

Paradigma económico. Revista de economía regional y sectorial

ISSN: 2007-3062 ISSN: 2594-1348

paradigmaeconomico@uaemex.mx

Universidad Autónoma del Estado de México

México

Arias Álvarez, Leonardo; Tandazo-Arias, Tangya
Policentrismo del Distrito Metropolitano de Quito. Análisis desde la localización del empleo, 2010
Paradigma económico. Revista de economía regional
y sectorial, vol. 10, núm. 1, 2018, pp. 119-153
Universidad Autónoma del Estado de México
México

Disponible en: https://www.redalyc.org/articulo.oa?id=431564569005

Número completo

Más información del artículo

Página de la revista en redalyc.org

Sistema de Información Científica Redalyc

Red de Revistas Científicas de América Latina y el Caribe, España y Portugal Proyecto académico sin fines de lucro, desarrollado bajo la iniciativa de acceso

abierto

Policentrismo del Distrito Metropolitano de Quito. Análisis desde la localización del empleo, 2010

LEONARDO ARIAS ÁLVAREZ* TANGYA TANDAZO-ARIAS**

RESUMEN

La investigación determina la existencia de un sistema policéntrico de ciudad en el Distrito Metropolitano de Quito (DMQ) a partir de la localización del empleo parroquial como indicador de la aglomeración económica espacial. Los resultados muestran que el DMQ tiene una estructura espacial policéntrica, con subcentros de actividad económica, identificándose 3 centros y 11 subcentros de actividad económica ubicados en la zona urbana como son: Sur (Guamani, Turubamba, La Ecuatoriana, Solanda, San Bartolo, La Ferroviaria), Centro-Norte (Belisario Quevedo y Concepción) y Norte (Cotocollao, Ponceano, El Condado). **Palabras clave:** Distrito Metropolitano de Quito, aglomeración económica, policentrismo, subcentros, economía urbana.

Clasificación JEL: R12, E14, R30.

ABSTRACT

Polycentric System in the Quito Metropolitan District. An Analysis of the Employment Location Approach, 2010

The following research has as aim to evidence the polycentric city system in Quito Metropolitan District (DMQ). Using the spatial location of employment as a proxy of economic agglomeration. The results indicate that DMQ is a space with a polycentric structure and subcenters of economic activity. Furthermore, there have been identified 3 major centers and 11 sub centers of economic activity that are located in 3 specific urban areas: South (Guamani, Turubamba, La Ecuatoriana,

^{*} Maestrante del Programa de Estudios Urbanos en la Facultad Latinoamericana de Ciencias Sociales. Sede Ecuador (FLACSO). Quito, Ecuador. Correo electrónico: laariasfl@flacso.edu.ec

^{*} Docente Investigadora de la Universidad Técnica Particular de Loja (UTPL). Loja, Ecuador. Correo electrónico: tdtandazo@utpl.edu.ec

Solanda, San Bartolo, La Ferroviaria), North-Center (Belisario Quevedo y Concepción) and North (Cotocollao, Ponceano, El Condado).

Keywords: Quito Metropolitan District, Economic agglomeration, Polycentric system, Sub centers, Urban Economics.

JEL Classification: R12, E14, R30.

INTRODUCCIÓN

Las características económicas de las ciudades desde su surgimiento han evolucionado constantemente en su morfología física, social, cultural y económica, de ahí que muchos investigadores de la Economía Urbana se interesen por las dinámicas territoriales llegando incluso a proponer una serie de modelos teóricos cuantitativos para explicar mejor la organización territorial de las urbes y su funcionamiento. Entre estos modelos se encuentran el monocéntrico y el policéntrico; el primero estudia el proceso de aglomeración de las actividades económicas en un solo lugar central, el segundo —una derivación y evolución lógica del primero— analiza el proceso de dispersión o desconcentración de las actividades económicas del único centro manifestando en el modelo monocéntrico a múltiples centros.

Una de las teorías fundamentales en este ámbito está propuesta por Harris y Ullman (1945), quienes afirman que el crecimiento de las ciudades se presenta en torno a varios núcleos y no a uno sólo como lo planteó Richardson (1973); siguiendo la misma línea, McDonald y Prather (1994) proponen un modelo econométrico para explicar dicho desarrollo, modificado por Sullivan (1986) al adaptar la metodología de círculos concéntricos y así presentar la modelización econométrica para demostrar la existencia de una ciudad policéntrica.

Bajo este esquema teórico la investigación tiene como objetivo determinar que el DMQ posee un sistema de ciudad policéntrica, para ello se analiza una serie de indicadores paramétricos y no paramétricos, así como de modelos econométricos desarrollados para el efecto. El estudio se realiza a partir del empleo y distancias, en el primer caso los datos del empleo por rama de actividad económica se obtuvieron del *VII Censo de Población* (2010), la densidad del empleo por parroquia¹

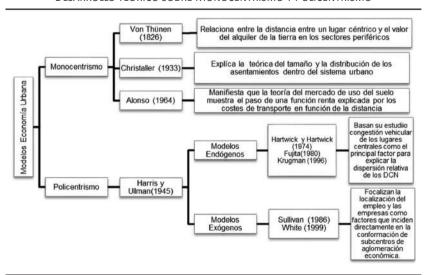
Según el Art. 242 de la constitución de la República del Ecuador, el Estado se organiza terri-

fue proporcionada por la Secretaría de Hábitat y Vivienda del DMQ, las distancias implicaron el uso de metodologías de Sistemas de Información Geográfica (SIG), finalmente la cobertura de análisis y desagregación territorial permitió considerar las 32 parroquias urbanas y 33 parroquias rurales del DMQ.

Las investigaciones de este tipo son escasas para el Ecuador y más si se incluye el enfoque de las estructuras y concentración económica de las ciudades, de ahí la importancia y el aporte del trabajo aquí desarrollado, pues la aplicación de teorías relacionadas con la Ciencia Regional (entre ellas, la Economía Urbana) es reciente en el país. Específicamente, en el caso del DMQ, el presente documento de investigación es un aporte al estudio de la estructura económica del distrito, permitiendo identificar procesos espaciales ya evidenciados en otras ciudades alrededor del mundo.

La investigación se desarrolla en la siguientes partes: una breve introducción, después se presenta el fundamento teórico que guía la investigación, así como la revisión de estudios similares dentro y fuera del país; luego, se caracteriza el DMQ para conocer a la ciudad desde un enfoque regional/local; posteriormente se desarrolla la metodología, incluyendo los modelos econométricos cuyos resultados se discuten posteriormente; por último, se presentan las conclusiones a las cuales ha llevado el estudio.

1. MONOCENTRISMO VS. POLICENTRISMO


Dentro del estudio de las ciudades, un fenómeno de gran interés es determinar la tipología de la ciudad, entre las teorías utilizadas están el monocentrismo y el policentrismo. Estas teorías son secuenciales, el monocentrismo fue el primer modelo para explicar el funcionamiento económico del valor de la renta del suelo en una ciudad y, por consiguiente, de la actividad económica que en ella se desarrolla. El crecimiento constante de las ciudades restó importancia a esta teoría y, por lo tanto, se volvió insuficiente para explicar la dinámica económica de las ciudades, por ello se asignó este papel al modelo de policentrismo. La

torialmente en regiones, provincias, cantones y parroquias rurales, es decir, la espacialización parroquial es el conglomerado político-administrativo más pequeño del Ecuador.

evolución teórica, hasta llegar a los modelos policéntricos, se presenta en el esquema 1.

Una ciudad monocéntrica se caracteriza por ser una unidad territorial donde se ubica el Distrito Central de Negocios (DCN).² Este DCN representa la única aglomeración de empleo de la ciudad y, a partir de ella, se explica cómo se distribuye la población considerando la distancia del mismo (Ramírez, 2009). Entre los autores que han aportado a esta teoría se puede citar a Von Thünen (1826), Alonso (1964), Muth (1969) y Mills (1972).

Autores como Fujita, Krugman y Venables (2000) manifiestan que el monocentrismo parte de la ingeniosa teoría de Von Thünen, quien estudia las relaciones entre la distancia de un lugar céntrico y el valor del alquiler de la tierra en los sectores periféricos: mientras más lejano se encuentre el terreno del centro de la ciudad tendrá un valor inferior y también repercusiones en la producción de los agricultores alrededor de la ciudad, una variable fundamental es el costo de transporte.

Esquema 1
DESARROLLO TEÓRICO SOBRE MONOCENTRISMO Y POLICENTRISMO

² CBN (Central Buisness District) por sus siglas en inglés.

Walter Christaller (1933) incluiría un factor fundamental: las actividades de servicio reservadas a la población urbana, incorporando así una explicación teórica del tamaño y la distribución de los asentamientos dentro del sistema urbano (Vinuesa, 1991); de la misma forma, para él, las ciudades se convierten en puntos ponderados de concentración comercial, donde la localización espacial de centros terciarios dependerá del volumen, distribución y densidad de la actividad residencial en el territorio

Por su parte, William Alonso, en 1964, expone el modelo de renta ofertada,³ que consiste en una versión urbana del modelo de Von Thünen (Ramírez, 2009), que plantea la teoría del mercado de uso del suelo y, aplicando herramientas microeconómicas de la teoría neoclásica, muestra el paso de una función de renta explicada por los costes de transporte de acuerdo con la distancia a una función de renta especificada por el ingreso neto y el nivel de utilidad fijo (Fujita, 1989). Empero, el autor conserva los supuestos de homogeneidad de suelo y de competencia perfecta del modelo de Von Thünen.

En la gráfica 1, el modelo de Alonso muestra las curvas de renta ofertadas, indicando la disposición a pagar por unidad del suelo localizado a una distancia determinada al DCN. Las curvas —con pendientes negativas— demuestran la disponibilidad de los sectores en pagar por el uso del suelo, el sector de oficinas o terciario está dispuesto a pagar el nivel de renta más alto, por su localización más cercana al DCN (Ramírez, 2009). En conclusión, el modelo determina el punto de localización ideal para los diferentes sectores económicos, donde estos puedan maximizar sus beneficios en valor de uso de suelo, dependiendo de las necesidades específicas que estos sectores buscan, generando así una idea bastante clara de cómo se encuentra distribuida la actividad económica dentro del territorio de una ciudad.

The bid-rent modelo, en su versión original el modelo se conoce como bid-price curva.

P Curva de Precios
S. Oficinaa
S. Industria
S. Residencial
Sector Agricola

Gráfica 1

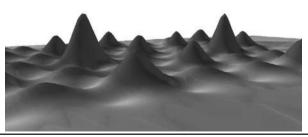
MODELO DE ALONSO: SOLAPAMIENTOS DE CURVAS DE RENTA OFERTADA

Fuente: Richardson (1977).

Las teorías sobre el monocentrismo —aunque siguen teniendo validez en algunos aspectos— no son suficientes para explicar el rápido crecimiento de las ciudades, pues la actividad, los empleos y los costes de transporte ya no se encuentran aglomerados en un solo lugar central, evolucionaron, y la consideración de las ciudades con un solo DCN no basta, surge la necesidad de desarrollar modelos que idealicen varios subcentros de aglomeración de la actividad económica, dando paso así a los modelos policéntricos de las ciudades.

El policentrismo —término de origen anglosajón, *policentricity*—, de acuerdo con Aalbu (2004), se define como la caracterización de las ciudades por una división funcional del trabajo, por su integración económica e institucional y por su cooperación política. Para Sarzynsky, Hanson y Wolman (2005), "Un área metropolitana es policéntrica si su extensión está separada por dos o más centros de empleo distintos que contengan una cantidad significativa del empleo total del área, y la relación de empleo en el centro principal al empleo en todos los otros centros es baja".

Ramírez (2009) realiza una diferenciación entre dos corrientes del policentrismo: modelos endógenos y modelos exógenos; los primeros se caracterizan por estudiar la ciudad sin predeterminar una estructura espacial, es decir, no se consideran la existencia de concentraciones de empleo; en cambio los modelos exógenos parten del supuesto de que existe históricamente un DCN, se examinan los efectos de las empresas


suburbanizadas sobre la localización residencial. A diferencia de los primeros, los modelos exógenos no modelizan las economías de aglomeración y el empleo no sigue a la población.

Una primera teoría es la desarrollada por Harris y Ullman (1945): las ciudades se desarrollan alrededor de diferentes núcleos urbanos en lugar de hacerlo en un núcleo céntrico de origen (Richardson, 1973). Para ello combinaron las características de los modelos iniciales de Burgess y Hoyt; sin embargo, los plantean como polos alejados del DCN. Igualmente sostienen que a pesar de la aparición de los subcentros el DCN se mantiene activo y plenamente funcional (Ramírez Carrasco, 2003).

Como lo manifiesta Roca Cladera y otros (2009), la realidad de desarrollo de los centros urbanos, desde 1980, ha revelado cambios sustanciales en las estructuras de áreas metropolitanas que no pueden ser explicadas por los modelos tradicionales; corroborando lo expresado por Guliano y otros (2007), para quienes uno de los cambios es el crecimiento policéntrico en las áreas metropolitanas, pues el empleo está concentrado en varios sub-centros bajo el DCN y constituyen una extensión de la actividad económica

En conclusión, el policentrismo asocia la idea de que al interior de un área urbana de carácter metropolitano se genera una estructura multinuclear, a partir del surgimiento de núcleos urbanos periféricos (Becerril-Pauda, 2000) (véase gráfica 2). Es decir, el policentrismo es la respuesta a las diferentes fuerzas centrípetas y centrifugas de la localización de las inversiones privadas en función del mercado urbano.

Gráfica 2
DISTRIBUCIÓN TEÓRICA DE LOS CENTROS FORMADOS EN LA CIUDAD POLICÉNTRICA

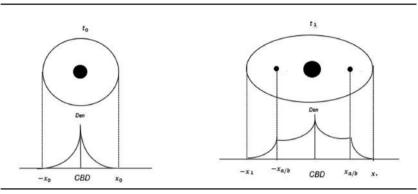


Fuente: tomada de Gonzáles y del Pozo (2012).

2. MODELO EXÓGENO DE LA NUEVA ECONOMÍA URBANA

Arthur M. Sullivan (1986) parte de la segunda corriente de modelos policéntricos y presenta un modelo de equilibrio general en el cual el centro de la ciudad es el DCN y donde se localizan la actividad terciaria o de oficinas y se presentan las economías de aglomeración (gráfica 3). Los residentes en un mercado de libre competencia pueden elegir entre el sector oficinas o el sector manufacturero localizado cerca de una carretera circunferencial que está integrada al sistema vial inter urbano, generando una segunda aglomeración de empleo denominada Subcentro Distrital de Negocios (SBD) (Ramírez, 2009).

Gráfica 3
EQUILIBRIO GENERAL (LOCALIZACIÓN DEL SUELO) MODELO SULLIVAN (1986)



Fuente: elaborado a partir de Ramírez (2009).

White (1999) muestra al proceso del policentrismo como una evolución lógica del modelo de ciudad monocéntrica, donde las economías de aglomeración del centro son replicables en gran medida en la periferia conformando nuevos subcentros de empleo (véase gráfica 4) (García y Muñiz, 2007).

Grafica 4

Cambios en la forma urbana ante la formación de subcentro de empleo por descentralización

Fuente: elaborado a partir de García y Muñiz (2007).

Como lo explican García y Muñiz (2007), mientras el radio de la ciudad de X_0 a X_1 surgen dos subcentros simétricos de empleo a una distancia de $X_{a/b}$ del centro. La densidad de empleo se distorsiona en t_1 presentando dos picos a una distancia $X_{a/b}$ del centro.

Para White, una ciudad sigue una pauta descentralizadora policéntrica o dispersa dependiendo del nivel de interacción de tres fuerzas: las economías de mercado de trabajo, las deseconomías de aglomeración y de los costes de transporte.

Finalmente, las ciudades monocéntricas —debido a su crecimiento poblacional y consecuentemente de empleo en las últimas décadas—han mutado en ciudades policéntricas las cuales se enfrentan a problemáticas relacionadas directamente con el desarrollo económico de la ciudad y sobre todo con el diario vivir de sus habitantes.

En el Ecuador, los estudios relacionados con la ciencia regional y urbana son escasos y de reciente desarrollo, eso explica, en parte, por qué no se tienen investigaciones en este marco, por ello las referencias provienen de otros países y se han tomado para la realización del trabajo, entre ellos se encuentran los trabajos referentes a la Nueva Economía Urbana (NEU), que se enfocan a la planificación, y el estudio de las dinámicas económicas de los distritos metropolitanos. En la tabla 1, se resumen los principales trabajos para diferentes ciudades.

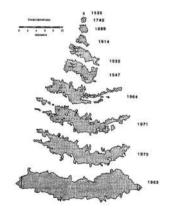
Tabla 1
ESTUDIOS SOBRE POLICENTRISMO Y SUBCENTROS

Autor	Titulo	Metodología	Principales Resultados
McDonald y Prather (1994) Estados Unidos	"Suburban Employment Centres: The Case of Chicago"	Método no paramétricos a través de las densidades del empleo y distancia de los subcentros.	Existencia de centros suburbanos de empleo en Chicago. Primer modelo econométrico para la determinación de subcentros y un modelo policéntrico de ciudad.
McMillen (2001) Estados Unidos	"Nonparametric Employment Subcenter Identification"	Regresión ponderada del número de empleos y distancia de DCN.	Identificación de subcentros de empleo mediante métodos no- paramétricos, es decir, modelos policéntricos en las ciudades de Chicago, Dallas, Houston, Los Ángeles, y San Francisco.
García y Muñiz (2007) España	"¿Policentrismo o dispersión? Una aproximación desde la Nueva Economía Urbana"	Identificación de subcentros: número de empleos.	Se confirma la existencia de policentrismo en Barcelona y la caracterización de los subcentros identificados.
Garrocho y Campos (2007) México	"Dinámica de la estructura policéntrica del empleo terciario en el área metropolitana de Toluca 1994-2004"	Método umbrales dobles del empleo terciario: número, tamaño, densidad, jerarquía, localización, especialización económica y evolución en el tiempo.	Subcentros de empleo terciario que articulan la estructura espacial policéntrica del área urbana.
Avendaño (2008) Colombia	"Identificación de subcentros de empleo y estimación de funciones de densidad para Bogotá, D.C."	Función de renta ofertada: empleo y distancias entre subcentros.	La estimación de un modelo policéntrico para la ciudad de Bogotá, D.C., para luego determinar los subcentros de la misma y su influencia sobre la densidad de empleo, evidenciando la morfología policéntrica de Bogotá.
Rojas <i>et al.</i> (2009) Chile	"Estructura urbana y policentrismo en el Área Metropolitana de Concepción"	Efectos de los subcentros en relación con la distancia: empleo y distancias entre subcentros.	A través de los indicadores de empleo y funciones de densidad, se identifican los diferente subcentros de esta área de Chile.
Cuenin y Silva (2010) Ecuador	ldentificación y fortalecimiento de centralidades urbanas. El caso de Quito	Localización de Centralidades Identificaciones de Centralidades.	Se obtiene centralidades de diferente nivel de jerarquía: metropolitano, zonal, sectorial y barrial.
Gonzales y del Pozo (2012) Perú	"Lima, una ciudad policéntrica. Un análisis a partir de la localización del empleo"	Función de renta ofertada: empleo y distancias entre subcentros.	Modelo policéntrico, se utiliza el empleo como una variable <i>a proxi</i> . Determinación de principales subcentros del distrito utilizando 4 diferentes parámetros de estimación.

Como se observa, los estudios de policentrismo giran en torno a los indicadores de empleo y a la distancia de los subcentros, correspondiéndose en mayor medida con los modelos exógenos. Para finalizar, las ciudades latinoamericanas presentan una tendencia hacia el policentrismo; en el caso del DMQ, el único estudio es el realizado por el Banco

Interamericano de Desarrollo (BID), donde se identificaron algunos centros al analizar localización de la población, áreas verdes, accesibilidad, equipamiento urbano, actividad económica, población día/noche, proyectos estratégicos del gobierno local.

3. EL DISTRITO METROPOLITANO DE QUITO (DMQ)

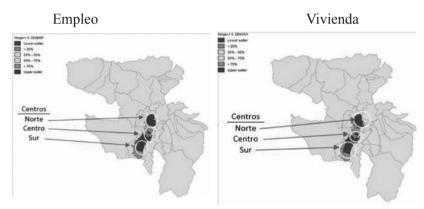

Los orígenes de la ciudad de Quito datan de la época pre-incásica, como lo manifiesta Núñez Sánchez (2003): en 1534, en las faldas del volcán Pichincha, se fundó con el nombre de San Francisco de Quito y actualmente es la capital más antigua de toda Sudamérica (Cuenin y Silva, 2010).

El crecimiento poblacional acelerado de la ciudad llevó a la expedición de la Ley de Régimen, en 1993, declarando a Quito como Distrito Metropolitano y con ello la capacidad de determinar la Base Territorial, establecer la Base Político-Administrativa y el rol económico del Distrito Metropolitano.

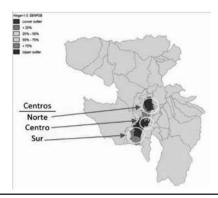
Mapa 1

a. Cambios en los límites políticos de Quito (1535-1983)

B. DISTRIBUCIÓN POLÍTICA DEL DMQ 2014


Fuente: Fuente: tomado del portal de Internet de la Organización de las Naciones Unidas para la Alimentación (FAO, 1983)⁴. **Fuente:** tomado del Municipio del Distrito Metropolitano de Quito, 2010.

⁴ FAO (Food and Agriculture Organization of the Unites Nations) por sus siglas en inglés.


Podemos observar la evolución de la ciudad de Quito en los mapas 1a y 1b. Ellos muestran su crecimiento y el resultado de la declaratoria de Quito como un distrito metropolitano.

De manera desagregada, si analizamos con mayor detenimiento para el 2010 la dinámica interna de cada una de las zonas administrativas, observamos (mapa 2) que ciertas parroquias responderían a una correlación espacial en cuanto a sus densidades de población, empleo y vivienda; es decir, donde encontramos alta densidad de población en la mayoría de las ocasiones, corresponderá con alta densidad de empleo y vivienda.

Mapa 2
Densidades parroquiales (2010)

Población

Fuente: Censo de Población y Vivienda (2010).

Una característica fundamental dentro de estas zonas es su ubicación geográfica, las mismas que dividen a Ouito urbano en tres sectores: Sector Norte (Eugenio Espejo, La Delicia), Sector Centro (Manuela Sáenz), Sector Sur (Quitumbe, Eloy Alfaro), como una conclusión inicial, el aporte a la actividad económica del DMQ se encuentra localizado en estos tres centros económicos

4. METODOLOGÍA

La determinación del policentrismo en el DMQ se desarrolla siguiendo el esquema 2. Los datos de la densidad de empleo del 2010 fueron proporcionados por la Secretaría de Territorio, Hábitat y Vivienda del DMQ y del VII Censo de Población del 2010 realizado por el Instituto de Estadísticas y Censos (INEC).

La matriz de distancias se construyó a partir de las estimaciones de las distancias inter-parroquiales, para ello se aplicó el Sistema de Información Geográfica (SIG) y con la ayuda del software se tomó el centro geográfico de la parroquia (polígono geográfico) para medir su distancia lineal hacia cada centro geográfico parroquial (anexo 2).

Esquema 2

PROCESO METODOLÓGICO

Conformación de anillos concéntricos con gradientes de distancias al DCN: 5 Km, 10 Km, 15 Km, 20 Km, 25 Km, 30Km, más de 30 Km

Modelo econométrico para cada anillo concéntricas con distancia directas

Modelo econométrico para cada anillo concéntricas con el inverso de las distancias y ajustado con el vector de robustez

El desarrollo del modelo se realiza en dos pasos, en el primero el objetivo es determinar la existencia de un modelo policéntrico de ciudad utilizando un modelo econométrico. En segundo lugar, el objetivo central es corroborar los resultados obtenidos en el primer modelo y compararlos con los del segundo y así establecer la existencia de subcentros de aglomeraciones económicas en la unidad de análisis espacial.

Paso 1. La especificación del modelo econométrico

El modelo a aplicar es de corriente exógena, toma como referencia el modelo propuesto por Harris y Ullman (1945) y el desarrollo posterior de McDonald y Prather (1994). A partir de ellos se obtuvieron algunas derivaciones dependiendo de las variables consideradas por los investigadores. La investigación aquí presentada es una aplicación de la derivación de la oferta de la renta y la densidad de empleo (anexo 4), el modelo tiene la siguiente estructura:

$$lnD (d_{CENTROi}) = lnD_0 + \Sigma \beta C_{ENTROi} X_{CENTROi} + \mu$$
 (1)

Donde lnD es la densidad del empleo en cada parroquia; $X_{CENTROi}$ el gradiente de distancia del subcentro al DCN en Km; D_{θ} es la densidad bruta teórica de empleo de las parroquias, es decir, el coeficiente del modelo econométrico.

El modelo predice que la función de densidad bruta de empleo en cada punto de la ciudad depende de la distancia a cada uno de los centros (Gonzales y del Pozo, 2012).

Al no ser las parroquias de la misma dimensión y, por consiguiente, tampoco las distancias entre ellas, Frankena (1978) sugiere que la estimación se realice a través del Método de Mínimos Cuadrados Ponderados (MCP),⁵ permitiendo corregir también la heteroscedasticidad del modelo. En el estudio se estimó con el método de Mínimos Cuadrados Ordinarios (MCO) utilizando un vector de ajuste *robust*, el cual es el equivalente a una regresión de MCP.

Además, el uso de una matriz cuadrada de distancias de las 65 parroquias se agregó al vector *robust*, el inverso de las distancias en lugar de utilizar las distancias directas, 6 tal como lo sugiere McDonald y Prather (1994) y García y Muñiz (2007), obteniendo la siguiente ecuación:

$$lnD(d_{CENTROi}) = lnD_0 + \Sigma \beta_{CENTROi} I/X_{CENTROi} + \mu$$
 (2)

⁵ Gujarati (2010) manifiesta que los MCP son una derivación de una técnica más general, Mínimos Cuadrados Generales, los cuales son ponderados por la suma de los cuadrados de los residuos de la regresión de Mínimos Cuadrados Ordinarios.

⁶ Distancias directas son aquellas medidas desde el centro de una parroquia A al centro de una parroquia B.

De acuerdo con Rojas, Muñiz y García (2009), y Gonzales y del Pozo (2012), la ecuación (2) es la más idónea para determinar los subcentros urbanos, pues supera el problema de multicolinealidad entre la variable "distancias del DCN" a cada uno de los subcentros.

Paso 2. La metodología usada para localizar los subcentros de aglomeración de empleo en una región o ciudad

Existe varias metodologías para determinar los centros, los trabajos de McDonald (1987) presentan la identificación de subcentros a través de áreas que presentan mayor densidad de empleo o por la relación empleo/población respecto a las zonas aledañas (Ramírez, 2009), metodología llamada Teoría de Picos.

Una segunda forma es utilizando la Teoría de Umbrales o Doble Umbral, la cual define los subcentros de empleo a través de la obtención de dos tipos de umbrales, uno de empleo total y otro de densidad de empleo (Ramírez, 2009). Entre los trabajos bajo esta línea están los desarrollados por García y Muñiz (2007) y McDonald y Prather (1994), para quienes los subcentros deben contener las características expresadas en la tabla 2.

Tabla 2 MÉTODOS DE IDENTIFICACIÓN DE SUBCENTROS DE EMPLEO

Método	Descripción
McDonald (1987)	Densidad Bruta de Empleo superior a la de las zonas adyacentes. Al menos 10.000 empleados.
McDonald y Prather (1994)	Al menos 10.000 empleados. Zonas cuyos residuos son mayores a los esperados en el modelo monocéntrico.
García y Muñiz (2007)	Densidad bruta de empleo superior o igual al promedio. Nivel de empleo superior o igual al 1% del total de DMQ.

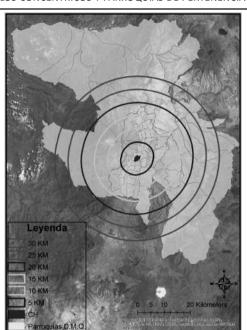
Fuente: Tomado de Gonzales y del Pozo (2012).

En este sentido, el uso de metodologías paramétricas y no paramétricas son utilizadas para identificar la existencia de diferentes subcentros de actividad económica, cuyos resultados se exponen a continuación.

5. DISCUSIÓN DE RESULTADOS

Las ciudades como espacios socialmente construidos se encuentran en constante evolución, es decir, fenómenos como la urbanización y el crecimiento de las mismas han permitido que diferentes morfologías surjan con el pasar del tiempo. Por ello, la característica en la mayoría de las grandes ciudades es la consolidación de un modelo policéntrico de ciudad, donde los diferentes subcentros de aglomeración de empleo formarán sistemas policéntricos. El DMQ actualmente presenta dicha morfología y consolidación de un sistema de ciudad policéntrica donde las aglomeraciones de empleo —como variables *proxi* de las actividades económicas— permiten observar los subcentros que se han formado.

Acorde a la metodología paramétrica propuesta en los anillos concéntricos alrededor del DCN con gradientes de distancia de 5km entre anillo a anillo, tenemos las parroquias que se ubican en cada uno de ellos (tabla 4), con lo cual conformamos anillos a 5km, 10km, 15km, 20km, 25km y 30km de distancia desde el DCN.


Los resultados de la estimación del modelo econométrico (2) se presentan en la tabla 3;⁷ éstos, en términos generales, son significativos y cumplen con las condiciones MELI⁸ esperadas en una estimación (anexo 1); demuestran que la teoría se cumple para el DMQ, el signo del gradiente de distancia es positivo⁹ y con significancia estadística dentro del modelo.

La primera estimación, cuyo anillo concéntrico es de 5km de distancia al DCN, presenta las parroquias de San Bartolo y la Ferroviaria (ubicadas en el centro-sur) y Belisario Quevedo (ubicada en el centro-norte) con las de mayor significancia, esto implica que la aglomeración económica —medida a través del empleo— es explicado en un 43%, el índice de bondad de ajuste del modelo por su parte no es alto debido a la distancia de éstas parroquias al DCN. Siguiendo a Villalobos (2012a), en estas parroquias la actividad económica se encuentra concentrada en el comercio al por mayor y menor, el cual generó ventas de US\$1787,017 miles.

Se probó el modelo con todas las gradientes de distancias definidas, pero sus resultados no se presentan porque los mismos son espurios y no presentan significancia estadística y la bondad de ajuste es baja.

⁸ Para Gujarati (2010), un estimador es MELI cuando cumple con las siguientes características: es lineal, insesgado, de estimado eficiente.

⁹ En el estudio de Rojas, Muñiz y García (2009), al usar el inverso de las distancias, la relación de los gradientes de distancia debe ser positiva.

Mapa 3 ANILLOS CONCÉNTRICOS Y PARROQUIAS DE PERTENENCIA

Nota:

De 0 a 5 KM: San Bartolo, La Ferroviaria, Chilibulo, La Magdalena, Chimbacalle, Puengasí, La Libertad, Centro Histórico, Itchimbía, San Juan, Belisario Quevedo, Mariscal Sucre.

De 5 a 10 Km: Quitumbe, Chillogallo, La Mena, Solanda, La Argelia, Iñaquito, Rumipamba, Jipijapa, Cochapamba, Concepción, Cumbayá, Concoto, Guangopolo.

De 10 a 15 Km: Guamaní, Turubamba, La Ecuatoriana, Kennedy, San Isidro del Inca, Nayón, Zámbiza, Cotocollao, Ponceano, Comité del Pueblo, El Condado , Llano Chico, Tumbaco, Alangasí, La Merced.

De 15 a 20 Km: Lloa, Carcelén, Pomasqui, Calderón, Amaguaña, Puembo, Tababela.

De 20 a 25 Km: Nono, Yaruquí

De 25 a 30Km: San Antonio, Calacalí, Pintag, Pifo, Checa, El Quinche, Guayllabamba.

La segunda estimación (aplicando una distancia de 10 km en relación con el DCN) muestra que las parroquias con mayor significancia y con una bondad de ajuste del 73.9% son Solanda, Cochapamba, Concepción, Cumbaya, Guangopolo; las cuales se encuentran más dispersas geográficamente pero con tasas de participación de su población económicamente activa (PEA) en el sector terciario entre el 41% y el 81%, a diferencia del sector manufacturero cuya presencia de evidencia en la parroquia de Guangopolo registra ingresos por ventas de \$558,949 mil y comprende el 43% de participación de su PEA total.

Los resultados dejan ver en primera instancia que el modelo policéntrico a una distancia de 10Km del DCN muestran ciertas características específicas dentro de los posibles subcentros, es decir, a medida que las parroquias se alejan del DCN, las actividades allí desarrolladas se van diversificando y trasladando de un sector a otro, así las aglomeraciones observadas del sector terciario se modifican a aglomeraciones de actividades del sector secundario, corroborando la teoría de la Nueva Economía Urbana en al cual se señala la sustitución de las actividades en el territorio al alejarse del DCN, esto se puede identificar en la jerarquización de actividades económicas por sector expuestas en el anexo 3.

Tabla 3
RESULTADOS DEL MODELO POLICÉNTRICO DEL DMQ

Parroquias	Modelo a [0-5Km]	Modelo a [5Km-10Km]	Modelo a [10Km-15Km]			
Constante	-0.873* (-2.04)	-2.780***(-6.98)	-3.732*** (-7.48)			
San Bartolo	3.760** (-3.07)					
La Ferroviaria	10.34** (-2.69)					
Belisario Quevedo	8.180** (-2.7)					
Solanda		2.177* (-2.64)				
Cochapamba		8.561*** (-4.59)				
Concepción		7.185*** (-4.24)				
Cumbaya		7.328*				
		-2.44				
Guangopolo		11.04**				
		-3.33				
Guamaní			6.665** (-3.31)			
Turubamba			6.524* (-2.47)			
La Ecuatoriana			7.817** (-2.89)			
Cotocollao			3.854* (-2.19)			
Ponceano			3.636** (-3.16)			
El Condado			7.450** (-3.29)			
Observaciones	65	65	65			
R ²	0.435	0.739	0.655			

t estadístico entre paréntesis. * p < 0.05, ** p < 0.01, *** p < 0.001

Fuente: Estimaciones propias.

Los resultados de la estimación del tercer anillo, donde las parroquias se ubican a 15km de distancia del DCN, presentan una significancia estadística y teórica válida para el modelo policéntrico, dichas parroquias se encuentran ubicadas geográficamente entre el límite urbano y rural del DMQ; así, al extremo sur se encuentran La Ecuatoriana, Quitumbe y Turubamba; en extremo norte están El Condado, Ponceano, y Cotocollao: ello explica sus características económicas vinculadas al sector secundario y terciario. Un ejemplo es la parroquia Quitumbe

que presenta especialización económica en el sector manufacturero y de comercio al por mayor y menor: el primero genera ingresos de US\$4016,016 miles; el segundo bordea el medio millón de dólares a \$460 227 al año

Nuevamente, los resultados del modelo muestran el cambio del uso del suelo y los gradientes de distancia con respecto al DCN marcan la pauta para determinar la especialización de las parroquias; así, mientras nos alejamos del DCN, la estructura económica del territorio va modificándose de actividades terciarias a secundarias.

Además la estimación paramétrica permite identificar que ciertas parroquias cumplen con las características de ser subcentro de aglomeraciones económicas. Sin embargo, como se explicó en líneas anteriores, dichos resultados son corroborados en un segundo paso por metodologías no paramétricas, las cuales identifican los subcentros de aglomeraciones.

5.1. Subcentros

La determinación de los subcentros se realizó a través de la combinación de los resultados del modelo econométrico y las teorías de Picos y Umbrales; en la tabla 4 se puede identificar aquellas parroquias determinadas bajo la metodología de umbrales y picos, de un total de 65 parroquias 27 son seleccionadas como posibles subcentros, sin embargo, como se manifestó con anterioridad, para realizar un análisis prolijo se contrastó estos resultados con aquellos obtenidos en el modelo econométrico (tabla 3).

De un total de 28 parroquias obtenidas de la teoría de umbrales y picos, y de 14 parroquias de las estimaciones del modelo policéntrico, el Distrito Metropolitano de Quito tiene 11 subcentros de aglomeración económica, bajo las dos metodologías: Guamaní, Turubamba, La Ecuatoriana, Solanda, San Bartolo, La Ferroviaria, Belisario Quevedo, Concepción, Cotocollao, Ponceano y El Condado (tabla 5 y mapa 4).

	Tabla 4
	RESULTADOS DEL MODELO UMBRALES Y PICOS EN EL DMQ
. 1	

Parroquias	Umbrales y Picos	Parroquias	Umbrales y Picos
Guamaní	٧	Puengasí	٧
Turubamba	٧	Centro Histórico	√
La Ecuatoriana	٧	Belisario Quevedo	√
Quitumbe	٧	Jipijapa	√
Chillogallo	٧	Concepción	V
La Mena	٧	Kennedy	√
Solanda	٧	San Isidro del Inca	√
La Argelia	٧	Cotocollao	√
San Barto	٧	Ponceano	√
La Ferroviari	٧	Comité del Pueblo	√
Chilibulo	٧	El Condado	√
Chimbacalle	٧	Carcelé	√
Tumbaco	٧	Calderón	√
Conocoto	٧		

Tabla 5
RESULTADOS DE SUBCENTROS

Parroquias / Metodologías	Umbrales y Picos	Estimación	Subcentros en el DMQ	Parroquias / Metodologías	Umbrales y Picos	Estimación	Subcentros en el DMQ
Turubamba	SÍ	SÍ	SÍ	Puengasí	SÍ		
La Ecuatoriana	SÍ	SÍ	SÍ	Centro Histórico	SÍ		
Quitumbe	SÍ	SÍ	SÍ	Belisario Quevedo	SÍ	SÍ	SÍ
Chillogallo	SÍ			Jipijapa	SÍ		
La Mena	SÍ			Concepción	SÍ	SÍ	SÍ
Solanda	SÍ	SÍ	SÍ	Kennedy	SÍ		
La Argelia	SÍ			San Isidro del Inca	SÍ		
Cochapamba				Cotocollao	SÍ	SÍ	SÍ
San Bartolo	SÍ	SÍ	SÍ	Ponceano	SÍ	SÍ	SÍ
La Ferroviaria	SÍ	SÍ	SÍ	Comité del Pueblo	SÍ		
Chilibulo	SÍ			El Condado	SÍ	SÍ	SÍ
Chimbacalle	SÍ			Carcelén	SÍ		
Guamaní	SÍ	SÍ	SÍ	Calderón	SÍ		

Los subscentros en el caso del DMQ, como se observa en el mapa 4, tienen una distribución en tres grandes espacios, norte, centro-norte y sur; la consolidación de dichos subcentros y espacios no es una casualidad, con el objetivo de descongestionar la centralidad histórica como es la parroquia del Centro Histórico, el gobierno local ha propuesto la creación de dos nuevas grandes centralidades en el norte y el sur de la ciudad.

Mapa 4 Subcentros de Aglomeración Económica en el DMQ

Fuente: elaborado por los autores.

CONCLUSIONES

Las ciudades actualmente son el resultado de procesos evolutivos sociales, culturales y económicos, como consecuencia de ello son las estructuras policéntricas en las ciudades, sobre todo, en los distritos metropolitanos.

En la presente investigación, mediante el uso del modelo econométrico expuesto por McDonald y Prather (1994) y con la adaptación de los círculos concéntricos tomados del modelo de Sullivan (1986), se determinó desde la aproximación del empleo como variable *proxy* de aglomeración económica la existencia de una estructura de ciudad policéntrica en el Distrito Metropolitano de Quito.

En la caracterización económica del DMQ, se puede observar que las densidades de empleo parroquiales más altas se encuentran distribuidas en tres sectores específicos de la ciudad, lo cual mostraba indicios claros de una estructura policéntrica. Posteriormente, con la aplicación del modelo econométrico se comprueba dicha estructura y se localizan

los subcentros de actividad económica en el territorio. Mostrando de esta manera el uso de la localización geográfica del empleo como una variable *proxy* válida para determinar que el Distrito Metropolitano de Quito responde a una estructura de ciudad policéntrica.

La actividad económica se encuentra aglomerada principalmente en cuatro zonas administrativas del DMQ y los cuales contienen los subcentros económicos distribuidos de la siguiente manera: Quitumbe (Guamanì, Turubamba, La Ecuatoriana); donde los sectores de manufactura y de servicios ocupan cerca del 95% del total del empleo, siendo el comercio al por mayor y por menor la actividad que más aporta a la economía de la zona con 4'016.016 dólares.

Eloy Alfaro (Solanda, San Bartolo, La Ferroviaria) es una zona administrativa con un porcentajes de 75% de empleo en el sector terciario enfocado específicamente en el comercio al por menor donde los pequeños comerciantes facturaron en el 2010 cerca de 1`787.017,48 dólares

Eugenio Espejo (Belisario Quevedo y Concepción) aporta a la economía del distrito mayor cantidad de actividad económica, siendo el comercio al por mayor y por menor la que más ingresos generó (17`122.906 dólares), seguido por el sector manufacturero con 10`475.968 dólares, concentrando el 77% de empleo en el sector terciario y 16% en el sector manufacturero.

En la zona administrativa La Delicia (Cotocollao, Ponceano, El Condado), la actividad económica se caracteriza por aglomerar actividades del sector secundario por alrededor de 5`769.608 dólares y concentrando el 23% del empleo en el mismo sector; en segundo plano tenemos actividades pertenecientes al sector terciario con ingresos de 2`377.977 dólares y participación del empleo de alrededor del 70%.

Finalmente, esta investigación ha permitido responder a la estructura económica policéntrica del Distrito Metropolitano de Quito y sus respectivos subcentros. Sin embargo, a futuro se derivan temas de investigación como las consecuencias del policentrismo en el DMQ, políticas públicas urbanas para una ciudad policéntrica, entre otros.

Anexo 1 Pruebas estadísticas Modelo Policéntrico distancias inversas

Tabla 1 PRUEBA DE MULTICOLINEALIDAD

1/VIF	VIF	Variable
0.070073	14.27	q15
0.120821	8.28	q10
0.123699	8.08	q13
0.147756	6.77	q19
0.180186	5.55	q11
0.199864	5.00	g16
0.201300	4.97	q20
0.202703	4.93	q18
0.318675	3.14	q21
0.331916	3.01	q9
0.355758	2.81	q12
	6.07	Mean VIF

1/VIE	VIF	Variable
0.175595	5.69	q8
0.184590	5.42	q6
0.213234	4.69	q5
0.217678	4.59	q4
0.242867	4.12	q54
0.244551	4.09	q24
0.352447	2.84	q26
0.357147	2.80	q23
0.359557	2.78	q7
0.362513	2.76	q25
0.367031	2.72	q22
0.378975	2.64	q51
0.437959	2.28	q55
	3.65	Mean VIF

Estimación a 5km del DCN

Estimación a 10km del DCN

1/VIF	VIF	Variable
0.181390	5.51	q33
0.190398	5.25	q28
0.207233	4.83	q31
0.210680	4.75	q34
0.245997	4.07	q27
0.264092	3.79	q52
0.276935	3.61	q32
0.319391	3.13	q29
0.340238	2.94	q50
0.394541	2.53	q3
0.401787	2.49	q57
0.420023	2.38	q30
0.449931	2.22	92
0.611737	1.63	q1
0.691013	1.45	q56
	3.37	Mean VIF

Estimación a 15km del DCN

Tabla 2 Prueba de normalidad de residuos

Estimación	n Slows	dal	DCN

	Variable		Pr(Skewness)			joint ——— Prob>chi2
_	residuall	65	0.3606	0.4997	1.34	0.5126

Estimación a 10km del DCN

Skewness/Kurtosis tests for Normality

					Towns
Variable	Obs	Pr(Skewness)	Pr(Kurtosis)	adj chi2(2)	Prob>chi2
residual2	65	0.0884	0.0086	8.52	0.0141

Estimación a 15km del DCN

Skewness/Kurtosis tests for Normality

Variable	Obs	Pr(Skewness)	Pr(Kurtosis)		Prob>chi2
residual3	65	0.1989	0.2506	3.10	0.2121

Tabla 3 PRUEBA DE HOMOSCEDASTICIDAD

White's test for Bo: homoskedasticity
against Ba: unrestricted heteroskedasticity

against Ha: unrestricted heteroskedastic

chi2(60) = 64.85 Prob > chi2 = 0.3113

Cameron & Trivedi's decomposition of IM-test

p	df	chi2	Source
0.3113	60	64.85	Heteroskedasticity
0.9910	11	2.98	Skewness
0.7902	1	0.07	Kurtosis
0.6145	72	67.90	Total

White's test for Ho: homoskedasticity against Ha: unrestricted heteroskedasticity

chi2(63) = 64.74 Prob > chi2 = 0.4157

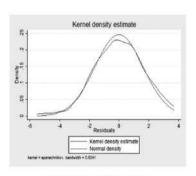
Cameron & Trivedi's decomposition of IM-test

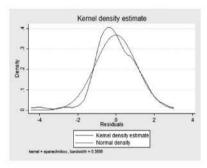
b	df	chi2	Source
0.415	63	64.74	Heteroskedasticity
0.9987	1.3	2.75	Skewness
0.2560	1	1.29	Kurtosis
0.736	77	68.78	Total

Estimación a 5km del DCN

Estimación a 10km del DCN

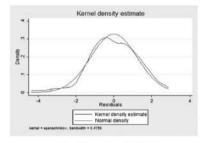
White's test for Ho: homoskedasticity
against Ha: unrestricted heteroskedasticity


chi2(62) = 64.83 Prob > chi2 = 0.3782


Cameron & Trivedi's decomposition of IM-test

Source	chi2	#f	P
teroskedasticity	64,83	62	0.3782
Skewness	3.17	15	0.9994
Kurtosis	0.40	1	0.5283
Total	68.40	78	0.7728

Estimación a 15km del DCN


Tabla 3
Normalidad residuos

Estimación a 5km del DCN

Estimación a 10km del DCN

Estimación a 15km del DCN

Anexo 2 Matriz de distancias parroquiales

۵	П												ĺ	į								ı		ı		i	į		j		j		ı						ı		ı		ı		ı		ı												ı								
LALIBERTAD	12.44	12.13	9.76	8.31	7.40	4.87	5.38	6.21	3.72	4.38	2.00	2 18	07.70	70.7	14.58	4.33	0.00	1.32	3.77	2.14	4.53	4.91	6.81	9.17	0 17	2.17	07.0	61.01	11.09	12.21	12.22	15.40	12.31	13.76	13.99	15.03	17.06	20.04	19 95	29 97	28.41	36.70	10 71	45.74	53.97	36.44	38.92	40.96	45.42	46.51	19.05	14.13	9.32	13.96	16.79	8.28	96'6	12.96	16.76	31.00	18.44	27.24	20.89	24.42	28.64	28.40	27.61
PUENGASI	12.86	11.79	10.76	8.35	8.99	7.26	6.63	5.76	4.81	43,93	5.06	4.05	000	2.30	18.65	00.0	4.33	2.89	2.73	4.24	5.59	3.80	6.23	7.87	0.03	30.46	10.40	11.05	11.48	11.63	10.10	13.47	13.49	14.36	14.16	16.29	17.56	24.19	21.16	30.35	31.43	39.58	43.43	48.95	57.78	36.66	39.50	41.27	45.13	46.51	18.53	13.22	5.78	10.22	15.10	4.93	5.78	89.6	12.49	27.16	27.16	24.50	18.27	21.06	25.69	25.56	26.25
ПОА	19.04	20.34	15.85	17.03	13.43	13.79	15.80	18.20	16.12	17.69	14.72	15.72	27.07	17.49	0.00	18.65	14.58	16.13	18.46	16.00	17.59	18.96	20.07	19.02	21 57	10.33	22.61	20.76	61.22	23.58	25.94	27.61	21.27	23.08	24.17	22.27	25.91	19.64	28.42	36 34	32.35	29.37	38 44	38.06	44.40	44.26	45.23	47.69	53.65	50.54	30.29	26.15	23.46	29.25	24.20	19.93	24.48	26.11	30.76	43.16	32.43	42.57	34.65	39.67	43.92	42.23	39.43
CHIMBACALLE	11.29	10.58	9.23	6.47	7.07	5.01	4.53	4.31	2.67	2.16	2 68	25	500	0.00	17.49	2.30	2.62	2.15	3.34	3.70	5.69	4.97	7.07	7.98	10.05	10.03	10.31	11.31	12.05	12.59	12.10	14.92	13.67	14.85	14.91	16.27	18.01	23.21	21.12	30.09	31.86	37.87	42.41	47.24	57.02	37.00	40.60	42.31	46.73	48.91	19.39	14.45	7.74	12.79	15.20	5.57	7.81	9.92	14.23	28.59	17.18	26.45	20.01	23.03	27.86	28.11	27.41
LA MAGDALENA CHIMBACALLE	10.52	10.14	8.24	89.9	5.88	3.51	3.52	3.98	1.80	2.45	1 29	000	000	#CT	15.72	4.05	2.18	2.64	4.66	3.98	80'9	90'9	8,53	8.94	10.07	11.37	17.71	12.29	12.91	13.43	13.42	16.28	14.38	15.60	15.66	17.07	18.70	21.48	17.51	31 29	30.88	37.81	42.01	46.73	56.25	37.70	40.84	43.07	47.66	47.08	20.41	15.50	9.60	14.51	16.44	6.07	9.71	11.48	15.86	29.83	18.85	27.96	21.90	24.90	29.74	29.68	29.13
CHILIBULO	12.92	10.37	7.91	6.75	5.32	2.92	3.50	4.79	2.17	3.56	000	1 29	2.00	2.00	14.72	9.06	2.00	3.04	5.16	4.01	6.34	6.47	8.44	8.72	11 05	10.54	10.34	12.07	12.89	13.70	13.92	16.65	13.78	15.25	15.84	16.74	18.59	22.00	22.18	31 29	30.70	35 97	41.46	47.12	24.82	38.09	40.95	43.01	47.27	48.26	20.13	16.66	10.20	15.39	16.89	7.06	10.66	13.05	16.37	30.45	19.50	28.69	22.58	25.99	30.29	30.56	29.73
A FERROVIARIA	9.36	89.8	7.56	5.37	5.70	4.28	3.27	2.28	2.24	00'0	3.56	2.45	246	01.2	17.69	43.93	4.38	3.88	5.11	5.69	7.49	99.9	9.24	9.87	11.82	13.50	17.30	13.34	13.08	14.65	13.52	16.79	15.77	16.73	16.69	18.89	20.12	25.24	23.30	32.80	32 51	40.55	44.27	48.93	57.95	39.24	42.39	44.24	48.54	48.75	21.46	16.16	8.67	13.54	14.39	3.74	7.95	62.6	13.76	27.54	18.48	26.94	21.36	24.09	27.86	29.17	29.31
SAN BARTOLO LA FERROVIARIA	8.70	8.58	6.48	4.98	4.43	2.33	1.89	2.70	0.00	2.24	2.17	180	200	70.7	16.12	4.81	3.72	4.25	6.07	5.82	7.73	7.70	9,85	10.53	12.52	10.52	12.07	70.07	14.33	15.30	14.65	17.77	15.95	17.12	17.36	18.63	20.41	22.61	23.70	33 53	35.21	37.70	43.85	47.84	56.56	39.73	42.53	44.73	49.17	49.93	21.63	17.14	11.01	15.47	13.18	00.9	10.19	11.74	16.02	29.38	20.12	28.39	23.22	25.75	30.28	31.07	30.49
LAARGELIA	6.87	6.14	5.37	2.44	4.24	3.93	2.02	0.00	2.70	2.28	4 79	3 48	2000	4.31	18.20	5.76	6.21	6.20	7.62	77.7	9.74	00'6	11.44	12.19	14 37	14.37	13.03	15.69	10.23	16.96	15.82	18.62	18.04	19.15	19.27	20.77	22.22	25,54	25.88	35.67	36.13	41.16	45.06	50.89	58.95	19.86	14.09	46.76	20.60	52.03	23.57	18.46	10.64	14.78	12.42	3.77	9.02	9.92	14.42	26.50	20.47	26.12	26.12	25.45	30.79	30.96	31.51
SOLANDA	98'9	6.95	4.42	3.16	2.83	1.92	00'0	2.02	1.89	3.27	3.50	3 52	1.72	4.03	15.80	6.63	5.38	5.38	7.86	7.46	9.55	9.29	11.50	11.72	14.34	14.34	14.37	15.12	10.25	17.20	16.35	19.53	17.62	19.06	19.06	20.12	22.03	25.56	25.36	35.81	33.73	30.75	44.21	48.99	57.36	41.86	44.32	46.37	50.28	20.67	24.04	18.99	12.05	16.69	13.62	90'9	11.26	11.95	16.52	28.48	21.49	28.48	24.62	26.64	31.78	32.63	31.83
LA MENA	8.05	8.53	5.16	5.01	2.42	0.00	1.92	3,93	2.33	4.28	2 92	3.51	10.0	3.01	13.79	7.26	4.87	6.11	8.24	6.93	9.13	9.40	11.65	11.47	14 24	13.44	13.00	14.91	15.84	16.90	16.86	19.82	16.93	18.42	18.89	19.15	21.69	23.53	25.27	33.20	34.85	37.82	43.45	46.65	55.30	40.89	43.52	45.61	50.73	50:05	24.12	19.05	12.50	17.79	14.43	7.89	12.22	13.55	18.45	29.98	22.18	30.75	25.70	23.37	32.41	32.98	32.30
CHILLOGALLO	5.94	6.63	2.65	3.62	00:0	2.42	2.83	4.24	4.43	5.70	5.32	000	100	/0/	13.43	8.99	7.40	8.15	10.34	9.46	11.88	11.71	13,83	14.23	16.50	16.00	10.03	77.47	18.3/	19.14	18.99	21.98	19.17	20.66	21.12	21.96	23.99	25.73	27.66	36 39	35.11	40.12	44.81	48.12	56.61	43.69	45.91	48.12	53.01	53.30	26.59	21.54	14.58	18.81	13.80	7.96	13.72	13.87	18.50	29.92	24.31	32.19	27.40	29.71	34.69	35,30	34.61
оптимве	4.36	4.23	2.98	0.00	3.62	5.01	3.16	2.44	4.98	5.37	6.75	899	0.00	0.47	17.03	8.35	8.31	8.71	10.23	10.26	12.26	11.77	14.32	14.73	16.68	17.13	17.13	16.23	18.80	19.47	18.40	21.59	20.24	21.56	21.67	22.68	24.83	27.87	28.34	36.26	38.76	42.11	47.81	51.08	59.91	44.56	47.04	49.11	53.52	53.67	26.62	21.37	13.69	17.17	9.27	00.9	12.00	11.62	16.12	27.04	23.82	28.25	26.35	27.92	32.89	33.86	33.95
LA	3.30	4.65	0.00	2.98	2.65	5.16	4.42	5.37	6.48	7.56	7 91	8 24	0.23	57.53	15.85	10.76	9.76	10.67	12.67	11.85	14.00	14.00	15.96	16.62	18 03	10.03	10.91	19.46	77.07	21.68	21.19	24.26	21.98	23.18	23.84	23.87	26.73	27.27	30.30	39 11	38.86	41.45	47.06	50.12	58.61	45.90	48.50	50.89	54.95	55.41	33.64	23.55	16.47	20.87	11.55	8.71	14.80	14.52	19.61	29.05	25.85	31.54	53.27	30.91	35.71	36,99	36.25
TURUBAMBA	2.57	0.00	4.65	4.23	6.63	8.53	6.95	6.14	8.58	89'8	10.37	10.14	40.10	10.56	20.34	11.79	12.13	12.38	13.77	13.82	12.62	15.21	17.62	18.77	20.40	20.40	27.13	22.07	22.37	22.94	21.50	24.93	24.13	25.36	25.32	27.12	28.94	31.21	32.34	40.59	41.76	46.33	51.43	55.02	62.88	46.67	50.86	52.72	57.05	58.29	30.28	24.59	16.39	19.05	5.68	7.34	14.12	12.10	16.49	25.48	25.48	28.97	28.86	29.12	34.60	36.13	34.47
GUAMANI	00'0	2.57	3.30	4.36	5.94	8.05	98.9	6.87	8.70	9.36	12 92	10.52	47.40	17.49	19.04	12.86	12.44	12.86	14.57	14.36	16.76	16.12	18,14	19.11	21 08	24.00	21.23	22.31	23.23	23.74	22.50	25.78	24.71	25.96	26.13	27.32	29.05	30.48	32 74	41.81	42.05	46.65	51 60	52.59	61.75	48.37	51.59	53.11	58.03	58.82	30.19	25.80	16.81	21.09	8.90	9.18	14.90	14.66	19.00	26.32	27.14	32.60	30.40	31.79	36.05	37.81	38.54
PARROQUIAS	GUAMANI	TURUBAMBA	LA ECUATORIA NA	QUITUMBE	CHILLOGALLO	LAMENA	SOLANDA	LAARGEUA	SAN BARTOLO	LA FERROVIARIA	CHIIBIIIO	LAMAGDAIFNA	CHIPPOCONTIL	CHIMBACALLE	LLOA	PUENGASI	LALIBERTAD	CENTRO HISTORICO	ITCHIMBIA	SANJUAN	BELISARIO QUEVEDO	MARISCAL SUCRE	IÑAGUITO	RUMIPAMBA	MINIMA	COCHADARADA	COCHAPAINBA	CONCEPCION	KENNEDY	SAN ISIDRO DEL INCA	NAYON	ZAMBIZA	COTOCOLLAO	PONCEANO	COMITE DELPUEBLO	EL CONDADO	CARCELEN	**ONON	POMASOLI1**	SAN ANTONIO**	CAIACAII**	NANEGALITO	NAMEGAI	GIALFA	PACTO	PUFILARO	PERUCHO	CHAVEZPAMBA	ATAHUALPA	SAN JOSE DE MINAS	CALDERON	LLANO CHICO	CUMBAYA	TUMBACO	AMAGUAÑA	CONOCOTO	GUANGOPOLO	ALANGASI	LA MERCED	PINTAG	PUEMBO	PIFO	TABABELA	YARUQUI	CHECA	EL QUINCHE	GUAYLLABAMBA

-	_
_	_
-	_
\sim	`
٠.ر	_
_	_
	╮
	,
- 7	-
_ <	1
	•
_	`
_	_
_	
Н	
_	_
()
_	•
-	١
_	•
_	_
0	
_	`
_	`
_	١
_	•
_	_
	_
_	=
_	г.

	PONCEAN		25.36	23.18	21.56	20.66	18.42	19.05	17.12	16.73	15.25	15.60	14.85	14 36	13.76	13.21	11.74	11.73	9.26	10.42	7.18	5.81	4.69	3.64	3.17	3.62	8 67	1.51	0.00	1.94	2.83	3.19	6.71	16.67	18.20	30.60	38.00	48.49	22.76	25.37	32 41	32.76	7.68	6.02	15.50	30.17	20.00	16.11	22.44	39.40	14.16	15.33	21.89	24.69	21.43	
	COTOCOLLAO		24.13	21.98	20.24	19.17	16.93	18.04	15.95	15.77	13.78	14.38	13.67	13.49	12.31	12.41	10.80	10.43	8.20	9.54	6.24	5.69	3.32	2.80	3.38	4.54	0 tr 0	0.00	1.51	3.26	2.62	13.28	8.06	17.11	18.89	31.32	37.74	47.77	23.49	26.52	33.95	32.94	9.64	6.83	16.39	29.08	18.89	16.15	22.67	39.37	14.82	31.59	23.57	26.54	23.24	
	ZAMBIZA		24.93	24.26	21.59	21.98	19.82	18.62	17.77	16.79	16.65	16.28	14.92	13.47	15.40	13.99	11.70	13.08	10.98	10.58	9.13	6.58	9.37	8.26	6.20	2.63	0.00	9.58	8.62	6.93	11.25	9.12	11.90	19.81	24.42	38.58	45.95	56.57	24.54	28.19	32.76	36.38	5.85	2.37	8.08	27.42	17.46	12.09	16.60	33.80	6.21	20.02	14.19	16.93	14.82	
	NAYON		21.50	21.19	18.40	18.99	16.86	15.82	14.65	13.52	13.92	13.42	12.10	10.10	12.22	10.89	8.63	10.32	8.42	7.43	2.20	4.93	8.48	7.40	5.93	0.00	2 88	9.43	8.97	7.51	11.73	22.49	13.50	22.88	26.66	39.85	36.23	57.34	27.11	31.26	36.16	39.05	8.55	4.02	5.15 6.51	25.25	14.09	8.97	14.58	31.02	6.93	8.86	14.64	18.65	15.77	
	SAN ISIDRO DEL	5	22.94	21.68	19.47	19.14	16.90	16.96	15.30	14.65	13.70	13.43	12.59	11.63	12.21	11.10	9.18	9.84	7.60	7.83	5.42	3.01	4.64	3.11	1.49	0.00	5.29	4.54	3.82	2.35	6.27	5.63	90.6	17.94	21.97	34.38	41.96	52.26	23.58	27.55	24.71	35.33	8.03	3.18	11.30	26.52	16.29	12.60	19.30	35.63	10.60	12.21	18.39	22.17	15.89	
	KENNEDY		22.37	20.77	18.80	18.37	15.84	16.23	14.33	13.68	12.89	12.91	12.06	11.48	11.09	10.40	8.84	8.96	6.56	7.42	4.21	2.70	3.11	1.76	0.00	L.49	6.20	3.38	3.17	2.88	4.16	17.61	10.53	20.41	20.97	33.59	41.63	51.29	25.90	28.97	35.44	36.61	9.01	4.35	11.32	26.08	15.61	12.14	18.66	35.98	11.69	13.51	19.84	22.05	17.99	
	CONCEPCION		22.07	19.48	18.23	17.42	14.91	15.89	16.62	13.34	12.07	12.29	11.31	11.05	10.19	9.73	8.65	7.91	5.90	7.18	3.59	3.23	1.46	0.00	1.76	2.40	8.26	2.80	3.64	4.12	5.87	16.80	10.62	20.48	20.73	31.73	33.52	49.85	26.51	28.98	36.08	36.75	10.26	6.32	13.69	27.03	15.22	13.20	20.08	37.31	13.74	15.46	21.33	24.78	18.78	
	COCHAPAMBA		21.15	18.91	17.13	16.09	13.66	15.03	12.67	12.58	10.54	11.21	10.51	10.46	9.16	8,75	8.04	7.29	4.99	6.33	3.15	3.59	0.00	1.46	3.11	8.48	0.40	3.32	4.69	5.32	6.20	13.86	11.31	20.29	22.61	31.82	39.86	49.51	27.32	29.92	32.06	37.77	10.90	7.69	14.26	25.06	15.79	13.59	20.49	36.85	15.01	16.68	22.87	26.90	24.03	
CONTINUACION	JIPUAPA		20.40	18.93	16.68	16.50	14.24	14.37	12.52	11.82	11.05	10.97	10.05	9.03	9.17	8.38	6.46	7.05	4.74	86.56	2.72	0.00	3.59	3.23	2.70	3.01	26.49	5.69	5.81	5.27	8.24	17.94	12.50	21.41	23.22	34.74	42.82	52.99	27.71	30.67	36.59	38.20	10.25	5.18	11.12	24.11	14.27	10.03	17.02	34.74	11.02	13.58	18.58	20.95	19.07	
_	RUMIPAMBA		18.77	16.62	14.73	14.23	11.47	12.19	10.53	9.87	8.72	8.94	7.98	7 8.7	9.17	6.52	5.28	4.96	2.84	3.75	0.00	2.72	3.15	3.59	4.21	2.42	9.13	6.24	7.18	7.02	8.82	17.97	13.59	23.72	24.09	33.27	30.20	51.99	29.00	32.29	38.96	41.00	12.10	7.73	12.30	23.05	12.90	10.88	17.47	34.10	13.63	15.87	21.88	25.83	23.87	
A LEXO A	IÑAQUITO		17.62	15.96	14.32	13.83	11.65	11.44	9.82	9.24	8.44	8.53	7.07	6 23	6.81	2.67	3.69	4.49	2.70	2.56	2.10	2.61	4.94	4.85	4.97	5.68	8.44	7.38	8.06	7.75	10.48	19.65	14.96	23.73	26.16	36.27	37.20	54.10	29.73	33.37	39.11	41.46	12.92	7.45	5.03	22.05	11.40	8.53	15.74	32.16	12.03	14 64	19.54	23.31	22.81	
	MARISCAL	SUCKE	15.21	14.00	11.77	11.71	9.40	9.00	7.70	99'9	6.47	90'9	4.97	18.96	4.91	3.68	1.44	2.77	2.05	0.00	3.75	4.98	6.33	7.18	7.42	7.43	10.58	9.54	10.42	10.06	12.59	13.55	17.21	26.41	27.86	37.46	30.00	55.03	32.31	35.70	37.40	42.51	14.47	9.66	10.11	20.09	9.41	7.38	14.62	31.17	13.24	16.48	19.89	24.87	23.21	
	BELISARIO	GUEVEDO	12.62	14.00	12.26	11.88	9.13	9.55	7.73	7.49	6.34	6.08	5.69	5.59	4.53	4.08	3.01	2.01	0.00	2.05	2.84	4.74	4.99	5.90	9.56	8.42	10.98	8.20	9.26	9.57	11.45	19.96	16.50	25.46	26.87	34.98	43.41	52.92	31.95	35.08	41.67	42.42	15.07	9.95	12.03	20.56	10.48	9.73	16.84	33.56	15.07	17.39	22.30	26.73	23.66	
	SAN JUAN		13.82	11.85	10.26	9.46	6.93	7.77	5.82	5.69	4.01	3.98	3.70	16.00	2.14	1.74	2.53	0.00	2.01	7.77	4.96	7.05	7.29	7.91	8.96	10.32	13.08	10.43	11.73	11.74	13.06	21.75	18.26	28.26	29.70	36.74	44.82	53.74	34.07	37.27	43.30	43.81	16.73	11.89	13.23	17.81	90.6	9.18	16.06	30,95	16.10	18.97	22.95	27.05	26.96 25.12	
	ПСНІМВІА		13.77	12.67	10.23	10.34	8.24	7.62	6.07	5.11	5.16	4.66	3.34	18.46	3.77	2.37	00.0	2.53	3.01	1.44	5.28	6.46	8.04	8.65	8.84	9.10	11 70	10.80	11.74	11.81	13.82	21 15	18.32	28.22	29.59	37.03	40.80	55.49	34.09	37.20	36.74	45.03	15.61	10.93	10.23	18.46	8.19	7.08	13.94	29.95	14.16	17.05	20.88	25.15	23.59	
	CENTRO	HISTORICO	12.38	10.67	8.71	8.15	6.11	5.38	4.25	3.88	3.04	2.64	2.15	2.89	1.32	0.00	2.37	1.74	4.08	3.08	6.52	8.38	8.75	9.73	10.40	10.89	13 99	12.41	13.21	13.35	14.91	21 46	15.14	29.88	29.99	37.42	45.78	24.88	35.79	38.55	40.01	45.27	18.40	12.95	12.70	16.24	6.50	8.20	14.87	29.45	16.60	19.38	22.55	27.07	26.51	
	PARROQUIAS		TURUBAMBA	LA ECUATORIANA	QUITUMBE	CHILLOGALLO	LAMENA	SOLANDA	SAN BARTOLO	LA FERROVIARIA	CHILIBULO	LA MAGDALENA	CHIMBACALLE	PLIENGASI	LALIBERTAD	CENTRO HISTORICO	ITCHIMBIA	SANJUAN	BELISARIO QUEVEDO	MARISCAL SUCRE	RUMIBAMBA	JIPUAPA	COCHAPAMBA	CONCEPCION	KENNEDY	NAVON	ZAMBIZA	COTOCOLLAO	PONCEANO	COMITE DELPUEBLO	EL CONDADO	NONO**	POMASOUI**	SAN ANTONIO**	CALACALI**	NANEGALITO	GIAIFA	PACTO	PUELLARO	PERUCHO	ATAHIDI PA	SAN JOSE DE MINAS	CALDERON	LLANO CHICO	TIMBACO	AMAGUAÑA	CONOCOTO	GUANGOPOLO	LA MERCED	PINTAG	PUEMBO	TARABLA	YARUQUI	CHECA	EL QUINCHE GUAYLLABAMBA	

_
_
ý
\Box
٩
\supset
Z
F
Z
O
8
<u>S</u>
2 (Co
o 2 (Co
xo 2 (Co
exo 2 (Co
nexo 2 (Co
Anexo 2 (Co

COMITE DEL					Z Na	7 7 7	AIIEAU Z (CONTINUACION	CIOIN							SAN IOSE DE
	EL CONDADO	CARCELEN	NONO**	POMASQUI**	ANTONIO**	CALACALI**	NANEGALITO	NANEGAL	GUALEA	PACTO	PUELLARO	0	CHAVEZPAMBA	ATAHUALPA	MINAS
	27.32	29.05	30.48	32.74	41.81	42.05	46.65	51.69	52.59	61.91	48.37	51.59	53.11	58.03	58.82
	27.12	28.94	31.21	32.34	40.59	41.76	46.33	51.43	55.02	63.15	46.67	50.86	52.72	57.05	58.29
	23.87	26.73	27.27	30.30	39.11	38.86	41.45	47.96	50.12	58.55	45.90	48.50	50.89	54.95	55.41
	89.77	24.83	18/7	78.34	30.20	38.76	42.11	4/81	51.08	59.14	44.56	47.04	49.11	53.52	53.6/
	1015	21.50	23.73	35 37	30.39	30.11	40.1Z	43.45	40.12	20.43	45.09	43.53	40.12	55.01	55.30
	19.15	21.09	23.33	77.57	33.20	34.65	37.62	44.740	40.02	33.08	40.69	43.52	45.01	50.73	20:02
	20.72	22.22	25.54	25.88	35.67	36.12	41.16	45.96	50.89	8. 82	19.86	14.09	46.76	50.60	52.03
	18,63	20.41	22.61	23.70	33.53	35.21	37.70	43,85	47.84	55.81	39.73	42.53	44.73	49.17	49.93
	18.89	20,12	25.24	23,30	32.80	33,51	40.55	44.27	48,93	58.24	39.24	42.39	44.24	48,54	48.75
	16.74	18.59	22.00	22.18	31.29	30.79	35.97	41.46	47.12	54.75	38.09	40.95	43.01	47.27	48.26
	17.07	18.70	21.48	17.51	31.29	30.88	37.81	42.01	46.73	55.02	37.70	40.84	43.07	47.66	47.08
	16.27	18.01	23.21	21.12	30.09	31.86	37.87	42.41	47.24	56.21	37.00	40.60	42.31	46.73	48.91
24.17	22.27	25.91	19.64	28.42	36.34	32.35	29.37	38.44	38.06	46.46	44.26	45.23	47.69	53.65	50.54
	16.29	17.56	24.19	21.16	30.35	31.43	39.58	43.43	48.95	57.74	36.66	39.50	41.27	45.13	46.51
	15.03	17.06	20.04	19.95	29.97	28.41	36.70	40.71	45.74	53.52	36.44	38.92	40.96	45.42	46.51
	14.91	16.62	21.46	15.14	29.88	29.99	37.42	40.14	45.78	55.09	35.79	38.55	40.81	44.91	45.27
11.81	13.82	14.91	21.15	18.32	28.22	29.59	37.03	40.86	46.20	56.17	34.09	37.20	38.74	43.04	45.03
_	13.06	14.76	21.12	18.26	28.26	29.70	36.74	39.27	44.82	53.87	34.07	37.27	39.30	43.30	43.81
	11.45	12.67	19.96	16.50	25.46	26.87	34.98	37.77	43.41	53.72	31.95	35.08	37.03	41.67	42.42
	12.59	13.55	20.72	17.21	26.41	27.86	37.46	38.60	45.58	54.27	32.31	35.70	37.46	41.86	42.51
	10.48	11.00	19.65	14 96	23.73	26.16	36.77	37.26	44.65	53.00	20.73	33.37	35.11	39 17	41.46
	000	20.00	17.07	43 50	CZ CC	34.00	22.27	07:50	44.50	53.47	00.00	00.00	24.42	30.00	41.00
7.02	70'0	07.07	17.37	13,39	77.67	24.09	23.27	30.20	4 1.03	75.47	25.00	32.23	0440	20.30	41.00
,	8.24	8.67	17.94	12.50	21.41	23.22	34.74	36.00	42.82	53.61	27.71	30.67	33.04	36.59	38.20
5.32	6.20	7.97	13.86	11.31	50.29	22.61	31.82	32.70	39.86	48.93	27.32	29.92	32.06	37.16	37.77
2	5.87	96.9	16.80	10.62	20.48	20.73	31.73	33.52	40.12	50.45	26.51	28.98	31.24	36.08	36.75
~	4.16	2.06	17.61	10.53	20.41	20.97	33.59	34.08	41.63	52.13	25.90	28.97	31.00	35.44	36.61
10	6.27	5.63	16.95	90'6	17.94	21.97	34.38	33.57	41.96	52.92	23.58	27.55	29.35	34.21	35.33
L	11.73	10.56	22.49	13.50	22.88	26.66	39.85	38.23	46.87	57.39	27.11	31.26	33.13	36.16	39.05
	11.25	9 12	21.57	11 90	19.81	24.42	38 58	37.49	45.95	57.46	24 54	28 19	29.84	32.28	36.38
	2.62	4.62	13.28	8.06	17 11	18 80	31 32	20 08	37.78	48.28	23.49	26.52	28 68	33.05	32 94
	283	2 10	14 21	6.71	16.67	18.20	30.50	30.33	38.00	48.80	22.76	25.37	27.61	32.41	32 76
	4.37	3.13	17:47	17.0	10:07	10.20	30.00	30.33	390.00	40.03	24.70	25.37	10.72	32.41	32.70
0.00	4.37	3.37	0.72	0.00	10.09	10.00	31.4/ 911.00	21.37	23.00	27.77	70.17	20.00	27.30	31.30	32.04
, ,	000	3.03	11.00	0.10	74.30	14.33	20.12	50.03	33.40	40.34	27.32	23.30	1407	31.73	30.03
	2.03	0.00	14./3	10.0	13.00	14.30	50.73	50.04	37.03	40.31	19.07	22.20	24.43	29.44	20.42
.5	11.00	14.75	00'0	14.15	18.48	13.43	16.54	21.04	25.19	35.15	26.54	26.27	29.35	35.80	30.62
2	6.18	3.81	14.15	0.00	9.64	11.95	28.83	26.83	36.10	47.70	16.19	18.96	21.26	25.89	26.39
93	14.90	13.88	18.48	9.64	0.00	6.85	28.60	21.59	34.03	45.05	8.84	69.6	12.42	18.03	16.46
18.05	14.93	14.38	13.43	11.95	6.85	000	21.48	13.88	25.47	36.87	14.88	12.90	15.58	22.49	17.43
2	27.82	30.73	16.54	28.83	28.60	21.48	00'0	14.98	8.72	18.35	35.27	32.12	34.46	42.73	34.16
	26.93	28.64	21.04	26.83	21.59	13.88	14 98	000	15.30	25.64	24.87	20.61	22.85	30.03	14 11
	25.46	27.62	25.10	36.10	34.03	25.47	67.9	15.30	000	12.05	20.73	25.07	27.03	45.00	22.24
3 2	45.00	40.72	00 10	30.10	45.00	72.74	27.00	00.00	0000	0000	20.40	40.00	40.70	10,00	44.20
2 1	40.00	40.07	33.30	40.30	40.52	37.24	27.77	20.03	10.07	0.00	30.40	40.43	40.33	33.01	1.30
21.07	21.32	19:07	20.34	10.19	90.0	14.00	23.27	70.67	59.75	30.40	0.00	0.90	0.00	9.74	24.72
2 5	24.00	24.40	20.27	10.30	5,03	12.30	32.12	20.02	33.07	40.43	3.30	0.00	2.00	7.07	0.10
2 9	26.41	24.43	29.35	21.26	12.42	15.58	34.45	58.77	37.01	48.53	6.66	7.66	0.00	1.73	8.75
31.58	31.75	29.44	35.80	52.89	18.03	67.77	47.73	30.03	45.08	25.61	9./4	9.6/	1.73	0.00	13.62
\$	30.89	30.42	30.62	26.39	1b.4b	17.43	34.15	19.11	33.34	44.38	14.72	9.13	8.76	13.62	0.00
	9.15	2.67	19.52	6.64	13.06	18.17	34.54	31.47	42.41	53.42	18.39	21.82	22.65	25.97	30.63
6	8.42	6.41	19.19	9.17	17.75	21.38	35.38	33.79	43.82	54.40	23.47	27.05	28.57	32.11	35.14
11	15.12	14.49	28.23	18.09	26.73	29.52	40.34	41.40	49.41	59.29	32.28	35.70	37.46	40.87	44.22
14.56	18.48	16.86	28.23	19.86	27.46	32.79	45.21	44.06	53.50	64.25	31.95	36.35	37.89	40.43	44.69
28.90	32.42	33.59	37.61	36.55	44.23	46.09	52.17	56.27	62.43	71.03	51.03	54.84	55.54	59.87	61.96
20 01	22.20	21 07	27.00	25.47	35 13	07.70	43.00	75.74	E 3 33	23 11	40.40	44.30	45.74	40.41	67 73
	10 50	10.50	37.36	21.62	30.47	33.00	43.50	45.20	53.02	62 6A	36.19	20.77	41.71	44.31	47.69
13.14	34.77	22.30	27.73	26.03	30.47	30.00	43,33	40.29	53.07	56 33	30.10	39.77	41.71	46.31	47.00
	7/1-17	23.39	31.73	20.02	50.05	36.95	47.03	49.00	27.21	25.00	40.20	44.41	45.70	46.79	22.65
	25.26	24.84	34.68	27.44	36.17	40.18	50.81	51.73	60.33	69.43	40.26	44.52	45.95	47.87	53.22
	41.98	41.65	20.68	42.04	52.77	56.64	67.11	62.89	75.91	85.28	26.67	62.88	63.03	63.30	70.19
12.47	16.78	14.41	27.66	16.19	23.23	29.33	42.75	41.47	51.64	62.97	26.74	30.97	33.14	34.01	40.61
28.34	33.80	31.81	44.21	32.87	39.51	45.24	29.86	57.34	67.26	78.01	40.47	45.78	46.48	46.52	54.59
_	17.64	13.99	28.37	16.40	22.12	28.45	44.16	41.06	51.91	63.04	24.67	29.55	30.03	32.15	38.19
20.11	25.71	22.74	35.49	24.64	28.92	35.89	51.58	49.25	59.80	70.21	30.82	36.55	37.05	37.63	45.61
	77.67	22.03	37.03	24.89	70 67	25.17	52.22	40.67	02.03	73 13	30.00	34.00	35.53	24.77	43.00
	27.07	20.02	31.02	20.02	23.00	33.17	23.22	45.07	00.70	72.13	23.52	24.30	20:00	34.77	43.00
	23.73	70:40	34.03	70.07	72.55	31.10	49,33	43.78	56.14	bp./4	06.22	56,34	29.24	27.99	30,93
15.18	18.05	14.61	27.83	13.81	14.81	22.23	41.41	34.78	47.95	59.38	14.43	19.62	20.31	20.73	28.29

_	_
-	,
_	_
٠Ć)
-	₹
٠,	2
<	Į,
-	7
=	Ξ,
_	_
-	-
-	_
2	2
_	
٧,	ર્
۲	3
2	3
7)	3
2/10	3
2)/	2
7)/60	3
7)/	20 4 00
7) / C	77 7 77
) C 0 vo	7 7 7 7
J) C uxous	
) C 0 vo	
) C 0 vo	

77.14 71.14 71.14 71.14 71.14 71.14 71.14 71.16 71 MINING MARKET AND A STATE OF THE ADMINISTRATION OF THE ADMINISTRAT MANOPOLO

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419

14419 1.15 (1.5) (30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18
30.18 KENNEDY
SAN ISDRO DEL INCA
MAYON
ZAMBIZA
COTOCOLLAO
COMITE DEL PUEBLO
EL CONDADO
CARCELEN
CARCELEN LUGASI
PUENGASI
CENTRO HISTORICO
CENTRO HISTORICO
TICHMABIA
SAN JUAN
BELISARIO QUEVEDO
MARISCAL SUCRE
RIGAQUITO
RUMINAMBA ATAHUALPA
SAN JOSE DE MINAS
CALDERON
ILANO CHICO
CUMBAYA
TUMBAYA
TUMBAYA
CONOCOTO
GUANGOPOLO
GUANGOPOLO
ALANGOPOLO
ALANGO PARROQUIAS GUAMANI
TURBAMBA
IA ECUATORIAN
GUITUMBE
CHILLOGALLO
IA MENA
SAN BARTOLO
IA ARGELIA
SAN BARTOLO
ILA RAGGALEN
CHILBULO
CHILBULO
CHIMBACALLE
LUOA POMASQUI**
SAN ANTONIO**
CALACALI**
NANEGALTO
NANEGAL
GUALEA PERUCHO CHAVEZPAMBA COCHAPAMBA PACTO PUELLARO

Anexo 3 Jerarquización de Actividades económicas parroquiales

יבויטווקטויקטוי	A EIN BASE SE	JENANGOIA EN BASE SECTOR PRIMANO		JENANGOIA	IN BASE SECT	JENARGUIA EN BASE SECTOR SECONDARIO	2	JENANGOLA	EN BASE SEC	JENARQUIA EN BASE SECION TENCIANIO	
Parroquia	Primario	Secundario	Terciario	Parroquia	Primario	Secundario	Terciario	Parroquia	Primario	Secundario	Terciario
GUALEA	1	65	63	EL CONDADO	36	1	45	MARISCAL SUCRE	48	09	7
PUELLARO	2	61	62	GUANGOPOLO	24	2	47	CONCEPCION	46	26	2
SAN JOSE DE MINAS	က	62	61	SAN ANTONIO**	26	3	46	LA MAGDALENA	59	53	33
CHAVEZPAMBA	4	63	09	LA MERCED	23	4	44	IÑAQUITO	32	58	4
PACTO	2	52	64	COMITE DEL PUEBLO	44	2	40	RUMIPAMBA	37	55	2
PERUCHO	9	64	29	AMAGUAÑA	22	9	42	ITCHIMBIA	53	49	9
NONO**	7	23	65	POMASQUI**	29	7	39	CHIMBACALLE	58	48	7
LLOA	00	57	57	LLANO CHICO	28	00	38	JIPIJAPA	40	51	∞
ATAHUALPA	6	59	26	PINTAG	19	6	20	KENNEDY	49	47	6
NANEGAL	10	20	28	CARCELEN	35	10	36	SAN BARTOLO	62	45	10
CHECA	11	34	54	ZAMBIZA	27	11	37	SOLANDA	09	44	11
EL QUINCHE	12	46	52	GUAMANI	38	12	35	CENTRO HISTORICO	64	42	12
NANEGALITO	13	54	48	PIFO	20	13	43	BELISARIO QUEVEDO	26	43	13
CALACALI**	14	15	22	PONCEANO	33	14	34	LA MENA	57	38	14
GUAYLLABAMBA	15	40	51	CALACALI**	14	15	55	SAN JUAN	63	36	15
TABABELA	16	41	49	TURUBAMBA	42	16	33	PUENGASI	54	35	16
YARUQUI	17	28	23	CALDERON	41	17	30	CHILIBULO	55	32	17
PUEMBO	18	33	41	LA ECUATORIANA	43	18	28	CUMBAYA	30	39	18
PINTAG	19	6	20	LA ARGELIA	20	19	56	LA UBERTAD	65	30	19
PIFO	20	13	43	COTOCOLLAO	34	20	59	LA FERROVIARIA	61	26	20
NAYON	21	37	31	TUMBACO	25	21	32	CONOCOTO	39	31	21
AMAGUAÑA	22	9	42	COCHAPAMBA	52	22	24	QUITUMBE	51	29	22
LA MERCED	23	4	44	NONO**	7	23	65	SAN ISIDRO DEL INCA	47	27	23
GUANGOPOLO	24	2	47	CHILLOGALLO	45	24	25	COCHAPAMBA	52	22	24
TUMBACO	25	21	32	ALANGASI	31	25	27	CHILLOGALLO	45	24	25
SAN ANTONIO**	26	3	46	LA FERROVIARIA	61	26	20	LA ARGELIA	20	19	56
ZAMBIZA	27	11	37	SAN ISIDRO DEL INCA	47	27	23	ALANGASI	31	25	27
LLANO CHICO	28	∞	38	YARUQUI	17	28	23	LA ECUATORIANA	43	18	28
POMASQUI**	29	7	39	QUITUMBE	51	29	22	COTOCOLLAO	34	20	59
CUMBAYA	30	39	18	LA LIBERTAD	92	30	19	CALDERON	41	17	30
ALANGASI	31	25	27	CONOCOTO	39	31	21	NAYON	21	37	31
IÑAQUITO	32	28	4	CHILIBULO	55	32	17	TUMBACO	25	21	32
PONCEANO	33	14	34	PUEMBO	18	33	41	TURUBAMBA	42	16	33
COTOCOLLAO	34	20	53	CHECA	11	34	54	PONCEANO	33	14	34
CARCELEN	35	10	36	PUENGASI	54	35	16	GUAMANI	38	12	35

Anexo 3 (Continuación)

EL CONDADO	2	Secundario	Terciario	Parroquia	Primario	Secundario	Terciario	Parroquia	Primario	Secundario	Terciario
	36	1	45	SAN JUAN	63	36	15	CARCELEN	35	10	36
RUMIPAMBA	37	55	2	NAYON	21	37	31	ZAMBIZA	27	11	37
GUAMANI	38	12	35	LA MENA	57	38	14	LLANO CHICO	28	00	38
CONOCOTO	39	31	21	CUMBAYA	30	39	18	POMASQUI**	29	7	39
IPIJAPA	40	51	∞	GUAYLLABAMBA	15	40	51	COMITE DEL PUEBLO	44	2	40
CALDERON	41	17	30	TABABELA	16	41	49	PUEMBO	18	33	41
TURUBAMBA	42	16	33	CENTRO HISTORICO	64	42	12	AMAGUAÑA	22	9	42
LA ECUATORIANA	43	18	28	BELISARIO QUEVEDO	26	43	13	PIFO	20	13	43
COMITE DEL PUEBLO	44	2	40	SOLANDA	09	44	11	LA MERCED	23	4	44
CHILLOGALLO	45	24	25	SAN BARTOLO	62	45	10	EL CONDADO	36	1	45
CONCEPCION	46	99	2	EL QUINCHE	12	46	52	SAN ANTONIO**	26	С	46
SAN ISIDRO DEL INCA	47	27	23	KENNEDY	49	47	6	GUANGOPOLO	24	2	47
MARISCAL SUCRE	48	09	1	CHIMBACALLE	28	48	7	NANEGALITO	13	54	48
KENNEDY	49	47	6	ITCHIMBIA	53	49	9	TABABELA	16	41	49
LA ARGELIA	20	19	56	NANEGAL	10	20	28	PINTAG	19	6	20
QUITUMBE	51	29	22	JIPIJAPA	40	51	∞	GUAYLLABAMBA	15	40	51
COCHAPAMBA	52	22	24	PACTO	2	52	64	EL QUINCHE	12	46	52
ITCHIMBIA	53	49	9	LA MAGDALENA	59	53	cc	YARUQUI	17	28	53
PUENGASI	54	35	16	NANEGALITO	13	54	48	CHECA	11	34	54
CHILIBULO	55	32	17	RUMIPAMBA	37	55	2	CALACALI**	14	15	55
BELISARIO QUEVEDO	26	43	13	CONCEPCION	46	26	2	ATAHUALPA	6	59	26
LA MENA	57	38	14	ILOA	∞	57	57	LLOA	00	57	57
CHIMBACALLE	28	48	7	IÑAQUITO	32	58	4	NANEGAL	10	20	28
LA MAGDALENA	59	53	c	ATAHUALPA	6	59	26	PERUCHO	9	64	59
SOLANDA	09	44	11	MARISCAL SUCRE	48	09	1	CHAVEZPAMBA	4	63	09
LA FERROVIARIA	61	26	20	PUELLARO	2	61	62	SAN JOSE DE MINAS	c	62	61
SAN BARTOLO	62	45	10	SAN JOSE DE MINAS	c	62	61	PUELLARO	2	61	62
SAN JUAN	63	36	15	CHAVEZPAMBA	4	63	09	GUALEA	1	65	63
CENTRO HISTORICO	64	42	12	PERUCHO	9	64	29	PACTO	2	52	64

Anexo 4
Densidades de empleo parroquiales

Parroquias	Densidad de Empleo	Parroquias	Densidad de Empleo
GUAMANÍ	16.26	EL CONDADO	7.13
TURUBAMBA	13.09	CARCELÉN	27.23
LA ECUATORIANA	10.84	NONO**	0.04
QUITUMBE	23.87	POMASQUI**	5.92
CHILLOGALLO	16.47	SAN ANTONIO**	1.27
LA MENA	22.96	CALACALÍ	0.09
SOLANDA	81.24	NANEGALITO	0.10
LA ARGELIA	35.38	NANEGAL	0.04
SAN BARTOLO	74.86	GUALEA	0.07
LA FERROVIARIA	45.53	PACTO	0.06
CHILIBULO	26.15	PUELLARO	0.30
LA MAGDALENA	50.97	PERUCHO	0.30
CHIMBACALLE	76.99	CHAVEZPAMBA	0.24
LLOA	0.01	ATAHUALPA	0.09
PUENGASÍ	25.90	SAN JOSÉ	0.09
LA LIBERTAD	46.39	CALDERÓN	8.78
CENTRO HISTÓRICO	53.69	LLANO CHICO	6.11
ITCHIMBÍ	14.91	CUMBAYÁ	5.87
SAN JUAN	13.66	TUMBACO	3.51
BELISARIO QUEVEDO	17.84	AMAGUAÑA	2.20
MARISCAL SUCRE	26.12	CONOCOTO	7.87
IÑAQUITO	15.72	GUANGOPOLO	1.26
RUMIPAMBA	14.95	ALANGASÍ	3.68
JIPIJAPA	30.11	LA MERCED	1.15
COCHAPAMBA	11.93	PÍNTAG	0.15
CONCEPCIÓN	31.79	PUEMBO	1.92
KENNEDY	52.56	PIFO	0.29
SAN ISIDRO DEL INCA	32.77	TABABELA	0.49
NAYÓN	4.92	YARUQUÍ	1.11
ZAMBIZA	2.39	CHECA	0.44
COTOCOLLAO	58.19	EL QUINCHE	0.98
PONCEANO	40.69	GUAYLLABAMBA	1.33
COMITÉ DEL PUEBLO	40.26		

BIBLIOGRAFÍA

- Arias, Leonardo y Tangya Tandazo (2014), *Análisis de la Actividad Económica a partir del empleo del Distrito Metropolitano de Quito, año 2010.* https://goo.gl/WhePd7 [1 de diciembre de 2015].
- Avendaño, Antonio (2008), *Identificación de subcentros de empleo y estimación de funciones de densidad para Bogotá, D.C.* (Documento de Investigación). Universidad Autónoma de Barcelona. https://goo.gl/bLLvCq[20 de diciembre de 2015].
- Becerril Pauda, Martín (2000), *Policentrismo en las ciudades latinoamericanas*. *El caso de Santiago de Chile*. https://goo.gl/W2vmZn [5 enero de 2016].
- Cuenin, Fernando y Mauricio Silva (2010), *Identificación y fortalecimiento de centralidades urbanas. El caso Quito*. Banco Interamericano de Desarrollo, Washington.
- FAO (Organización de las Naciones Unidas para la Agricultura y la Alimentación) (1983), Cambios en los límites políticos de Quito (1535-1983). http://www.fao.org/docrep/w7445s/w7445s03.gif [7 de enero de 2016].
- Carrión Mena, Fernando (1992), "La planificación de Quito. Del Plan Director a la ciudad democrática", en Alicia Torres y Edmundo Guerra (eds.), *Ciudades y Políticas Urbanas en América Latina*. http://works.bepress.com/fernando carrion/70/> [15 de febrero de 2016].
- Frankena, Mark W. (1978), "A bias in estimating urban population density functions", *Journal of Urban Economics*, 5 (1), pp. 35-45.
- Fujita, Masahisa (1989), *Urban Economic Theory: Land use and city size*, Cambridge University Press, New York.
- Fujita, Masahisa, Paul Krugman y Anthony Venable (2000), *Economía espacial:* las ciudades, las regiones y el comercio internacional, Ariel, Barcelona.
- García López, Miguel Ángel e Iván Muñiz Olivera (2007). "¿Policentrismo o dispersión? Una aproximación desde la Nueva Economía Urbana", *Investigaciones Regionales*, 11, pp. 25-43.
- Garrocho, Carlos y Juan Campos (2007), "Dinámica de la estructura policéntrica del empleo terciario en el área metropolitana de Toluca, 1994-2004", *Papeles de Población*, 13 (52), pp. 109-135.
- Gonzales de Olarte, Efraín y Juan Manuel del Pozo Segura (2012), "Lima, una ciudad policéntrica. Un análisis a partir de la localización del empleo", *Investigaciones Regionales*, 23, pp. 29-52.
- Gujarati, Damodar N. (2010). Econometria, McGraw-Hill Interamericana, México.
- Harris, Chauncy y Edward Ullman (1945), "The Nature of the Cities", *Annals of the American Academy of Political and Social Science*, 242, pp. 7-17.
- Instituto de la Ciudad, Área de Investigación (2012), Empleo y actividad económica. https://goo.gl/rXb9bk [20 de febrero de 2016].

- Congreso Nacional de Quito (2001), Ley Orgánica de Régimen para el Distrito Metropolitano de Quito, Congreso Nacional, Quito.
- McDonald, John (1987), "The identification of urban employment subcenters", *Journal of Urban Economics*, 21 (2), pp. 242-258.
- McDonald, John y Paul Prather (1994), "Suburban Employment Centers: The Case of Chicago", *Urban Studies*, 31 (2), pp. 201-218.
- McMillen, Daniel (2001), "Nonparametric Employment Subcenter Identification", Journal of Urban Economics, 50 (3), noviembre, pp. 44-473.
- Muñiz Olivera, Iván, Anna Galindo y Miguel Ángel García López (2003), ¿Es Barcelona una ciudad policéntrica? https://www.researchgate.net/publication/277260233> [10 de marzo de 2016].
- Núñez Sánchez, Jorge (2003), *Pueblos, ciudades y regiones en la historia del Ecuador*, Letramia, Ouito.
- Ortiz Crespo, Gonzalo (2006), Quito: historia y destino: ensayos y discursos sobre el pasado y el futuro de una ciudad extraordinaria, Trama, Quito.
- Ramírez Carrasco, Francisco (2003), *Valoración espacial*, Universidad Técnica de Cataluña, Barcelona.
- Ramírez, Luz Dary (2009), "Revisión teórica de la estructura espacial y la identificación de subcentros de empleo", *Ensayos de Economía*, 18 (33), pp. 141-178.
- Richardson, Harry W. (1973), Economía regional: teoría de la localización, estructuras urbanas y crecimiento regional, Vincens-Vives, Barcelona.
- Roca Cladera, Josep, Carlos Marmolejo Duarte y Montserrat Moix (2009). "Urban Structure and Polycentrism: Towards a Redefinition of the Subcentre Concept", *Urban Studies*, 46 (13), pp. 2841-2868.
- Rojas Quezada, Carolina Alejandra, Iván Muñiz Olivera y Miguel Ángel García López (2009), "Estructura urbana y policentrismo en el Área Metropolitana de Concepción", *Eure*, 35 (105), pp. 47-70.
- Secretaría de Territorio (2016), Hábitat y Vivienda. Información Estadística, Quito. https://goo.gl/BG9MAf [15 de marzo].
- Sjoberg, Gideon (1988), Origen y evolución de las ciudades, UNAM, México.
- Villalobos, Fabio (2012a), Tumbaco, difusión y profundización de los resultados del estudio sobre las características económicas y productivas de las administraciones zonales, Instituto de la Ciudad, Quito.
- Villalobos, Fabio (2012b), Eloy Alfaro, difusión y profundización de los resultados del estudio sobre las características económicas y productivas de las administraciones zonales, Instituto de la Ciudad, Quito.
- Villalobos, Fabio (2012c), La Delicia, difusión y profundización de los resultados del estudio sobre las características económicas y productivas de las administraciones zonales, Instituto de la Ciudad, Quito.
- Villalobos, Fabio (2012d), Los Chillos, difusión y profundización de los resultados del estudio sobre las características económicas y productivas de las administraciones zonales, Instituto de la Ciudad, Quito.

- Villalobos, Fabio (2012e), Quitumbe, difusión y profundización de los resultados del estudio sobre las características económicas y productivas de las administraciones zonales, Instituto de la Ciudad, Quito.
- Vinuesa, Julio (1991), *Planteamientos teóricos sobre localización y organiza- ción de la ciudad*, Madrid.

Vol. 14 (1) Semestre enero-junio de 2018 Núm. 45

Artículos

Informal earnings in the labour market: the Mexican case/

Los ingresos informales en el mercado de trabajo: el caso mexicano.

Luis Huesca Linda Llamas

Análisis de los patrones de gasto en bienes energéticos con perspectiva de género / Analysis of the expenditure patterns on energy goods with a gender perspective

Perla Rocío Arellano Salazar

Joana Cecilia Chapa Cantú

Inversión extranjera directa y crecimiento del empleo. Evidencia empírica de los sectores económicos en México (1980-2015)/ Foreign direct investment and employment growth. Empirical evidence of the

economic sectors in México (1980-2015)

Cesaíre Chiatchoua Omar Neme Castillo

Ana Lilia Valderrama Santibáñez

Política exógena y evolución de la industria automotriz en

Aguascalientes / Exogenus policy and evolution of the automotive industry in Aguascalientes

Fernando Padilla Lozano

Olivia Flores Castillo

Facultad de Economía

Universidad Autónoma de Coahuila