(α) denotes the symbol energy to noise ratio defined
as Equation (27).

γn,m(α) =
Ex

σ2
Zn,m

(α)
(27)

with σ2
Zn,m

(α) representing the variance of Zk,n,m(α).
Finally the overall error probability is obtained by using
Equation 28:

P (e) =
1

N M

N−1∑
n=0

M−1∑
m=0

Pn,m(e). (28)

At this point, it is good to note that (25) and (26) are
only valid when Zk,n,m(α) is a Gaussian random variable.
Results demonstrating this assumption are presented
below.

Statistical characterization of Zk,n,m(α)

From (12), (13) and taking into consideration the statistical
characteristics of the underwater communication channel,
h(t, τ), and the AWGN, ñ(t), can be proved that both Ik,n,m
and Nk,n,m not only are Gaussian random variables but
also independent of each other. Thus, it is possible to
conclude that Zk,n,m(α) is also a Gaussian random
variable.

The mean and the variance of Zk,n,m(α) are presented in
Equations 29 and 30, respectively.

E[Zk,n,m(α)] =
E[Ik,n,m] + E[Nk,n,m]

α
= 0 (29)

σ2
Zn,m

(α) =
σ2
In,m

+ σ2
Nn,m

α2
(30)

In (29), σ2
In,m

and σ2
Nn,m

represents the variance of Ik,n,m
and Nk,n,m, respectively. From (12) is possible to shown
that σ2

In,m
is given by Equation 31.

σ2
In,m

= Ex

N−1∑
n1=0
(n1 ̸=n,

M−1∑
m1=0
m1 ̸=m)

C(n,m)
n1,m1

(31)

where (32):

C(n,m)
n1,m1

=
P−1∑
p=0

|ap|2Sµp
(f) ∗Bm

m1
(f)
∣∣∣
f=

n1−n
Ts

(32)

with (33) (refer to Appendix D):

Bm
m1

(f) =
∣∣∣G∗

m(f) ∗Gm1
(−f)

∣∣∣2. (33)

Analogously, from (13), σ2
Nn,m

is given by Equation 34 (refer
to Appendix C).

σ2
Nn,m

= N0

∫ ∞

−∞
|Gm(f)|2df. (34)
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Statistical characterization ofRn,m

From the definition of Rn,m presented in (11), it can be
shown that Rn,m is a complex Gaussian random variable;
thus, its probability density function can be written as
Equation 35.

pRn,m
(α) =

1

2πσ2
Rn,m

e
−

|α−µRn,m
|2

2σ2
Rn,m (35)

where µRn,m
and σ2

Rn,m
are given by Equations 36 and 37

respectively.
µRn,m = E[Rn,m] = 0 (36)

σ2
Rn,m

=E[|Rn,m|2] (37)

=Ex

P−1∑
p=0

|ap|2
∫ ∞

−∞
Sµp

(f)
∣∣∣G∗

m(−f) ∗Gm(f)
∣∣∣2df.

4. Numerical results

In this section, numerical results for the OOBe and
the symbol error probability of GFDM operating over a
particular underwater acoustic communication system are
presented. The systemunder consideration uses the BPSK
modulation with Ts = 1µs. In addition, the windowing
pulsewT (t) is assumed to be rectangular and the periodic
shaping pulse g(t) is a raised cosine with roll-off factor β,
meaning that gT (t) is defined as Equation 38.

gT (t) = sinc(πt/Ts)
cos(πβt/Ts)

1− (2βt/Ts)2
; t ∈

[
−T

2
,
T

2

]
(38)

For the underwater acoustic communication channel the
time-varying multipath model presented in (5) is used with
P = 4 and the path delays and amplitudes are assumed to
be a0 = 0.8677, a1 = 0.4339, a2 = 0.2169, a3 = 0.1085,
v0 = 0µs, v1 = 0.2µs, v2 = 0.4µs and v3 = 0.6µs. Still
in (5), the random process µp(t) was considered to have
Jake’s PSD [40], thereby, Sµp

(f) is given by Equation 39.

Sµp(f) =
1

πfd

√
1−

(
f
fd

)2 ; |f | ≤ fd (39)

with fd denoting the maximum Doppler shift.

4.1 Spectral evaluation

The PSD of the GFDM received signal ỹk(t) was obtained
only using (3), (20) and (39). Thus, the OOBe of GFDM
operating over the underwater acoustic communication
channel was computed using (21). The effects of the
number of sub-carriers and number of sub-symbols
over the PSD of the received GFDM signal are shown

in Figures 4 and 5, respectively. Here, the considered
maximum Doppler shift was 15 Hz. Both figures confirm
that the received GFDM signal has lower OOBe when
the N or M values are high. Tables 1 and 2 show the
OOBe computed values of the transmitted and received
GFDM signals for different sub-carrier and sub-symbol
values. At this point, it is good to highlight that the PSD
of GFDM withM = 1 in Figure 5 also represents the PSD
of classic OFDM and, as can be seen in this figure, OFDM
has the lowest performance in terms of spectral efficiency.

The effect of the maximum Doppler shift typical of the
underwater acoustic communication channel is presented
in Figure 6. This figure shows thePSDwith 64 sub-carriers,
27 sub-symbols, and for different values of fd. In order to
make comparisons, this figure also shows the transmitted
GFDM signal. Computed values of these OOBe are
presented in Table 3. As expected, these results confirm
that the lower the maximum Doppler shift, the lower the
out-of-band emissions of the system.
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Figure 4 PSD of received GFDM signals with different numbers
of sub-carriers

Table 1 OOBe values from Figure 4

N 16 32 64 128
Tx GFDM 0.0015 0.0008 0.0004 0.0002
Rx GFDM 0.2345 0.1050 0.0499 0.0243

Table 2 OOBe values from Figure 5

M 1 7 13 27
Tx GFDM 0.0070 0.0015 0.0010 0.0004
Rx GFDM 0.0538 0.0503 0.0500 0.0499
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Figure 5 PSD of received GFDM signals with different numbers
of sub-symbols
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Figure 6 PSD of received GFDM signals with different values of
maximum Doppler shift

4.2 Symbol error probability

The numerical results of the symbol error probability were
obtained using only (24), (25), (27) and (28). The effects
of the GFDM parameters (N , M , α) and the channel
parameter fd over the symbol error probability of receiver
GFDM are depicted in Figures 7 - 10, respectively. In order
tomake comparisons, all these figures also show the error
probability of the receiver GFDM corrupted only by AWGN.
These figures reveal that the presence of a time-varying
channel (underwater acoustic communication channel)
seriously degrades the symbol error probability of the
system.

Figure 7 shows the symbol error probability for an
underwater system with different values of N . The
other parameters of the system, this is, the number of
sub-symbol, the roll-off factor and the maximum Doppler
shift, were set to be 7, 0.5 and 10 Hz, respectively. As
can be seen in this figure, the symbol error probability is

Table 3 OOBe values from Figure 6

fd 0 5 15 25
Tx GFDM 0.0004 0.0004 0.0004 0.0004
Rx GFDM 0.0004 0.0499 0.1704 0.3229

weakly dependent on the number of sub-carriers for both,
systems operating over an underwater acoustic channel
and systems only corrupted by AWGN.
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Figure 7 Symbol error probability of an underwater system
using GFDM with different values ofN

The symbol error probability for an underwater system
with different values of M is presented in Figure 8. Here,
the number of sub-carriers, the roll-off factor and the
maximum Doppler shift were set to be 64, 0.5 and 10
Hz, respectively. This figure reveals that symbol error
probability is strongly dependent on the total number
of sub-symbols. As expected, while considering high
values of M , the symbol error probability is also high.
As mentioned before, the GFDM with M = 1 represents
the classical OFDM, which in terms of symbol error
probability, has the best performance. Figure 9 presents
the effects of the roll-off factor α on the symbol error
rate probability of an underwater system. This time the
number of sub-carriers, number of sub-symbols and
maximum Doppler shift were set to be 64, 7 and 10 Hz,
respectively. This figure confirms that symbol error
probability is strongly dependent on the excess bandwidth
of the periodic shaping pulse g(t). Considering low values
of excess bandwidth results in low error probability values.
Finally, the effects of the maximum Doppler shift on the
symbol error probability are presented in Figure 9. The
curves presented in this figure were obtained considering
64 sub-carriers, 7 sub-symbols and β = 0.5. From this
figure, it is clear that the mobility of the receiver seriously
degrades the error probability of the system.
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Figure 8 Symbol error probability of an underwater system
using GFDM with different values ofM
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Figure 9 Symbol error probability of an underwater system
using GFDM with different values of β
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Figure 10 Symbol error probability of an underwater system
using GFDM with different values of fd

5. Conclusions

The most important contribution of this work is the
derivation of analytical expressions of the symbol error

probability and out-of-band emissions from underwater
acoustic communications systems using the GFDM. The
methodology used to obtain these analytical expressions
was described in detail in Section 3. As shown in the
numerical results, these expressions can easily provide
curves for the power spectral density and the symbols
error probability with different system parameters. The
numerical results obtained show that the number of
sub-symbols, number of sub-carriers, and the roll-off
factor of the formatting pulse play an important role
in the performance of the system, both in terms of
spectral efficiency and error probability. These results
also reveal that, when a matched filter receiver is
used, distortions induced by underwater channels not
only degrades the spectral performance of the system
(e.g., increase out-of-band emissions) but also seriously
increase the symbol error probability; thus, further studies
on more complex receivers should be performed.
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Appendix A: Decomposition of
received symbol

Using (1) in (9), it is posible to express r̃k(t) as presented
in Equation (40):

r̃k(t)=

∞∫
−∞

h̃(t, τ)
∑

n1,m1

Xk,n1,m1gm1(t− τ)ej
2πn1(t−τ)

Ts dτ

+ ñ(t) (40)

where
∑

n1,m1
=
∑N−1

n1=0

∑M−1
m1=0. Considering (40) and

(8), the mathematical expression of the received symbol is
presented in Equation (41):

X̂k,n,m=

∞∫
−∞

∫
h̃ (t, τ)

∑
n1,m1

Xk,n1,m1
gm1

(t− τ)ej2π
n1(t−τ)

Ts dτ

× g∗m(t)e−j 2πnt
Ts dt

+

∞∫
−∞

ñ(t)g∗m(t)e−j 2πnt
Ts (41)

By rearranging the first term of (41), it is possible to obtain
Equation (42):

X̂k,n,m =
∑

n1,m1

Xk,n1,m1

∞∫
−∞

∫
h̃ (t, τ) gm1

(t− τ)

× g∗m(t)ej
2π[t(n1−n)−n1τ]

Ts dtdτ

+

∞∫
−∞

ñ(t)g∗m(t)e−j 2πnt
Ts dt (42)

Separating from the summations the term corresponding
to n1 = n andm1 = m it is posible to write (43)

X̂k,n,m =Xk,n,m

∞∫
−∞

∫
h̃ (t, τ) gm(t− τ)g∗m(t)e−j 2πnτ

Ts dtdτ

+
∑

n1,m1

(n1 ̸=n,m1 ̸=m)

Xk,n1,m1

∞∫
−∞

∫
h̃ (t, τ) gm1

(t− τ)

× g∗m(t)ej
2π[t(n1−n)−n1τ]

Ts dtdτ

+

∞∫
−∞

ñ(t)g∗m(t)e−j 2πnt
Ts (43)

Defining Rn,m, R
(n,m)
n1,m1 and Nk,n,m as presented in

Equations (44), (45) and (46), respectively.

Rn,m =

∞∫
−∞

∞∫
−∞

h(t, τ)gm(t− τ)g∗m(t)e−j
2πn1τ

Ts dtdτ

(44)

R(n,m)
n1,m1

=
∞∫

−∞

∞∫
−∞

h(t, τ)gm1
(t− τ)

g∗m(t)ej
2π[t(n1−n)−n1τ]

Ts dtdτ (45)

Nk,n,m =

∞∫
−∞

ñ(t)g∗m(t)e
−j2πnt

Ts dt (46)

the received symbol X̂k,n,m can be written as (47).

X̂k,n,m=Rn,mXk,n,m+
N−1∑
n1=0
(n1 ̸=n,

M−1∑
m1=0
m1 ̸=m)

Xk,n,mR(n,m)
n1,m1

+Nk,n,m

(47)
Finally, defining Ik,n,m as (48)

Ik,n,m =

N−1∑
n1=0
(n1 ̸=n,

M−1∑
m1=0
m1 ̸=m)

Xk,n1,m1R
(n,m)
n1,m1

(48)

X̂k,n,m is given by Equation (49).

X̂k,n,m = Rn,mXk,n,m + Ik,n,m +Nk,n,m (49)

Appendix B: Autocorrelation
function of ỹk(t)

Using (5) in (15), it is posible to express ỹk(t) as presented
in Equation (50):

ỹk(t) =

∞∫
−∞

P−1∑
p=0

apµp(t)δ(τ − vp)x̃k(t− τ)dτ (50)

or integrating with respect to τ (51)

ỹk(t) =

P−1∑
p=0

apµp(t)x̃k(t− vp) (51)

The autocorrelation function of yk(t) defined by (52):

Rỹk
(t, τ) = E[ỹ∗k(t+ τ)ỹk(t)] (52)

can be expressed as (53):

Rỹk
(t, τ) =

P−1∑
p1=0

P−1∑
p2=0

ap2
a∗p1

E
[
µ∗
p1
(t+ τ)µp2

(t)
]

× E
[
x̃∗
k(t+ τ − vp1)x̃k(t− vp2)

]
(53)
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Remembering that µp(t) is a complex Gaussian random
process with zero mean, wide-sense stationary and
uncorrelated for p1 ̸= p2 it is possible write Equation (54):

Rỹk
(t, τ) =

P−1∑
p=0

|ap|2Rµp(τ)Rx̃k
(t− vp, τ) (54)

Considering the Wiener-Khinchin theorem, Rỹk
(τ) can be

defined as shown in Equation (55)

Rỹk
(t, τ) = lim

T→∞

1

T

∫
T

P−1∑
p=0

|ap|2Rµp
(τ)Rx̃k

(t− vp, τ)dt

=
P−1∑
p=0

|ap|2Rµp(τ)R̄x̃k
(τ)dt (55)

Where R̄x̃k
(τ) is defined in (56).

R̄x̃k
(τ) = lim

T→∞

1

T

∫
T

Rx̃k
(t− vp, τ)dt

= lim
T→∞

1

T

∫
T

Rx̃k
(t, τ)dt (56)

Note that the last equality in (56) hold in the limit T → ∞.

Appendix C: Statistical
Characterization ofNk,n,m

The noise after the matched filter receiver is given by (57)

Nk,n,m =

∞∫
−∞

ñ(t)g∗m(t)e
−j2πnt

Ts dt (57)

with ñ(t) representing the additive white Gaussian noise
(AWGN) with zero mean and variance N0, this is, (58) and
(59)

E[ñ(t)] = 0 (58)

E[ñ(t1)ñ
∗(t2)] = N0δ(t1 − t2) (59)

The mean ofNk,n,m is given by Equation (60):

E[Nk,n,m] = E

 ∞∫
−∞

ñ(t)g∗m(t)e
−j2πnt

Ts dt.


=

∞∫
−∞

E[ñ(t)]g∗m(t)e
−j2πnt

Ts dt (60)

Using (58), it follows that E[Nk,n,m] = 0

The variance of Nk,n,m given by σ2
Nn,m

=

E[Nk,n,mN∗
k,n,m] is presented in Equation (61):

σ2
Nn,m

=

∞∫
−∞

∞∫
−∞

E[ñ(t1)ñ
∗(t2)]g

∗
m(t1)gm(t2)e

−j
2πn(t1−t2)

Ts dt1dt2

(61)
considering (59) it is possible to re-write Equation (61) as
(62):

σ2
Nn,m

=

∞∫
−∞

∞∫
−∞

N0δ(t1−t2)g
∗
m(t1)gm(t2)e

−j
2πn(t1−t2)

Ts dt1dt2

(62)
or integrating with respect to t2 (63)

σ2
Nn,m

= N0

∫ ∞

−∞
|gm(t1)|2dt1 (63)

Finally, using the Parseval’s Theorem gives Equation (64):

σ2
Nn,m

= N0

∫ ∞

−∞
|Gm(f)|2df (64)

Appendix D: Statistical
Characterization of Ik,n,m

The term Ik,n,m is given by (65)

Ik,n,m =
N−1∑
n1=0
(n1 ̸=n,

M−1∑
m1=0
m1 ̸=m)

Xk,n1,m1
R(n,m)

n1,m1
(65)

where Xk,n1,m1
denote the transmitted symbols. In this

article these symbols are considered to have zero mean
and are statistically independent for different sub-carriers,
sub-symbols and time intervals, i.e. (66) and (67).

E[Xk,n,m] = 0 (66)

E
[
Xk1,n1,m1X

∗
k2,n2,m2

]
=

{
Ex ; (k1, n1,m1) = (k2, n2,m2)
0 ; (k1, n1,m1) ̸= (k2, n2,m2)

(67)
The mean of Ik,n,m is given by Equation (68):

E[Ik,n,m] = E

 N−1∑
n1=0
(n1 ̸=n,

M−1∑
m1=0
m1 ̸=m)

Xk,n1,m1
R(n,m)

n1,m1


=

N−1∑
n1=0
(n1 ̸=n,

M−1∑
m1=0
m1 ̸=m)

E
[
Xk,n1,m1

]
E
[
R(n,m)

n1,m1

]
(68)

Using (66), it follows that E[Ik,n,m] = 0.
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The variance of Ik,n,m given by σ2
In,m

= E[Ik,n,mI∗k,n,m] is
presented in Equation (69):

σ2
In,m

=
N−1∑
n1=0
(n1 ̸=n,

M−1∑
m1=0
m1 ̸=m)

N−1∑
n2=0
(n2 ̸=n,

M−1∑
m2=0
m2 ̸=m)

E
[
Xk,n1,m1X

∗
k,n2,m2

]
× E

[
R(n,m)

n1,m1
R∗(n,m)

n2,m2

]
(69)

considering (67) it is possible to re-write equation (69) as
(70).

σ2
In,m

= E[Ik,n,mI∗k,n,m] = Ex

N−1∑
n1=0
(n1 ̸=n,

M−1∑
m1=0
m1 ̸=m)

C(n,m)
n1,m1

(70)
where C(n,m)

n1,m1 = E
[∣∣R(n,m)

n1,m1

∣∣2].
In order to compute C

(n,m)
n1,m1 , it is necessary to use the

definition of R(n,m)
n1,m1 presented here in Equation (71):

R(n,m)
n1,m1

=

∞∫
−∞

∞∫
−∞

h̃(t, τ)gm1(t−τ)g∗m(t)ej
2π[t(n1−n)−n1τ]

Ts dtdτ

(71)
where h̃(t, τ) is the impulse response of the underwater
communication channel with autocorrelation function
given by (72)

Rh̃(τ, v1, v2) =

P−1∑
p=0

|ap|2Rµp(τ)δ(v1 − vp)δ(v2 − vp)

(72)
Note that Rµp

(τ) represents the autocorrelation function
of the complex process µp(t), that can be defined as (73)

Rµp(τ) =

∫ ∞

−∞
Sµp(f)e

j2πfτdf (73)

Thus, C(n,m)
n1,m1 can be written as Equation (74):

C(n,m)
n1,m1

=

∞∫
−∞

· · ·
∞∫

−∞

E
[
h̃(t1, τ1)h̃

∗(t2, τ2)
]

× gm1
(t1 − τ1)g

∗
m(t1)e

j
2π[t1(n1−n)−n1τ1]

Ts

× g∗m1
(t2 − τ2)gm(t2)e

−j
2π[t2(n1−n)−n1τ2]

Ts

× dt1dt2dτ1dτ2 (74)

or using (72)

C(n,m)
n1,m1

=

∞∫
−∞

. . .

∞∫
−∞

P−1∑
p=0

|ap|2Rµp
(t1 − t2)δ(τ1 − vp)δ(τ2 − vp)

× gm1(t1 − τ1)g
∗
m(t1)e

j
2π[t1(n1−n)−n1τ1]

Ts

× g∗m1
(t2 − τ2)gm(t2)e

−j
2π[t2(n1−n)−n1τ2]

Ts

× dt1dt2dτ1dτ2 (75)

Integrating (75) at τ1 and τ2 gives equation (76):

C(n,m)
n1,m1

=

∞∫
−∞

· · ·
∞∫

−∞

P−1∑
p=0

|ap|2Rµp(t1 − t2)

× gm1
(t1 − vp)g

∗
m(t1)e

j
2π[t1(n1−n)]

Ts

× g∗m1
(t2 − vp)gm(t2)e

−j
2π[t2(n1−n)]

Ts dt1dt2
(76)

Using (73) and rearranging the integrals, it follows that

C(n,m)
n1,m1

=
P−1∑
p=0

|ap|2
∞∫

−∞

Sµp(f)

×
∞∫

−∞

gm1(t1 − vp)g
∗
m(t1)e

−j2πt1
[
−f− (n1−n)

Ts

]
dt1

×
∞∫

−∞

g∗m1
(t2 − vp)gm(t2)e

−j2πt2
[
f+

(n1−n)
Ts

]
dt2df

(77)

Integrating (77) in t1 and t2 gives Equation (78):

C(n,m)
n1,m1

=
P−1∑
p=0

|ap|2
∞∫

−∞

Sµp
(f)

×Gm1

(
−f − (n1 − n)

Ts

)
∗G∗

m

(
f +

(n1 − n)

Ts

)
×G∗

m1

(
−f − (n1 − n)

Ts

)
∗G∗

m

(
f +

(n1 − n)

Ts

)
df

(78)

or (79)

C(n,m)
n1,m1

=
P−1∑
p=0

|ap|2
∞∫

−∞

Sµp(f)

×
∣∣∣∣Gm1

(
−f − (n1 − n)

Ts

)
∗G∗

m

(
f +

(n1 − n)

Ts

)∣∣∣∣2df
(79)

Defining the real and even functionBm
m1

as in Equation (80):

Bm
m1

(f) =
∣∣∣G∗

m(f) ∗Gm1
(−f)

∣∣∣2 (80)

It is possible to re-write equation (79) as (81):

C(n,m)
n1,m1

=
P−1∑
p=0

|ap|2
∞∫

−∞

Sµp
(f)Bm

m1

(
f +

(n1 − n)

Ts

)
df

(81)
Finally, using the definition of the convolution operation
and remembering theBm

m1
(f) is an even function, we have
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(82)

C(n,m)
n1,m1

=
P−1∑
p=0

|ap|2Sµp
(f) ∗Bm

m1
(f)
∣∣∣
f=

n1−n
Ts

(82)
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