

Paradigma económico. Revista de economía regional y sectorial

ISSN: 2007-3062 ISSN: 2594-1348

paradigmaeconomico@uaemex.mx

Universidad Autónoma del Estado de México

México

Gaytán Alfaro, Edgar David; Rodríguez Quintero, Axel Arside
Impacto de la ausencia simulada de la actividad minera en México: el caso de Zacatecas
Paradigma económico. Revista de economía regional
y sectorial, vol. 12, núm. 1, 2020, -Junio, pp. 29-57
Universidad Autónoma del Estado de México
México

Disponible en: https://www.redalyc.org/articulo.oa?id=431564803004

Número completo

Más información del artículo

Página de la revista en redalyc.org

Sistema de Información Científica Redalyc

Red de Revistas Científicas de América Latina y el Caribe, España y Portugal Proyecto académico sin fines de lucro, desarrollado bajo la iniciativa de acceso

abierto

Impacto de la ausencia simulada de la actividad minera en México: el caso de Zacatecas

Edgar David Gaytán Alfaro* y Axel Arside Rodríguez Quintero**

RESUMEN

El objetivo de la presente investigación es analizar los efectos que en la economía del estado de Zacatecas tiene la hipotética extracción del subsector 212 de minería de minerales metálicos y no metálicos acorde al Sistema de Clasificación Industrial de América del Norte (SCIAN). Los resultados resaltan el impacto hacia el conjunto de la estructura productiva en Zacatecas considerando un esquema regional de insumo-producto. Se distinguen los subsectores con mayor afectación ante el escenario descrito en su perspectiva de demanda intermedia. Finalmente, se exploran alternativas sectoriales para la diversificación y fortalecimiento del mercado interno a partir de un enfoque de sostenibilidad del medio ambiente.

Palabras clave: Estudios sectoriales; minería de otros recursos no renovables; Crecimiento económico; economía de Zacatecas.

Clasificación JEL: L7; L72; O40.

^{*} Profesor-investigador de tiempo completo en el Departamento de Estudios Económicos, El Colegio de la Frontera Norte, México, Correo electrónico: davidgaytan@colef.mx

^{**} Maestro en Economía Regional y Sectorial. Correo electrónico: axelrodriguez394@gmail.com

ABSTRACT

Simulated absence impact of mining activity in Mexico: the case of Zacatecas

The purpose of this research is to analyse the hypothetical extraction effect over the 212 mining of metallic and non-metallic minerals subsector at the Zacatecas' state economy in accordance with the North American Industrial Classification System (NAICS). The results highlight the impact towards the whole productive structure in Zacatecas. They indicate a regional input-output scheme, specifically, they distinguish the subsectors with the greatest impact on the scenario described at their intermediate demand perspective. Finally, it will explore sectorial alternatives for diversification and internal market modifications based on an environmental sustainability approach.

Keywords: Sector Studies; Mining of Other Non-Renewable Resources; Economic growth; Economy of Zacatecas.

JEL Classification: L7; L72; O40.

INTRODUCCIÓN

La minería es una actividad productiva que depende totalmente de la dotación de los recursos del subsuelo de una región para su explotación (Benita *et al.*, 2012). A nivel macro se considera como una actividad productiva generadora de ingresos; pero a nivel micro, genera externalidades negativas para la población que habita cerca de las explotaciones mineras de mediana y gran escala (Martínez, 2016).

Su importancia a nivel mundial radica en que es una actividad que provee de insumos a múltiples industrias, genera empleos e infraestructura, y produce efectos de derrama hacia otras actividades económicas. En México, la minería tiene gran tradición (se remonta a los tiempos precolombinos); está presente en 24 de las 32 entidades (Bancomext, 2015). La nación se ubica dentro de los 13 principales productores mundiales de 24 minerales, debido a la riqueza del subsuelo de diversos minerales de importancia internacional, entre los que destacan la plata, en primer lugar, y el oro, en séptimo. Por lo anterior, es señalada como una "actividad estratégica para el desarrollo nacional" (DOF, 2014; Servicio Geológico Mexicano, 2019). No obstante, en el país las explo-

taciones mineras se distinguen porque no promueven la diversificación económica local y no se encuentran integradas a otras actividades de la región (García *et al.*, 1998).

El surgimiento de la minería actual se centra en los años 1992, 1993 y 1996. En 1992 se permitió la comercialización de tierras ejidales debido a la modificación del artículo 27 constitucional. En 1993 se modificó la Ley Minera, y en 1996 se permitió que empresas extranjeras tuvieran propiedades o concesiones mineras debido a cambios en la Ley de Inversión Extranjera (Ceja, 2014).

En 2018 Zacatecas produjo 21.61% de la producción minera, lo que la ubica en el segundo lugar nacional sólo por debajo de Sonora (SGM, 2019). Esta entidad se caracteriza por un nivel de industrialización bajo, por lo que Delgado *et al.* (1991) aseveran que, si no fuera por la minería en la entidad, este nivel sería, inclusive, menor. Como actividad esencial, ha generado múltiples asentamientos poblacionales debido a los yacimientos de minerales y, subsecuentemente, inversión acompañada de un relativo dinamismo de la economía. A pesar de lo anterior, Benita et al. afirman que la minería es una ventaja comparativa tradicional y una "condición necesaria, pero de ninguna manera suficiente, para garantizar el desarrollo económico" (2012: 57).

Por lo anterior, el objetivo de la presente investigación es analizar los efectos que en la economía zacatecana tiene la hipotética extracción del subsector 212 de minería de minerales metálicos y no metálicos del Sistema de Clasificación Industrial de América del Norte (SCIAN). Esta región está condicionada por una configuración productiva poco diversificada y cuyos procesos históricos determinaron un patrón de especialización acendrado hacia la actividad minera. En el contexto de su particular tejido productivo, ha implicado escasos procesos de articulación sectorial y de conformación de redes de proveeduría sustentadas en procesos de acumulación de riqueza tendientes a la transmigración de actividades definidas por la agregación de valor con base en la tecnificación, la productividad y una mayor retribución a los factores de la producción.

La investigación consta de cuatro apartados. En el primero se presenta una revisión de literatura referente a la actividad minera en Zacatecas, así como de metodologías para el análisis de sectores clave mediante el uso de matrices insumo-producto. En el segundo, se explicita la metodología de extracción hipotética. En el tercero se describen

los resultados obtenidos y discusión de ellos. Finalmente, se exponen las conclusiones y la valoración normativa del estudio.

1. REVISIÓN DE LITERATURA

1.1. Minería en Zacatecas

La actividad minera en Zacatecas se remonta a tiempos precolombinos y cobra un especial impulso durante el periodo colonial. En 1549, esta región era considerada como las de mayor importancia en el desarrollo de la minería debido al método de amalgamación que generaba mayor rendimiento de la plata, aunado a los abundantes minerales y las cuantiosas explotaciones que permitían transferir cuantiosos volúmenes a España. Así, Zacatecas se convirtió en uno de los centros económicos más importantes en la Nueva España (Burnes, 2006; Martínez, 2016; Gaytán *et al.*, 2018).

Bakewell (1976) y Burnes (1987) explican amplia y detalladamente la minería en Zacatecas en el siglo XIX para conocer la evolución de esta actividad. Mientras que Alberro (1985) señala los ciclos económicos de largo plazo y su relación con la producción minera.

En 2012 se constituye el Clúster Minero de Zacatecas (Clusmin), el cual integra a empresas mineras de importancia como Peñoles S.A de C.V.; Minera Frisco, S.A.B. de C.V.; Fresnillo PLC S.A. de C.V.; Capstone Gold, S.A. de C.V., y Goldcorp S.A., así como instituciones académicas y de gobierno y más de 40 empresas proveedoras. Este Clúster se establece con el fin de representar compañías mineras y proveedoras, además de realizar investigación y desarrollos para mejorar la eficiencia en los procesos productivos (Solleiro *et al.*, 2017).

La minería de oro en el estado representó 17.4% del total nacional en 2017. Peñasquito de Goldcorp fue la productora más importante de este metal en ese año. La plata, por su parte, aporta 42% del total de la producción nacional debido a las empresas Peñasquito, Saucito y Fresnillo; tan sólo la primera empresa, contribuye con 11.5% del total. En zinc también es la principal, con 48.7% de la producción mexicana gracias a las empresas Goldcorp e Industrias Peñoles. En 2017, la producción zacatecana contabilizó 13.26%. Cabe destacar que ha habido una importante reducción del territorio concesionado a pesar del incremento del número de títulos. En 2005 existían 2,316 títulos que abarcaban concesiones de 1.64% de la entidad; en 2012 se dio la mayor

cobertura, ya que 40.17% del territorio estaba concesionado a 2,618 títulos. En 2019 disminuyó drásticamente a 0.02% de la entidad para 2,671 títulos (Camimex, 2018; SGM, 2018).

En años recientes, la explotación de los yacimientos minerales lo realizan en su mayoría empresas extranjeras. Esto ocasiona una menor articulación entre los sectores económicos al interior de la entidad dado que ni invierten ni demandan ni ofertan insumos en Zacatecas. Aunado a ello, la economía estatal no ha realizado cambios importantes en su perfil productivo debido a que el gobierno estatal no han generado las condiciones favorables o políticas requeridas para lograr dichos cambios (Gaytán *et al.*, 2017).

1.2. Análisis de sectores clave: extracción hipotética

Conocer los sectores productivos de la actividad económica es esencial para identificar aquellos que dinamicen e impulsen una economía, así como planificar y generar políticas que propicien crecimiento económico y desarrollo regional. Esto favorecerá la mejora de indicadores macroeconómicos y microeconómicos (Cardenete y Delgado, 2011; Temurshoev, 2009; Sancho y Cardenete, 2014).

La detección de los sectores clave se puede obtener por múltiples metodologías. Por ejemplo, para Hirschman (1958; citado por Viladecans, 1999), pueden identificarse a partir de un razonamiento de encadenamientos que pueden ir hacia atrás (backward linkages), cuando un sector demanda insumos de otros, lo que genera efectos de producción en otras industrias. Y los encadenamientos hacia adelante (forward linkages), cuando un sector provee de insumos a otros para continuar con el proceso de producción.

Rasmussen (1956; citado por Sancho y Cardenete, 2014) señala que es posible detectar los sectores por medio del poder de dispersión y de absorción económica. El primero ofrece insumos a otras áreas, y el segundo, al análisis de la afectación de un sector cuando el resto incrementa una unidad su demanda final. Los ramos clave se obtienen por cálculos a partir de la Matriz Inversa de Leontief.

Al respecto, Chenery y Watanabe (1958) señalan que los encadenamientos hacia atrás cuantifican la capacidad de un sector de arrastrar al resto por la demanda bienes intermedios, por lo que estimula la actividad de las otras áreas. Éste se calcula como una proporción de las compras intermedias al sector entre el total de su producción efectiva (Moncaleano, 2015).

Por su parte, los Coeficientes de Streit cuantifican tanto los encadenamientos hacia atrás y hacia adelante como los vínculos sectoriales directos e indirectos. Se calcula como la media aritmética de los cuatro encadenamientos posibles entre dos sectores, lo que genera una matriz de efectos multiplicadores (Moncaleano, 2015).

2. METODOLOGÍA

De manera cronológica, la primera propuesta de la metodología de extracción hipotética (HEM, por sus siglas en inglés), fue la Paelinck *et al.* (1965), que fue mejorada en trabajos realizados por Strassert (1968), Schultz (1977), Cella (1984), Clements (1990) y Heimler (1991). Asimismo, son destacables las investigaciones de Miller & Lahr (2001), así como Cai y Leung (2004). En la presente investigación se aplica la metodología de Dietzenbacher *et al.* (1993)¹.

El HEM permite cuantificar la importancia de uno o varios sectores por su relevancia económica tras la hipotética extracción de un área. La producción reducida debido a la eliminación del sector cuantifica los vínculos que se generan, así como las dependencias con las que el ramo cuenta. De esta manera es posible determinar los ámbitos con mayor importancia en una economía (Guerra, 2011; Andreosso-O'Callaghan y Yue, 2004).

La metodología de extracción hipotética permite analizar los efectos que tendrían el resto de los sectores a partir de su eliminación del modelo insumo-producto, particularmente en la submatriz de demanda intermedia. La extracción implica que el ramo no vende ni compra ningún insumo intermedio a sí mismo u a otros; es decir, se supone que las importaciones satisfacen la oferta y demanda del sector extraído. Este método busca cuantificar los eslabonamientos para el resto de las áreas que generan la extracción o eliminación de un sector. Se calcula la diferencia entre el *output* total alcanzado a partir del total de los sectores y el "*output* disminuido", que se obtiene por la eliminación de algún

Se utilizó el lenguaje Python 3.6 empleando la propuesta operativa de Nazara et al. (2003), en el marco de los trabajos del Laboratorio de Economía Aplicada de la Universidad de Illinois y el Banco de la Reserva Federal en Chicago, para el desarrollo metodológico.

área específica, para cuantificar la importancia del sector extraído. Esta metodología se utiliza principalmente para detectar ramos clave (Yuhuan *et al.*, 2016; Llano, 2009; Yu *et al.*, 2006).

El HEM genera dos efectos: el de arrastre y el de difusión, es decir, hacia atrás y hacia adelante, respectivamente. En el primero se hace uso de la Matriz Inversa de Leontief; en el segundo se utiliza la matriz Ghoshiana² (Cansino *et al.*, 2013). En esta investigación se busca cuantificar el valor bruto de la producción (VBP) tras la eliminación de los sectores, tanto hacia atrás como hacia adelante.

El VBP tras la eliminación de un sector se cuantifica mediante la Matriz Inversa de Leontief. Esto se expresa como:

$$x - \bar{x} = \begin{pmatrix} x^1 - \bar{x}^1 \\ x^R - \bar{x}^R \end{pmatrix} = \begin{cases} \begin{bmatrix} L^{11} & L^{1R} \\ L^{R1} & L^{RR} \end{bmatrix} - \begin{bmatrix} (I - A^{11})^{-1} & 0 \\ 0 & (I - A^{RR})^{-1} \end{bmatrix} \\ f^R \end{pmatrix}$$
 (1)

Donde x es el VBP total del sistema con todos los sectores, x el VBP extraído el sector de estudio, L la Matriz Inversa de Leontief, A la matriz de coeficientes técnicos, f el vector de demanda final, los supraíndices f y f señalan el sector eliminado y el resto de los sectores económicos, respectivamente; y el subíndice f0, el orden de las matrices que coincidirá con el de los sectores productivos de la matriz insumo-producto.

Para el segundo efecto, el de difusión o hacia adelante, se utiliza la Matriz Inversa Ghoshiana (G), el vector de insumos primarios (ν) y la matriz de coeficientes de distribución (B). Es decir:

$$x - \bar{x} = (v^{l'} - v^{r'}) = \left\{ \begin{bmatrix} G^{11} & G^{1R} \\ G^{R1} & G^{RR} \end{bmatrix} - \begin{bmatrix} (I - B^{11})^{-1} & 0 \\ 0 & (I - B^{RR})^{-1} \end{bmatrix} \right\}$$
 (2)

La reducción del VBP tras la extracción de los subsectores no solamente es por la formación de riqueza, sino también por el intercambio de insumos en el aparato productivo, en donde existen interdependencias sectoriales que generan una serie de afectaciones.

² El uso de la matriz Ghoshiana en la metodología de extracción hipotética resulta del trabajo de Ghosh (1958). Se obtiene del impacto en la estructura de insumos ocasionado por modificaciones en los costos cuantificados en la composición de valor agregado de cada sector.

Los cálculos se realizaron a partir de la matriz insumo-producto regional de Zacatecas, a una desagregación de 56 subsectores según el Sistema de Clasificación Industrial para América del Norte. Aunque ésta es de 79 subsectores, solamente se hizo uso de aquellos que tienen información de los Censos Económicos 2014, esto es, 56 subsectores de información. De tal desagregación de la matriz, el subsector de mayor interés es el 212 de Minería de minerales metálicos y no metálicos, excepto petróleo y gas, debido a su importancia en la actividad económica zacatecana

3. RESULTADOS

Se hizo uso de la Matriz de Insumo Producto de la Economía de Zacatecas cuantificada en millones de pesos a precios básicos de 2013 (MIP-Zac-13), para la obtención de los resultados. Lo anterior se define como un proceso de regionalización de Insumo Producto que fue llevado a cabo por recursos *no survey*, siguiendo la metodología propuesta por Flegg y Webber (1997), la cual, en primera instancia, requiere el cálculo del coeficiente con el mismo nombre de los autores:

$$FLQ_{ij} = (CILQ_{ij})(\lambda_r^{\delta})(a_{ij}) \tag{3}$$

Donde:

FLQij= Coeficiente de Flegg-Webber; CILQij= Coeficientes de localización de industria cruzada; λ^{δ}_{r} = Factor de ponderación del tamaño relativo de la región; aij= Coeficientes técnicos nacionales de insumo producto.

De la ecuación 3 se desprende λ^{δ}_{r} como un elemento clave, debido a que ilustra un ponderador del tamaño relativo de la región contenido en δ , que puede ser igual o mayor a la unidad. Basados en la evidencia empírica, para Flegg y Webber fijar un logaritmo base dos representa una ponderación promedio del tamaño relativo de la región subnacional; cualquier otra discrepa de la media, hecho que indica autosuficiencia de

la región, o bien una subrepresentación de los territorios subnacionales. De manera que:

$$\lambda_r^{\delta} = \log_2(1 + Y_r/Y_n)^{\delta} \tag{4}$$

Donde:

 Y_r = Valor agregado bruto regional; Y_r = Valor agregado bruto nacional.

3.1. Backward Linkage

Los resultados obtenidos de los Backward Linkage se muestran en el Cuadro 1. Se aprecia que el subsector 431 de Comercio es el que genera mayor impacto en la formación de VBP, porque se perdería 19.71%, lo que es superior a 2.88% generado en la MIP-ZAC-13. Posteriormente, se puede observar que los subsectores relativos a las manufacturas también impactarían de manera importante al VBP, debido a la gran demanda de insumos que requieren para realizar sus actividades productivas. Sin embargo, el subsector 312 de Industria de las bebidas y del tabaco muestra que la aportación al VBP (19.37%) es mayor al impacto que generaría tras su hipotética extracción (4.12%), lo cual puede explicarse dado que requieren de importantes insumos para la producción de la planta cervecera en los que se ha invertido, pero que, por su prescindencia, se destinarían en menor cantidad a otros subsectores.

En cuanto al subsector 212 de Minería de minerales metálicos y no metálicos, excepto petróleo y gas, objeto de estudio de esta investigación, se muestra que generaría un impacto considerablemente menor a lo que actualmente aporta al VBP, lo cual puede deberse a que requiere de múltiples insumos para realizar las actividades que genera; no obstante, ante la eliminación del subsector, los insumos serían utilizados en menor medida en otros.

Cuadro 1
IMPORTANCIA DE SUBSECTORES DE LA MIP-ZAC-13 POR VBP ANTE LA APLICACIÓN DE LA
HEM BACKWARD LINKAGE (MILLONES DE PESOS A PRECIOS BÁSICOS)

No.	Subsector	VBP Perdido*	% Aportación al VBP MIP-Zac-13**	Impacto HEM***
431	Comercio	1,084.85	2.88	19.72
336	Fabricación de equipo de transporte	1,014.42	12.35	18.44
311	Industria alimentaria	329.66	2.46	5.99
327	Fabricación de productos a base de minerales no metálicos	328.65	1.20	5.97
332	Fabricación de productos metálicos	319.55	1.64	5.81
212	Minería de minerales metálicos y no metálicos, excepto petróleo y gas	310.13	44.96	5.64
326	Industria del plástico y del hule	226.87	0.97	4.12
312	Industria de las bebidas y del tabaco	226.71	19.37	4.12
561	Servicios de apoyo a los negocios	207.49	0.98	3.77
522	Instituciones de intermediación crediticia y financiera no bursátil	133.53	1.65	2.43

^{*} Monto del Valor Bruto de la Producción que se perdería en el aparato del conjunto productivo ante la ausencia simulada del subsector respectivo.

3.2. Forward Linkage

Se cuantifica la importancia de los subsectores debido a su participación en la demanda intermedia como proveedores de insumos y de procesos de generación de valor; es decir, encadenamientos hacia adelante. La extracción de un sector implicaría la imposibilidad de una economía de contar y proveer de los insumos requeridos para el proceso de producción. Los resultados se muestran en el Cuadro 2.

El subsector 431 de Comercio es el que mayor impacto generaría en el VBP tras su hipotética extracción, ya que disminuiría 20.63%, en comparación con 2.88% que genera en la MIP-Zac-13. Es decir, no genera VBP, pero es un importante proveedor de insumos. Se muestran diversos subsectores referentes a las manufacturas que impactarían más tras su eliminación que lo que generan en la MIP-Zac-13, debido a que

^{**} Porcentaje de aportación a la formación del VBP.

^{***} Porcentaje de reducción en el VBP como medida de impacto en el conjunto de la economía.
Fuente: elaboración propia con los resultados de la Metodología de Extracción Hipotética de la MIPZac2013.

son productores de insumos a otros subsectores. Por su parte, el impacto tras la eliminación del subsector 312 de Industria de las bebidas y del tabaco sería menor que el que genera.

Respecto al subsector 212 de Minería de minerales metálicos y no metálicos, excepto petróleo y gas, ocasionaría un impacto de 5.91% del VBP, lo que es menor al 44.95% que genera. Esto hace referencia a que no es proveedor de insumos a otros subsectores, ya sea para su transformación y agregación de valor o para la comercialización, sino que es, predominantemente, una actividad extractiva.

Cuadro 2
IMPORTANCIA DE SUBSECTORES DE LA MIP-ZAC-13 POR VBP ANTE LA APLICACIÓN DE LA HEM *FORWARD LINKAGE* (MILLONES DE PESOS A PRECIOS BÁSICOS)

No.	Subsector	VBP Perdido*	% Aportación al VBP MIPZac13**	Impacto HEM***
431	Comercio	1,149.05	2.88	20.63
336	Fabricación de equipo de transporte	1,004.41	12.35	18.04
327	Fabricación de productos a base de minerales no metálicos	329.22	1.20	5.91
212	Minería de minerales metálicos y no metálicos, excepto petróleo y gas	329.19	44.96	5.91
332	Fabricación de productos metálicos	321.81	1.64	5.78
311	Industria alimentaria	320.54	2.46	5.76
326	Industria del plástico y del hule	230.26	0.97	4.13
561	Servicios de apoyo a los negocios	219.13	0.98	3.93
312	Industria de las bebidas y del tabaco	214.56	19.37	3.85
522	Instituciones de intermediación crediticia y financiera no bursátil	130.10	1.65	2.34

^{*} Monto del Valor Bruto de la Producción que se perdería en el aparato del conjunto productivo ante la ausencia simulada del subsector respectivo.

Al sujeto de estudio, el subsector 212 de Minería de minerales metálicos y no metálicos, excepto petróleo y gas, muestra que, tanto en el *backward* como en el *forward linkage*, sería uno de los principales cuya

^{**} Porcentaje de aportación a la formación del VBP.

^{***} Porcentaje de reducción en el VBP como medida de impacto en el conjunto de la economía.
Fuente: elaboración propia con los resultados de la Metodología de Extracción Hipotética de la MIPZac2013.

prescindencia tendría un impacto fuerte, a pesar de que la aportación del VBP es muy alta. A continuación se señala las implicaciones que este sector generaría específicamente a otros subsectores.

3.3. Impacto específico en la minería zacatecana

En este apartado se muestran los resultados específicos del subsector 212 sobre el aparato productivo de la economía zacatecana, como demandante y como proveedor de insumos. Esto se obtiene a partir de la ecuación (5):

$$\mu(k) = \frac{\sum_{i=1, i \neq k}^{79} (VBP_i - \overline{VBP}_i(k))}{\sum_{i=1}^{79} \sum_{i=1, i \neq k}^{79} (VBP_i - \overline{VBP}_i(k))} \cdot (100) = \frac{L(k)}{\sum_{i=1}^{79} L(k)} \cdot (100)$$
 (5)

Donde $\overline{VBP}(k)$ representa el valor bruto de la producción tras la modificación en la omisión del k-ésimo sector, y $\mu(k)$ denota el impacto relativo total de la ausencia del sector k-ésimo, tanto si el enfoque es hacia atrás como hacia delante.

Se cumpliría la ecuación anterior, si:

$$\mu_i(k) = \frac{l_i(k)}{\sum_{i=1}^{79} L(k)} * (100)$$
 (6)

Donde $l_i(k)$ denota el efecto en el sector i-ésimo en el VBP que se opera a consecuencia de la ausencia del sector k-ésimo. Por lo anterior, es cierto que $\mu(k) = \sum \mu_i(k)$.

Los impactos específicos correspondientes al *backward linkages* del subsector 212 se muestran en el Cuadro 3. De manera desagregada, se se expone el porcentaje específico de afectación a cada subsector de 5.63% de impacto tras su hipotética extracción. El mayor monto de reducción de VBP es del mismo subsector, debido a que impactaría en 267,796 millones de pesos y 4.87% en valor relativo. Por ello, el impacto al resto del aparato productivo desagregado en los otros 55 subsectores es muy reducido.

Otros subsectores que también enfrentarían afectaciones importantes son los servicios del 431 de Comercio y 561 de Servicios de apoyo a los negocios, así como las industrias 238 de Trabajos especializados en construcción, y 811 de Servicios de reparación y mantenimiento, entre otros. El comercio es el segundo subsector con mayor impacto con 0.23% de la afectación del subsector de interés. Este último, con los restantes 8 subsectores del tabulador, suman 0.47% de la hipotética contracción en el VBP

Cuadro 3

EFECTO DE LA EXTRACCIÓN DEL SUBSECTOR 212 SOBRE EL CONJUNTO DE LA ECONOMÍA,

BACKWARD LINKAG (MILLONES DE PESOS A PRECIOS BÁSICOS)

No.	Subsector	VBP Perdido*	Aportación al VBP perdido**	Impacto desagregado***
212	Minería de minerales metálicos y no metálicos, excepto petróleo y gas	267.80	86.35	4.87
431	Comercio	12.62	4.07	0.23
561	Servicios de apoyo a los negocios	6.11	1.97	0.11
238	Trabajos especializados para la construcción	4.60	1.48	0.08
811	Servicios de reparación y mantenimiento	3.90	1.26	0.07
332	Fabricación de productos metálicos	3.29	1.06	0.06
336	Fabricación de equipo de transporte	3.19	1.03	0.06
541	Servicios profesionales, científicos y técnicos	2.87	0.92	0.05
484	Autotransporte de carga	1.24	0.40	0.02
321	Industria de la madera	0.92	0.30	0.02

^{*} Monto de VBP perdido a consecuencia de la omisión del subsector 212. Valoración por Backward Linkage, millones de pesos a precios básicos.

Fuente: elaboración propia con los resultados de la Metodología de Extracción Hipotética de la MIPZac2013.

Los resultados del *forward linkages* de la extracción del subsector 212 se muestran en el Cuadro 4.

El mayor impacto se presenta en el subsector 327 de Fabricación de productos a base de minerales no metálicos, con 3.23% del impacto

^{**} Porcentaje de contribución al total del VBP perdido por subsector como consecuencia de la extracción del subsector 212.

^{***} Contribución relativa al 5.64% de reducción en el VBP total en la economía zacatecana que resulta de la extracción del subsector 212.

total del subsector extraído. Este resultado se debe aque es una actividad con estrecha relación con el subsector extraído, debido a su importancia en el proceso de agregación de valor de los insumos obtenidos de la minería.

El segundo subsector con mayor impacto es el de estudio, con 0.73% de afectación de 5.91%. Esto afirma que la proveeduría de insumos impactaría a otros subsectores más que a sí mismo debido a su carácter eminentemente primario y extractivo. Los resultados señalan que esta acción se diluye principalmente en subsectores asociados a las industrias. Los nueve subsectores posteriores del 327 suman 2.61%, por lo que el impacto es mayor hacia adelante que hacia atrás.

Cuadro 4

EFECTO DE LA EXTRACCIÓN DEL SUBSECTOR 212 SOBRE EL CONJUNTO DE LA ECONOMÍA,

FORWARD LINKAGE (MILLONES DE PESOS A PRECIOS BÁSICOS)

No.	Subsector	VBP Perdido*	Aportación al VBP perdido**	Impacto desagregado***
327	Fabricación de productos a base de minerales no metálicos	180.15	54.72	3.23
212	Minería de minerales metálicos y no metálicos, excepto petróleo y gas	40.90	12.42	0.73
331	Industrias metálicas básicas	32.54	9.88	0.58
312	Industria de las bebidas y del tabaco	28.18	8.56	0.51
237	Construcción de obras de ingeniería civil	14.70	4.47	0.26
336	Fabricación de equipo de transporte	11.97	3.63	0.21
236	Edificación	9.76	2.97	0.18
311	Industria alimentaria	3.27	0.99	0.06
332	Fabricación de productos metálicos	2.67	0.81	0.05
326	Industria del plástico y del hule	1.62	0.49	0.03

^{*} Monto de VBP perdido a consecuencia de la omisión del subsector 212. Valoración por Forward Linkage, millones de pesos a precios básicos.

Fuente: elaboración propia con los resultados de la Metodología de Extracción Hipotética de la MIPZac2013.

^{**} Porcentaje de contribución al total del VBP perdido por subsector como consecuencia de la extracción del subsector 212.

^{***} Contribución relativa al 5.91% de reducción en el VBP total en la economía zacatecana que resulta de la extracción del subsector 212.

3.4. Discusión

A partir de los resultados de la metodología de Extracción Hipotética (véase cuadros 1-4) se pueden puntualizar los efectos que genera la hipotética extracción del subsector 212 de Minería de minerales metálicos y no metálicos, excepto petróleo y gas.

El análisis de los resultados puede realizarse en *backward linkages* (encadenamientos hacia atrás) y *forward linkages* (encadenamientos hacia adelante). En el primero se muestra que el subsector demanda insumos del resto, por lo que puede dinamizar el desempeño de una cadena de proveeduría. En el caso del subsector minería, objeto de estudio de esta investigación, se observa que los efectos de demanda de insumos ante su ausencia son particularmente al subsector Comercio (431), así como al de Fabricación de productos a base de minerales no metálicos (327), y al de Fabricación de productos metálicos (332); por lo que éstos proveen importantes insumos al subsector 212. En el impacto específico que el subsector genera al resto del aparato productivo, la afectación es de 86% del impacto al mismo subsector y el resto desagregado en el conjunto de las actividades económicas.

Por su parte, los *forward linkages* señalan los insumos que el subsector de la minería provee al resto de la economía para sus procesos productivos. Los resultados muestran que los subsectores de Comercio (431), Fabricación de equipos de transporte (336), Fabricación de productos a base de minerales no metálicos (327), Minería de minerales metálicos y no metálicos, excepto petróleo y gas (212) y Fabricación de productos metálicos (332) son los de mayor impacto, por lo que no obtendrían insumos minerales para su proceso de transformación y agregación de valor. Las actividades con mayor impacto debido a la hipotética extracción del subsector 212 son: Fabricación de productos a base de minerales no metálicos (327), Minería de minerales metálicos y no metálicos, excepto petróleo y gas (212) e Industrias metálicas básicas (331).

Asimismo, fue posible observar que las actividades con mayor impacto, tanto en los backward como en los forward linkgages, son subsectores de importancia en la economía zacatecana como la Industria alimentaria (311), la Industria de las bebidas y del tabaco (312) y Fabricación de equipo de transporte (336), por lo que la afectación de un subsector impactaría de manera significativa al resto del aparato productivo del estado

CONCLUSIONES

El objetivo de este trabajo fue mostrar, de forma holística, el impacto de la ausencia simulada de la actividad minera en el estado de Zacatecas, entidad cuyo perfil económico-productivo está históricamente determinado por la notable presencia de la minería. La naturaleza eminentemente extractiva de esta actividad, así como su orientación al mercado externo, son factores que sugieren escasos efectos de integración a la economía local, así como de articulación con el conjunto de los sectores de actividad económica comprendidos en el aparato productivo del estado. Los resultados son congruentes con tal afirmación, pues hay una notable aportación del subsector 212 de Minería de minerales metálicos y no metálicos a la formación del valor bruto de la producción, pero relativamente escaso impacto en la formación de dicha variable tras su hipotética exclusión, tanto en los efectos de encadenamiento hacia atrás como hacia delante. Esto es congruente con la visión de una economía altamente especializada y con pocos efectos de integración y cohesión de su aparato productivo sustetado en el tamaño y variedad de las redes de intercambio y la intensidad de los patrones de comercialización dentro de cada una de ellas.

Por último, los resultados aquí presentados pretenden ser un referente de los impactos específicos que genera la minería en Zacatecas, lo que la coloca en la dimensión de la promoción vigente del fortalecimiento del tejido productivo local con un enfoque de diversificación de la actividad económica y, por ello, de la ampliación del mercado de demanda intermedia. Lo anterior adquiere fundamento en la necesidad de trascender la condición monoproductiva del estado para lograr una dinámica de crecimiento sostenida en el largo plazo en un marco sustentable. Lograr lo anterior supone visualizar los sectores de potencial diversificación sobre una base productiva presente definida por las limitadas alternativas que ofrece el actual patrón de especialización.

BIBLIOGRAFÍA

- Alberro, Solange (1985), "Zacatecas, zona frontera, según los documentos inquisitoriales, siglos XVI y XVII", *Estudios de historia novohispana* 8(8), pp. 139-170.
- Andreosso-O'Callaghan, B. y G. Yue (2004), "Intersectoral linkages and key sectors in China, 1987-1997", *Asian Economic Journal*, 18 (2), pp. 165-83
- Bakewell, P.J. (1976), *Minería y Sociedad en el México colonial. Zacatecas* 1546-1700, Fondo de Cultura Económica, México.
- Bancomext (2015), "Macro coyuntura minería. Primer informe 2015", Comercio Exterior, Dirección de Estudios Económicos, México.
- Benita Maldonado, Francisco J.; Edgar D. Gaytán Alfaro y Mayra C. Rodallegas Portillo (2012), "Un estudio no paramétrico de eficiencia para la minería de Zacatecas, México", *Revista de Métodos Cuantitativos para la Economía y la Empresa*, 14, pp. 54-75.
- Burnes, A. (2006), El drama de la minería mexicana: del pacto colonial a la globalización contemporánea, Universidad Autónoma de Zacatecas, México.
- Burnes, A. (1987), *La minería en la historia económica de Zacatecas (1546-1876)*. Universidad Autónoma de Zacatecas, México.
- Cai, J. y P. Leung, (2004), "Linkage measures: A revisit and a suggested alternative", *Economic Systems Research*, 16 (1), pp. 65-85.
- Camimex (Cámara Minera de México) (2018), "Informe Anual 2018 Cámara Minera de México LXXXI Asamblea General Ordinaria", México. https://camimex.org.mx/files/1015/3073/8596/Info2018.pdf
- Cansino Muñoz-Repiso José Manuel; Manuel Alejandro Cardenete Flores, Manuel Ordóñez Ríos y Rocía Román Collado (2013), "Análisis de sectores clave de la economía española a partir de la Matriz de Contabilidad Social de España 2007", Estudios de Economía Aplicada. 31(2), pp. 621-653.
- Cardenete Flores, Manuel Alejandro y Jorge Manuel López Álvarez (2015), "Análisis de sectores clave a través de Matrices de Contabilidad Social: El caso de Andalucía". *Estudios de Economía Aplicada*. 33(1), pp. 203-222.
- Ceja, Jorge (2014), "Extractivismo minero, globalización neoliberal y resistencia socio-ambiental en México", *Contextualizaciones latinoamerica-nas* 6(11), pp. 1-10.
- Cella, G. (1984), "The input-output measurement of interindustry linkages", *Oxford Bulletin of Economics and Statistics*. 46 (1), pp. 73-84.
- Chenery, H. y T. Watanabe (1958), "An International Comparison of the Structure of Production". *Econometrica*, vol. 6(1), 487-521.
- Clements, B.J. (1990), "On the Decomposition and Normalization of Interindustry Linkages", *Economics Letters*. 33, pp. 337-340.

- Delgado Wise, Raúl; Víctor M. Figueroa y Margarita Hoffner Long (1991), Zacatecas: sociedad, economía, política y cultura, CIIIH-UNAM, México.
- Dietzenbacher, E.; J.A. Van Der Linden y A. Steenge (1993), "The Regional Extraction Method: EC Input-Output Comparisons", Economic Systems Research. 5 (1), pp. 185-206.
- DOF (Diario Oficial de la Federación) (2014), "ACUERDO por el que se aprueba el Programa de Desarrollo Minero 2013-2018", Gobierno de México. https://www.dof.gob.mx/nota_detalle.php?codigo=5344070&fecha=09/05/2014
- García, M.; S. González, A. Sánchez y B. Verduzco (1998), *Descentralización e iniciativas locales de desarrollo*, Universidad de Guadalajara / UCLA / Programación México-Juan Pablos, México.
- Gaytán Alfaro, Edgar David; Rigoberto Jiménez Díaz y Aldo Alejandro Pérez Escatel (2017), *Matriz de insumo-producto para la economía del estado de Zacatecas: un enfoque de clústers*, Colofón, México.
- Gaytán Alfaro, Edgar David; Mario Alberto Mendoza Sánchez y Juan Roberto Vargas Sánchez (2018), "Minería y encadenamientos productivos en México: un estudio comparativo empleando modelos estatales de insumo producto", *Economía coyuntural, Revista de temas de coyuntura y perspectivas* 3(2), pp. 1-38.
- Ghosh, A. (1958), "Input-Output Approach in Allocation System", *Economica*, núm. 25. pp. 58-64.
- Guerra, Ana-Isabel (2011), "Merging the Hypothetical Extraction Method and the Classical Multiplier Approach: A Hybrid Possibility for Identifying Key Distributive Sectors", *UFAE and IAE Working Papers*, pp. 1-31.
- Heimler, A. (1991), "Linkages and Vertical Integration in the Chinese Economy", *The Review of Economics and Statistics*. 73 (2), pp. 261-267.
- Hirschman, A. (1958), *The Strategy of Economic Development*, Oxford University Press, EUA.
- Instituto Nacional de Estadística y Geografía (INEGI) (2013), Sistema de Clasificación Industrial de América del Norte, SCIAN, México. 2013/702825051693.pdf
- Llano, Carlos (2009), "Efectos de desbordamiento interregional en España: Una estimación a través del modelo input-output interregional". *Investigaciones Regionales*. (16), pp. 181-188.
- Martínez Barragán, Hirineo (2016), "Concesiones, explotación minera y conflicto en la frontera Jalisco-Colima", *Espiral*, XXIII(67), pp. 45-90. https://www.redalyc.org/articulo.oa?id=138/13846352002
- Miller, R.E. y (2001), "A taxonomy of extractions", en M.L. Lahr y R.E. Miller (eds.), Regional Science Perspectives in Economic Analysis: A Festschrift in Memory of Benjamin H. Stevens. Elsevier Science, Amsterdam,

- pp. 407-441, .
- Moncaleano Cuéllar, Lina María (2015), "Análisis de encadenamientos sectoriales y proyecciones de la demanda final que permitan plantear escenarios para mejorar la producción y reducir el desempleo en Colombia", Tesis de maestría, Facultad de Ciencias Económicas y Administrativas, Pontificia Universidad Javeriana, Colombia.
- Nazara, S., D. Guo, G.J. Hewings y C. Dridi (2003), "PyIO: input-output analysis with Python", Working Paper No. 0409002, University Library of Munich, Alemania.
- Paelinck, J., J. De Caevel y J. Degueldre (1965), "Analyse quantitative de certaines phenomenes du developpment regional polarise: Essai de simulation statique d'iteraires de propogation", *Bibliothequede l'Institut de Science Economique 7: Problemesde conversion economique: analyses theoretiques et etudes appliquees*, M.-Th. Genin, París, pp. 341-87.
- Rasmussen, P. (1956), *Studies in Intersectoral Relations*, North Holland, Amsterdam.
- Sancho, Ferran y Manuel Alejandro Cardenete (2014), "Instrumentos multisectoriales para la detección de sectores clave en el análisis regional", *Revista de Estudios Regionales*. (100), pp. 131-146.
- Schultz, S. (1976), "Intersectoral comparisons as an approach to the identification of key sectors", en K.R. Polenske y J.V. Skolka (eds.), Advances in Input-Output Analysis, Ballinger Publishing Company. Cambridge, Massachusetts, EUA, pp. 137-59.
- Schultz, S. (1977), "Approaches to Identifying Key Sectors Empirically by Means of Input-Output Analysis", *Journal of Development Studies*. 14, pp. 77-96.
- SGM (Servicio Geológico Mexicano) (2018). "Panorama Minero del Estado de Zacatecas", México. http://www.sgm.gob.mx/pdfs/ZACATECAS.pdf>
- SGM (2019), "Anuario estadístico de la minería mexicana, 2018. Edición 2019", 48, Pachuca, México. http://www.sgm.gob.mx/productos/pdf/Anuario_2018_Edicion_2019.pdf
- Solleiro Rebolledo, José Luis, Araceli Olivia Mejía Chávez y Brenda Susana Figueroa Ramírez (2017), "Prospectiva de la minería en el clúster de Zacatecas y los retos para la formación de capital humano", Gestión de la innovación para la competitividad: Sectores estratégicos, tecnologías emergentes y emprendimientos, ALTEC 2017 VXII Congreso Latino-Iberoamericano de Gestión Tecnológica, pp. 1-18. http://www.uam.mx/altec2017/pdfs/ALTEC_2017_paper_215.pdf
- Strassert, G. (1968), "Zur Bestimmung Strategischer Sektoren mit Hilfe von Input-Output Modelen", *Jahrbücher für Nationalökonomie und Statistik*, vol. 182, pp. 211-215.
- Temurshoev, Umed (2009), "Hypothetical extraction and fields of influence

- approaches: integration and policy implications", *EERC Working Paper Series, Rusia*, pp. 1-42.
- Viladecans Marsal, Elisabet (1999), "El papel de las economías de aglomeración en la localización de las actividades industriales. Un análisis del caso español", Tesis doctoral, Universitad de Barcelona, España.
- Yu Song, Chunlu Liu y Craig Langston (2006), "Linkage measures of the construction sector using the hypotetical extraction method", *Construction Management and Economics*. 24(6), pp. 579-589. doi: 10.1080/01446190500435358
- Yuhuan Zhao, Ya Liu, Song Wang, Zhonghua Zhang y Jiechao Li (2016), "Inter-regional linkage analysis of industrial CO2 emissions in China: An application of a hypothetical extraction method", *Ecological Indicators*, 61, pp. 428–437. doi: 10.1016/j.ecolind.2015.09.044

ANEXO

Cuadro A.1
56 SUBSECTORES UTILIZADOS DEL SISTEMA DE CLASIFICACIÓN INDUSTRIAL DEL NORTE

SCIAN	Sector
112	Cría y explotación de animales
114	Pesca, caza y captura
115	Servicios relacionados con las actividades agropecuarias y forestales
212	Minería de minerales metálicos y no metálicos, excepto petróleo y gas
236	Edificación
237	Construcción de obras de ingeniería civil
238	Trabajos especializados para la construcción
311	Industria alimentaria
312	Industria de las bebidas y del tabaco
313	Fabricación de insumos textiles y acabado de textiles
314	Fabricación de productos textiles, excepto prendas de vestir
315	Fabricación de prendas de vestir
316	Curtido y acabado de cuero y piel, y fabricación de productos de cuero, piel y
310	materiales sucedáneos
321	Industria de la madera
322	Industria del papel
323	Impresión e industrias conexas
325	Industria química
326	Industria del plástico y del hule
327	Fabricación de productos a base de minerales no metálicos
331	Industrias metálicas básicas
332	Fabricación de productos metálicos
333	Fabricación de maquinaria y equipo
336	Fabricación de equipo de transporte
337	Fabricación de muebles, colchones y persianas

339	Otras industrias manufactureras
431	Comercio
484	Autotransporte de carga
485	Transporte terrestre de pasajeros, excepto por ferrocarril
487	Transporte turístico
488	Servicios relacionados con el transporte
493	Servicios de almacenamiento
511	Edición de periódicos, revistas, libros, software y otros materiales, y edición de estas publicaciones integrada con la impresión
512	Industria fílmica y del video, e industria del sonido
515	Radio y televisión
517	Otras telecomunicaciones
522	Instituciones de intermediación crediticia y financiera no bursátil
523	Actividades bursátiles, cambiarias y de inversión financiera
524	Compañías de fianzas, seguros y pensiones
531	Servicios inmobiliarios
532	Servicios de alquiler de bienes muebles
541	Servicios profesionales, científicos y técnicos
561	Servicios de apoyo a los negocios
562	Manejo de desechos y servicios de remediación
611	Servicios educativos
621	Servicios médicos de consulta externa y servicios relacionados
622	Hospitales
623	Residencias de asistencia social y para el cuidado de la salud
624	Otros servicios de asistencia social
711	Servicios artísticos, culturales y deportivos, y otros servicios relacionados
712	Museos, sitios históricos, zoológicos y similares
713	Servicios de entretenimiento en instalaciones recreativas y otros servicios recreativos
721	Servicios de alojamiento temporal
722	Servicios de preparación de alimentos y bebidas
811	Servicios de reparación y mantenimiento
812	Servicios personales
813	Asociaciones y organizaciones

Fuente: elaboración propia con base a INEGI (2013).

CUADRO A2. ECONOMÍA DEL ESTADO DE ZACATECAS. ESQUEMA TOTAL DE EXTRACCIÓN HIPOTÉTICA POR BACKWARD LINKAGE. MILLONES DE PESOS A PRECIOS BASICOS

485	5.163	0.000	0.000	0.000	0.032	0.000	0.000	0.486	0.007	0.022	0.001	0.028	6000	0.000	0.007	0.000	0.026	0.028	0.673	0.128	0.011	0.131	0.018	5.517	0.001	0.005	5.924	0.671	0000
484	94.072	0.000	0.000	00000	610.0	00000	00000	600.0	0.007	0.024	900'0	0.081	0.015	0.000	0.005	0.000	0.014	0.014	0.568	0.081	800.0	0.138	610.0	3.853	0.001	0.004	4.340	0.093	0000
431	1059.224	0.004	0.000	0.000	0.029	0.000	0.000	0.592	0.171	0.030	0.001	166'0	680'0	0.000	0.426	0.003	0.271	0.013	2.323	7.40.0	0.028	0.368	0.017	1.334	800.0	0.013	4319	901.0	0000
339	3.309	800.0	0000	0.052	0.318	0.000	0.000	0.155	610.0	0.007	0.092	0.485	0.225	0.011	1.005	0.012	0.345	0.206	4.133	0.530	169.0	1.736	0.059	0.949	0.114	4.833	0.479	0.021	0000
337	0.983	0.000	0.000	0.001	0.171	0.000	0.000	0.138	0.003	0.004	0.031	0.468	0.035	0.015	11.256	0.002	0.036	0.022	2.348	0.363	0.359	3.180	0.005	0.176	0.024	6.924	0.612	0.011	0000
336	56.473	0.010	0.000	0.027	11.690	0.000	0.000	3.344	660.0	0.108	0.729	12.790	0.597	0.239	5.488	0.017	0.451	619'0	89.555	31.450	12.657	135.307	0.862	0.109	0.856	531.766	43.667	0.369	1000
333	1.430	0.000	0.000	0.000	0.198	0.000	0.000	800.0	0.001	0.001	0.012	0.012	0.008	0.004	0.020	0.002	0.012	0.046	0.166	0.023	0.788	0.424	0.263	0.007	0.083	0.579	0.080	900'0	0000
332	194.738	0.001	0.000	0.001	2.684	00000	0.000	1.808	0.030	0.049	0.013	0.926	0.119	0.002	2.770	0.007	0.450	0.100	3.876	2.033	7.026	0.064	4.926	0.073	0.167	72.332	5.462	0.363	0000
331	22.290	0.000	0.000	00000	33.040	00000	0.000	0.147	0.004	800.0	0.002	0.029	0.045	00000	0.184	0.001	610.0	0.104	0.180	0.227	5.243	0.051	9850	0.029	0.085	10.171	1.777	0.091	0000
327	80.185	0.001	0.000	00000	179.952	00000	0.000	0.786	0.037	0.014	0.005	0.261	0.110	00000	1.203	0.007	0.063	0.137	1.547	0.200	2.498	0.021	1.765	0.046	0.072	42.121	3.075	680'0	0000
326	138.900	0.003	0.000	0.002	1.645	00000	0.000	0.863	0.034	0.035	0.050	1.637	0.121	0.005	1.042	800.0	0.161	1.154	2.510	0.363	7.175	0.037	4.484	0.042	0.220	43.933	4.268	0.121	0000
325	3.543	0.061	0.000	0.001	9290	0.000	0.000	0.048	0.279	0.035	0.021	600.0	0.017	0.000	0.151	0.014	910.0	0.377	0.123	0.035	0.127	0.024	0.115	0.012	0.025	2.621	0.526	0.024	0000
323	7,441	0.000	0.000	0.001	0.034	0.000	0.000	0.785	0.007	0.014	810.0	090'0	190.0	0.001	0.465	0.038	0.062	2.512	0.025	0.081	0.298	0.005	0.144	0.005	0.083	816.8	1.142	0.011	0000
322	0.169	0.001	0.000	0.002	0.004	0.000	0.000	0.002	810.0	0.000	690'0	0.001	0.001	0.000	0.004	0.003	0.132	0.035	0.002	0.003	0.004	0.015	0.004	0.000	90000	0.149	0.022	0.000	0000
321	32.739	0.000	0.000	0.000	0.007	0.000	0.000	0.088	0.003	600'0	0.001	0.047	0.011	0.000	0.000	0.059	0.007	980'0	0.023	900'0	0.408	0.002	0.131	900'0	0.009	3.511	0.229	0.010	0000
316	0.299	0.026	0.000	0.003	0.005	0.000	0.000	0.003	0.495	0.000	0.070	60000	900.0	0.078	0.001	800.0	0.041	0.300	0.004	800.0	0.081	0.002	690.0	0.004	0.034	0.604	0.062	0.002	0000
315	2.062	600.0	0.000	091.0	0.035	0.000	0.000	0.312	0.013	800.0	0.554	0.649	6000	0.188	0.007	0.143	0.044	0.937	0.139	610.0	0.306	0.025	0.480	0.003	0.243	13.794	0.783	0.013	0000
314	29.255	0.001	0.000	0.003	0.042	0.000	0.000	0.030	0.003	0.001	0.077	0.156	0.002	0.171	0.001	0.022	910.0	0.594	0.067	0.014	0.307	0.005	0.302	0.014	0.044	3.426	0.151	0.012	0000
313	1.733	0.033	0.000	0.148	0.003	0000	0000	0.004	0.007	00000	0.010	0.003	0.000	0.007	0.002	0.003	0.085	0.056	0.002	0.003	0.008	0.004	0.037	0.004	0.005	0.326	0.045	0.002	0000
312	41.918	0.651	0.004	0.002	28.365	0.000	0.000	3.000	29.681	0.002	0.106	060'0	0.001	3.269	0.014	0.234	0.292	6.614	18.347	9200	11.650	0.026	866.0	800.0	0.019	55.688	4.426	0.095	0000
311	43.233	44.614	0.262	0.115	3.290	00000	0.000	1.481	0.233	0.003	809.0	0.156	0.001	2.089	0.021	0.170	0.253	12.137	2.228	0.035	1.935	0.042	2.515	0.030	0.067	157.689	15.929	0.416	0000
238	886.98	0.000	0.000	0000	0.727	0000	0.000	00000	0.001	00000	0.011	00000	0.000	0.137	0.000	0.002	0.001	0.054	0.291	0.022	0.429	0.002	0.257	0.002	0.001	0.972	0.139	0.003	0000
237	0.000	0.000	0.000	0.000	14.846	0.000	16.052	0.004	0.072	0.001	0.043	0.017	0.002	1.259	0.000	0.023	0.010	1.464	8.223	0.367	8.576	0.030	1.821	0.014	0.024	16.670	1.613	0.127	0000
236	0.000	0.000	0.000	00000	9166	00000	098'6	0.003	0.015	00000	0.136	0.005	0.001	1.403	0.000	0.015	0.011	1.599	10.129	0.353	5.866	0.015	998.0	0.118	0.014	13.720	1.520	0.037	0000
212	267.796	0.001	0.000	0.000	0.000	00000	4.601	0.029	0.007	0.001	0.034	0.045	0.000	0.920	0.000	0.026	860'0	0.142	0.635	0.045	3.289	0.033	3.187	0.031	0.035	12.617	1239	901.0	0000
1115	0.448	0.000	0.000	0.001		0.000	0.001	0.013	0.000	0.000	0.000	0.000	0.000	0.002	0.000	0.002	0.002		0.004	0.000		0.000	0.001	0.000	0.000	0.102	0.014	0.000	0000
41	0.273		0.003	0.095		0000	0.001	980'0	0.193	00000	0.001	0.002	0.000	0.017	0.000	0.001	0.002	0.003	0.024	0.000	0.004	0.001	0.227	0000	0.000	0.223	0.048	0.015	0000
112		00000		0.007		00000	0.001	0.614	00000	0.000	00000	00000	00000	0.004	00000	00000	0.000	900'0	0.002	00000	0.001	00000	0.004	00000	00000	9020	0.044	00000	0000
SCIAN NO. SCIAN	1112	114	115	212	236	237	238	311	312				316	321	322	323	325	326	327	331	332	333	336		339	431	484	485	407

1.97

0.05 0.69 0.01 0.49 0.21 4.12 5.97 1.45 5.81 0.09 18.44 0.59 0.45 19.72

5.99 4.12 0.05 0.65 0.47

1.10

1.09 1.44

5.64

0.03 0.01

0.382	0.001	0.042	0.001	0.013	0.133	690.0	0.001	0.003	0.607	0.111	0.428	1.414	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.391	0.614	3.137	0.001	0.034	26.269
0.655	0.035	0.007	0.001	0.003	0.085	0.061	0.002	0.005	0.142	0.085	0.145	0.821	0.000	00000	0.000	0000	0.000	0.000	0.000	0.000	0.000	0.295	9290	1.801	0.004	0.020	108.216
0.025	0.131	810.0	0.161	0.715	0.324	1.583	0.044	0.010	1.811	0.251	1.856	5.221	0.020	0.013	0.000	0.000	0.000	0.000	0.004	0.000	0.000	0.101	0.901	1.011	0.004	0.205	1084.849
0.029 0	0.120 0	0.052 0	0.002 0	0.035 0	0.378 0	0.173	0.003 0	0.007 0	0.773	0.132 0	0.802	1.496 \$	0.000	0.003 0	0.063 0	0.000	0.000	0.000	0.000 0	0.000	0.000 0	0.153 0	0.162 0	0.365 1	0.004 0	0.030 0	24.582 1
0.021	0.034	0.022	0.001	0.026	0.120	0.118	0.001	0.001	3.157	0.055	0.470	929.0	0.000	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.218	0.075	0.349	0.001	600.0	32.523
1.550	0.194	0.751	0.063	0.974	2.514	2.993	0.027	0.094	4.725	92.876	12.901	35.359	0.007	0.168	0.001	0.000	0.000	0.000	0.005	0.000	0.000	2.681	2.725	6.321	0.013	961.0	1014.415
0.00	0.013 (0.013	0.000	0.010	0.055	0.029	0.004	0.008	0.047	0.009	0.132	0.162	0.000	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.016	0.019	0.032	0.000	0.006	4.736
0.172	0.049	0.136	0.010	891.0	9590	1.324	0.007	0.015	1.733	0.601	2,445	7.342	0.002	0.017	0.004	0.000	0.000	0.000	0.001	0.000	0.000	1.205	1.243	2.336	800'0	0.054	319.547
0.104	0.014	890.0	0.003	0.051	909'0	0.400	0.025	60000	0.432	720.0	1.252	1.889	0.011	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.084	0.216	0.363	0.001	0.024	79.741
901'0	0.081	0.036	9000	0.113	0.267	0.483	0.012	0.005	1.080	0.339	1.782	8.089	0.001	0.002	0.002	0000	0000	0.000	0.001	0.000	0.000	0.180	0.283	1.441	0.003	0.143	328.650
0.150	0.070	0.025	9000	0.064	0.258	0.549	0.015	0.007	1.361	0.227	1.711	10.249	0.002	0.088	0.000	0.000	0.000	0.000	0.001	0.000	0.000	0.368	0.938	1.887	0.004	0.079	226.868
0.031	0.120	0.044	0.002	0.058	0.100	0.185	800.0	0.014	0.154	0.021	0.523	1.364	0.038	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.026	0.073	0.070	0.025	0.011	11.747
0.036	0.011	810.0	0.002	0.025	0.143	0.139	0.001	0.001	0.556	0.149	0.746	2.211	0.001	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.012	0.330	0210	0.004	60000	26.826
0.001	0.004	0.002	0.000	0.001	0.005	0.007	0.000	0.001	0.011	0.002	0.017	0.044	0.000	00000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.002	0.001	0.003	0.000	0.004	0.753
0.008	0.001	0.001	0.000	0.003	0.031	0.019	0.000	0.000	090.0	0.023	0.107	0.156	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.036	0.268	0.108	0.000	0.013	38.225
0.004	0.005	0.003	0.000	900.0	0.026	0.029	0.001	0.001	0.069	0.007	0.043	0.195	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.004	0.003	0.018	0.000	0.001	2.627
0.027	0.011	0.010	0.002	0.015	0.236	0.405	0.002	0.002	0.756	0.113	0.737	2.095	0.001	00000	0000	0000	0000	0000	0.000	0000	0.000	0.028	0.240	0.501	0.001	0.005	26.123
900'0	0.004	0.001	0.000	0.002	0.023	0.030	0.000	00000	660.0	0.042	0.079	0.325	0.000	00000	0.000	00000	0.000	0.000	0.000	0.000	0.000	800.0	610:0	0.133	0.001	900'0	35.493
0.003	0.008	0.001	0000	0.001	0.009	0.051	0000	0.001	0.032	9000	0.027	0.131	0.001	0000	0000	0000	0000	0000	0000	0000	0000	0.002	0.003	0.012	0.001	0.004	9 2.820
0.152	0.168	0.101	0.033	2.211	0.974	0.597	0.012	0.005	0.920	0.160	4.515	7.736	0.001	0.065	0.000	0.000	0.000	0.000	0.007	0.000	0.000	0.378	0.399	2.594	900'0	0.098	226.709
0.584	0.196	0.314	0.321	1218	0.572	2.323	0.014	0.010	4334	0.774	7.438	13.747	0.002	900'0	0000	0000	0000	0000	0.004	0000	0.000	0.815	0.448	6.610	0.044	0.330	329.658
0.003	0.000	00000	0.000	0.001	0.083	0.026	0000	0.001	0.067	0.188	0.116	0.032	0.000	00000	0.000	0000	0000	0.000	0.000	0.000	0.000	0.037	0.034	0.114	00000	0.017	60.762
0.048	0.002	0.003	0.003	0.015	0.194	0.848	0.011	0.015	0.193	0.874	1.318	1.923	0.011	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.427	0.222	1.708	0.002	0.123	79.200
0.038	0.003	0.004	0.003	0.011	0.388	0.432	0.009	0.005	0.394	0.399	0.772	0.453	0.005	0.001	0.000	00000	0.000	0000	0.001	0000	0.000	0.293	0.103	1.179	0.001	0.050	60.147
0.044	0.002	0.003	9000	0.024	0.115	965.0	990.0	900'0	0.273	0.621	2.868	6.111	0.000	0.001	0.000	0.000	00000	00000	0.000	00000	0.000	0.348	0.154	3.902	0.003	790.0	310.131
0.001	0.000	0.000	0.000	0.000	0.002	0.004	0.000	0.000	0.001	0.031	0.008	0.011	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.003	0.000	0.000	0.672
0.019	0.000	0.000	0.000	0.000	0.013	0.033	0.007	0.001	0.009	0.011	0.062	0.174	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.020	0.028	0.000	0.002	1.605
0.002	0.000	0000	0.000	0000	0.001	0.008	0.000	0000	0.002	0.001	0.004	0.007	0.000	0000	0.000	0000	0.000	0000	00000	0000	00000	0000	0.001	900'0	00000	0000	45.890
488	493	511	512	515	517	522	523	524	531	532	541	261	562	119	621	622	623	624	1117	7112	713	721	722	811	812	813	Monto de VBP perdido

Fuente: esquema de resultados de Extracción Hipotética Backward Linkage sistematizada en Python 3.6.

ECONOMÍA DEL ESTADO DE ZACATECAS. ESQUEMA TOTAL DE EXTRACCIÓN HIPOTÉTICA POR BACKWARD LINKAGE. MILLONES DE PESOS A PRECIOS BASICOS CUADRO A2.

0.004 0.000 0.004 0.000 0.427 813 0.001 0.003 0.000 0.003 0.004 0.001 0.007 0.014 0.391 0.004 800.0 0.011 .682 812 48.325 0.000 0.252 00000 0.004 90000 886.0 0.004 0.064 0.002 0.197 2.292 0.291 0.004 17.364 0.032 811 770.0 11.719 0.012 0.000 0.001 0.400 3.167 0.467 5.375 0.007 0.084 0.030 0.002 0.422 0.025 0.053 722 0.004 0.002 0.091 3.141 0.017 0.021 650.0 0.253 0.005 0.582 0.092 2.880 0.001 0000 0.054 721 0.000 0.005 0.132 0.010 0.007 0.033 0.546 0.004 0.014 0.000 0.336 2.226 0.045 00000 0.000 0.000 0.000 0.004 0.004 0.000 0.000 0.000 800.0 0.039 8000 712 0.000 0.001 0.000 0.001 0.001 0.004 0.010 0.001 0.000 0.033 0.002 0.138 0.023 711 0.000 0.000 0.004 0.000 0.048 0.201 0.000 0.002 0.002 0.050 0.093 0.001 0.000 1.816 0.118 0.012 0.042 0.001 624 0.000 0000 0.000 0.000 0.000 0.001 0000 0.002 0.017 0.000 0000 00000 0.078 0.010 0.00 623 0.033 0.000 080.0 0.007 0.244 0.028 0.001 0.039 0.000 0.014 4.599 0.275 0.084 622 0.415 00000 0.079 0.234 0.002 0.050 0.005 0.047 0.224 0.329 0.001 0.002 4.156 0.258 621 0.093 1.254 0.010 0.694 0.015 00000 090.0 0.411 0.000 0.025 0.212 0.038 0.003 0.000 0.028 1.654 0.153 0.222 119 0.002 0.012 0.003 0.000 0.082 0.000 0.000 0000 0.000 0.002 00000 0.497 0.001 0.000 0.002 0.356 0.067 562 0.008 0.012 0.027 0.009 0.030 0.001 0.331 0.555 0.013 0.001 1.235 0.047 5 299 1.129 561 0.035 0.000 0.008 0.021 0.179 0.013 790.0 0.027 0.121 0.002 0.038 0.128 2.902 0.474 541 0.000 0.002 0.238 0.019 0.011 0.001 0.001 0.027 0.065 0.010 8000 0.014 1.597 0.173 0.038 532 0.000 0.001 0.000 0.003 0.003 0.038 0.004 0.013 0.041 0.001 0.000 0.007 0.195 0.020 531 0.272 0.000 0.028 0.001 0.001 0.043 0.001 0.001 0.000 0.001 9000 0.000 0000 0.001 0.056 0.009 0.013 524 0.972 0.000 0.002 0.000 0.001 0.000 0.000 0.001 0900 0.015 0.000 0.000 0.002 0.083 0.010 0.007 523 0.040 0.000 3.323 0.026 0.001 0.010 0.032 3.451 0.312 800.0 0.021 4.992 0.502 0.00 0.278 522 0.000 0.003 0.003 0.000 0.031 0.003 0.029 0.026 0.893 0.003 0.000 0.002 2.060 0.133 0.004 0.000 0.001 0.000 0.001 90000 900'0 0.019 900.0 900.0 0.000 0.011 1.229 0.163 0.095 515 2.016 0.000 0.000 0.002 0.031 0.149 6000 0.884 900.0 0.020 6000 90000 0.027 800.0 0.002 0.027 0.000 0.516 0.019 1.325 0.209 0.000 0.002 0.000 0.003 0.010 0.001 0.022 0.023 0.002 0.293 0.012 0.939 0.109 0.083 1.286 0.000 0.000 0.003 0.000 0.010 0.023 0.039 0000 0.000 0.063 0.012 0.000 493 4.413 0.000 0.000 0.052 0.000 0.783 0.007 0.037 0.048 0.026 0.001 0.011 0.091 0.011 0.970 0.182 0.050 0.045 0.574 0.014 3.149 0.385 0.263 488 0.000 0.001 0.000 0.000 0.001 0.000 0.016 0.001 0.002 0.002 0.000 0.000 0.001 0.003 0.002 0.115 0.002 0.001 0.008 0.001 0.031 0.438 0.000 0.457 900.0 487 NO. SCIAN" 114 314 115 212 236 237 238 311 312 313 315 316 322 325 326 327 332 333 336 321 323 331 339 484 485 487

0	2	0	4	=		1	6	63	0	t-		4	1	0	4	0	٥	0	٥	7	١	0	5	9		0	i		i	
0.000	0.002	0.000	0.004	0.001	0.018	7.0.0	0.009	0.002	0.000	0.137	0.008	0.284	0.287	0.000	0.004	0.000	0.000	0.000	0000	0.067	0.000	0.000	0.002	0.386	0.057	0.000		6.047		
0.000	0.006	0.000	0.004	0.001	0.042	0.154	0.026	0.007	0.002	3.202	0.128	0.464	0.493	00000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.007	0.265	0.393	0.003		10.667		9
0.000	0.052	0.004	0.005	0.003	0.033	0.363	0.104	0.001	0.001	2.181	0.853	0.900	1.556	0.000	0.001	0.000	0.000	0.000	0.000	0.000	0000	0000	0.021	0.185	0.006	0.007		966.66		6
0.000	0.041	0.021	0.011	0.010	0.403	0.175	0.190	0.002	0.001	0.732	0.132	2.044	5.736	0.000	0.002	0.002	0000	00000	0.000	0.550	0.000	0.001	0.023	2.023	0.032	0.012		118.954		316
0.000	600.0	0.001	0.005	0.002	0.127	0.107	0.510	0.028	0.002	0.743	0.045	0.802	2.017	0.000	0.000	0.000	0.000	0.000	0.000	0.045	0.000	0.000	0.046	0.078	0.012	0.003		34.748		59 0
0.000	0.007	0.001	0.020	900.0	0.272	0.142	0.298	0.010	0000	1.829	0.146	1.807	3.468	0.000	0.002	00000	0.000	00000	0.000	0.146	0.000	0.019	0.377	0.431	600.0	0.494		14.021		300
00000	0000	0000	0.004	0.001	0.007	0.003	0.005	0.000	0.000	0.027	0.001	0.093	860.0	0.000	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.012	0.035	0.013	0.000	900.0		0.462		100
00000	0.004	0.000	0.005	0.000	0.012	800.0	9200	0.001	0000	0.061	0.005	0.080	0.331	0.000	0.002	00000	00000	00000	00000	00000	0.000	0.004	0.050	600.0	0.000	0.001		2356		500
00000	0.003	00000	0.005	0.001	0.010	0.035	0.007	0.001	0.001	0.509	0.025	0.319	0.605	0.001	0.003	0.000	0.000	0.000	0.007	0.000	0.000	600.0	1.210	0.088	910.0	0.001		5.602		010
0.000	0.001	0.000	0.000	0.000	0.001	0.004	0.001	00000	0.000	0.018	0.002	0.017	0.035	0.000	0.000	0.000	0.000	0.000	0.010	0.000	0.000	0.000	0.012	800.0	0.007	0.000		0.255		00 0
0.000	0.010	0.001	0.010	0.002	0.048	0.036	0110	0.000	0.000	0.168	610.0	0.603	0.683	0.026	900.0	0.343	0.000	0.000	0.000	0.000	0.000	0.033	0.101	0.155	0.185	0.002		9.261		0.17
0.000	600.0	0.001	0.007	0.003	0.203	0.153	0.076	0.001	00000	0.561	0.081	0.701	0.561	0.011	0.034	0.000	0.000	0.000	0.001	00000	00000	0.108	880.0	0.163	0.095	0.002		61976		0.18
0.000	0.022	900.0	0.130	0.004	0.210	0.188	0.173	0.001	0.001	0.497	0.078	0.915	1.030	0.005	0.000	0.000	0.000	0.000	0.001	0.000	0.000	0.175	0.404	0.271	0.062	0.003		9.881		810
0.000	0.005	0.000	0.000	0.000	900'0	0.015	0.045	0.000	00000	0.049	0.028	090.0	0.277	0.000	00000	00000	0.000	0.000	0.000	0.000	0.000	0.001	600.0	0.078	0.000	0.000		2.200		0.04
0.000	0.027	0.011	0.031	0.012	0.525	0.659	0.483	0.014	0.005	1.783	0.211	4.906	0.001	0.001	0.000	0.000	0.000	0.000	0.003	0.000	0.000	0.043	2.529	0.833	0.170	810.0		207,490		3.77
0.000	0.051	0.010	0.063	0.524 (0.075	0.806	0.633 (0.020	0.002	3.569	0.710	5.414 4	0.018	0.045 (0.001 0	0.000	0.000	0.000	0.002 0	0.000	0.000	0 691.1	0.815 2	1.335 0	0.015 0	0.503 0		119.323 2		2.17
0.000	0.053 0	0.003 0	0.049 0	0.001 0	0.037 0	0.051 0	0.070 0	0.003 0	0.001 0	1.013 3	0.445 0	0.522 \$	0.000	0 0000	0.000	0 0000	0.000	0 0000	0.000	0.000	0.000	0.097	0.068 0	0.678	0.070 0.	0.115 0.		1 009:91		0.30 2.
0.000	0.001 0	0.000	0.049 0	0.001	0 600:0	0.045 0	0.145 0	0.002 0	0.000.0	0.023	0.260 0	0.109 0	0.000	0 000.0	0.000	0 00000	0 0000	0 0000	0.000	0.000	0.000	0.014 0	0.022 0	0.042 0	0.000	0.032 0		68.221 10		124 0
0.000	0.089	0.000	0.005	0.004	0.009	0.151 (0.281	0.069	0.178	0.014 (2.294 (1.440 0	0.004 0	0.006 0	0.000	0.000	0.000	0.000	0.000.0	0.000	0.000	0.017 0	0.013 0	0.084 0	0.013 0	0.004 0		5.133 6		0.09
0.000	0.001	0.000	0.003	0.002	0.030	0.149	0.308	0.001	0.638	0.014	1.112	2.323	600.0	0.002	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.205	0.025	0.311	9000	0.017		6.590		0.12
0.000	0.034	0.003	0.110	0.059	1.265	2.034	0.258	0.033	15.178	0.470	30.604	43.901	0.231	0.256	0.000	0.000	0.000	0.000	0.005	0.000	0.000	3.031	0.841	4.307	0.516	0.194		133.533		2.43
0.000	0.041	0.001	0.049	0.004	910.0	0.773	0.326	0.005	6.165	0.283	2.214	3.946	0.000	0.001	0.000	0.000	0000	0.000	0.001	0.000	0.000	1.868	0.214 (0.974	0.005	0.421 (34.870		0.63
0 0000	0.014 0	0.001 0	0.226 0	1.022 0	0.151 0	0.109 0	0.005 0	0 0000	0.928 6	0.038 0	1,436 2	3.578 3.	0.000 0.	0.000 0.	0.000 0.	0.000 0.	0.000 0.	0.000 0.	0.347 0.	0.000 0.	0.000 0.	0.550 1.	0.095 0.	0.220 0.	0.002 0.	0.008 0.		20.526 34		
0 0000	0 900.0	0.001 0	0.170 0.	0.080	0.135 0.	0.049 0.	0.004 0.	0.001	.0 086.8	0.209 0.	2.240 1.	.798 3.	0.000 0.	0.000 0.	0.000 0.	0.000 0.	0.000 0.	0.000	0.167 0.	0.000	0.000	0.288 0.	0.486 0.	0.790 0.	0.015 0.0	0.088 0.0		15.789 20		750 0.37
								-				_																		
00000	0.006	11 0.021	00 0.034	15 0.167	33 0.082	0.039	0.003	0.001	11 0.683	860'0 80	111.2	7 2.099	0.000	000.0	00000	00000 00	00000	00000 0000	0.001	00000 0	00000	2 0.608	5 0.127	7 0.250	0 0.015	3 0.046		3 10.720		0.19
0000 0	100'0 0	100.0 71	00000	0.015	9 0.033	110.0 61	0 0.001	00000	2 0.141	5 0.008	1 0.044	7 0.297	00000 0	00000 0	00000	00000 0	00000	00000	0.000	00000 0	00000 0	6 0.032	6 0.015	5 0.017	2 0.000	4 0.003		95 2.143		0.04
95 0.000	090'0 00	00 0.057	00.003	0.030	9 0.209	9 0.139	0.010	0.005	2 2.412	2 0265	1301	73.867	00000	00000	00000	00000	00000	00000	0.001	00000 0	00000 0	9 2.806	8 0.606	5 1.555	0 0.002	1 0.254		9 25.195		0.46
0.095	0.000	0.000	0.000	0.003	00.00	600'0	0.000	00000	0.022	0.012	0.029	0.087	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.009	0.058	0.125	0.000	0.001		Р 1.549		0.03
488	493	5111	512	515	517	522	523	524	531	532	541	261	562	611	621	622	623	624	711	712	713	721	722	811	812	813		onto de V BP dido		P perdido

Fuente: esquema de resultados de Extracción Hipotética Backward Linkage sistematizada en Python 3.6.

ECONOMÍA DEL ESTADO DE ZACATECAS. ESQUEMA TOTAL DE EXTRACCIÓN HIPOTÉTICA POR FORWARD LINKAGE. MILLONES DE PESOS A PRECIOS BASICOS CUADRO A3.

869.61 0.037 0.128 0.420 0.000 0.013 0.122 0.384 0.011 0.093 0.015 0.107 0.003 960.0 0.012 0.011 0.011 0.024 160' 900.0 0.108 900' 185 16.049 1.621 4.464 0.045 0.155 0.784 0.232 0.022 1.143 4.272 3.124 1.776 5.524 0.080 0.670 0.525 0.611 0.031 484 158.790 552.191 12.801 16.745 56.134 13.809 43.957 12.780 10.162 73.118 0.971 0.325 3.519 3.560 0.578 0.602 0.149 8.917 2.615 806.9 4.338 5.908 3456 2 0.243 0.024 890.0 0.005 6000 0.083 0.221 0.085 0.083 0.024 0.004 0.001 339 29.422 0000 0.032 0.015 0.030 0.004 0.003 900'0 0.005 0.042 0.029 0.007 0.114 0.001 0.000 946.109 0.218 3.114 1.762 0.036 0.463 0.128 0.139 4.320 0.371 2.439 0.111 1.727 0.253 0.912 3.709 5.299 0.420 336 0.025 0.051 0.033 0.031 0.042 0.004 0.002 0.005 0.038 0.022 868.0 0.059 0.019 810.0 0.001 333 138.993 11.617 0.409 2.510 5.182 0.418 1.714 0.129 0.004 3.301 8.521 0.424 1.928 80000 0.303 0.295 0.125 7.101 3.139 0.137 0.364 0.008 332 55.673 13.154 0.787 0.000 0.369 0.003 0.015 0.019 0.363 7.109 169.0 0.046 0.353 0.022 0.035 0.077 900.0 0.081 0.035 0.203 0.358 0.028 0.008 0.011 0.001 247.408 32.154 0.023 9.635 8.132 2.209 1000 0.137 0.023 0.025 2.472 0.224 2.023 0.023 0.521 0.079 0.126 0.002 327 12.215 0.937 2.510 92.944 0.144 1.470 950.0 0.087 1.571 0.179 3.916 2.342 4.125 895.0 0.670 0.115 6.663 326 0.085 0.044 0.062 0.140 0.101 7.743 0.002 0.099 0.010 0.256 0.295 0.017 0.007 1.157 0.104 0.645 0.022 0.206 0.013 0.014 0.028 0.002 325 18.563 0.143 0.023 0.171 0.003 0.023 0.060 910.0 0.064 0.019 0.455 0.012 0.014 0.001 0.027 0.236 0.469 0.344 0.026 0.003 323 0.014 0.513 0.000 0.022 0.014 0.002 0.007 0.000 810.0 0.013 00000 0000 0.007 0.007 0.000 0.000 322 1.247 2.074 0.007 0.174 0.186 0.004 0.148 2.761 5.619 0.660 0.017 0.921 0.135 3.249 0.458 1.205 0.181 0.004 1.028 0.001 321 0.000 0.002 0.000 600.0 0.000 0.000 0.002 0.248 0.011 0.000 0.000 000 0.001 316 0.003 0.112 0.120 619.0 0.017 0.157 0.161 90000 0.001 0.017 0.121 0.224 0.015 0000 315 12.929 60000 60000 0.001 0.258 0.912 6.093 0.034 0.042 9650 0.633 60000 0.028 0.455 0.471 0.079 0.028 0.002 314 0.070 1.002 0.004 0.079 0.556 690.0 0.021 0.013 0.012 0.759 0.092 0.001 0.001 0.005 9000 0.000 172.321 0.191 0.007 0.072 0.233 0.001 0.000 0.000 0.035 0.014 0.049 0.111 0.007 0.024 0.022 0.002 312 0.003 810.0 0.102 0.019 0.029 0.004 0.013 0.491 0.277 0.037 0.030 0.001 31 16.135 1.671 0.030 1.829 3.475 0.155 3.520 0.001 3.026 0.312 0.003 0.002 0.048 0.799 0.147 0.137 60000 0.485 0.016 238 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 237 55.291 0.000 236 180.145 32.538 40.896 28.182 2.674 11.965 0.094 9.763 0.716 0.042 0.000 0.004 9990 1.622 0.194 0.313 0.019 0.032 3.265 0.003 0.034 0.168 0.001 212 0.003 0.000 0.000 0.117 0.002 0.148 0.003 0.161 0.003 0.002 0.001 0.000 0.000 0.001 0.028 0.001 0.052 0.000 0.000 0.000 0.211 115 0.000 0.000 0.265 0.004 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.245 0.000 0.000 0.000 0.000 0.000 0.000 14 44.898 0.026 0.939 0.000 0.000 0.000 959.0 0.033 0.001 0.009 0.000 0.001 0.000 0.010 0.008 0.000 0.001 0.000 0.061 0.003 0.001 0.001 0.000 0.000 0.008 0.004 0.000 0.000 0.000 112 NO. SCIAN* NO. SCIAN 314 316 332 485 112 = 115 212 236 237 238 311 312 313 315 321 322 323 325 326 327 331 333 336 337 339 431 484 487

20.63 2.07 0.46

1.44 5.78 0.08 18.04 0.55 0.41

0.01 0.48 0.21 4.13 5.91

5.76 3.85 0.05 0.65 0.46 0.04 0.71

0.263	0.012	0.083	0.211	0.095	0.133	0.278	0.007	0.013	0.007	0.038	0.475	1.131	0.008	0.222	0.094	0.084	0.001	0.013	0.023	0.008	0.045	0.054	0.053	0.077	0.067	0.178	25.552	
0.384	0.023	0.108	0.150	0.163	0.892	0.501	0.010	600.0	0.020	0.173	0.380	0.500	0.067	0.152	0.258	0.274	0.010	0.121	0.029	0.010	0.180	0.263	1.185	1.507	0.152	0.039	115.142	
3.144	0.063	0.937	1.336	1226	2.057	4.982	0.083	0.056	0.195	1.594	2.900	5.293	0.355	1.650	4.147	4.587	7200	1.864	0.137	0.039	2.220	2.873	24.817	17.336	1.678	0.426	1149.054	
0.010	0.001	0.003	0.004	0.111	9000	0.051	0.005	0.003	0.002	910.0	0.152	0.181	800.0	0.056	0.119	0.160	900.0	600.0	0.041	0.002	0.080	0.109	0.118	0.119	0.037	0.011	23.042	
0.014	0.000	0.012	0.019	0.011	0.002	0.021	0.002	0.001	0.007	0.014	0.038	0.047	0.002	0.028	0.002	0.014	0.000	0.001	0.002	0.000	0.014	0.092	0.025	0.004	0.011	0.003	30.496	
0.552	900.0	0.281	0.501	0.401	0.801	0.325	910.0	0.013	0.090	1.095	1.070	1.188	0.035	0.178	0.058	0.057	0.007	0.041	0.031	0.007	0.322	0.559	0.406	15.823	0.286	0.063	1004.414	
0.045	0.000	0.002	0.000	0.000	0.000	0.001	0.000	0.000	0.000	800.0	0.002	0.001	0.000	0.000	0.001	00000	0.000	00000	00000	00000	0.000	0.001	0.002	0.032	800.0	0.000	4.325	
0.487	990.0	0.180	0.027	0.830	0.227	0.104	0.005	0.003	0.056	0.601	0.138	0.067	0.139	0.286	0.093	0.052	0.002	0.093	0.017	0.005	0.133	0.334	0.534	4.633	0.252	0.010	321.813	
0.050	0.000	0.023	0.002	900'0	0.003	0.008	0.000	00000	0.001	0.010	0.013	0.013	0.001	0.003	0.004	0.002	0.000	0.001	0.001	0000	0.004	0.005	0.030	0.291	0.004	00000	79.940	
0.179	0.000	0.004	800.0	900.0	0.009	0.072	0.003	0.002	0.007	0.037	0.126	0.017	0.004	0.019	0.049	0.064	0.000	0.005	0.008	0.000	0.022	0.394	1.847	0.944	0.085	0.002	329.222	
1960	0.039	0.010	0.027	610.0	0.026	0.311	0.015	900'0	0.041	0.055	0.121	0.555	0.495	0.038	0.328	0.243	0.017	960'0	0.010	0.003	0.545	0.252	3.157	2.287	0.390	0.064	230.264	
0.011	0.001	0.014	0.012	0.001	0.005	0.010	00'0	0.002	00'0	0.002	0.017	0.054	0.014	0.007	0.045	0.048	0.002	0.023	0.001	0000	0.027	0.023	0.039	0.032	0.013	0.005	11.695	
0.091	0.010	0.022	0.031	900'0	0.029	3.444	090'0	0.043	0.038	0.019	0.179	0.331	0.012	0.211	0.047	0.033	0.002	0.051	0.004	0.004	0.033	0.059	0.399	0.197	0.014	0.001	26.540	
0.000	0.000	0.000	0.000	0.000	0.000	0.003	0.000	0.000	0.000	0.000	0.001	0.005	0.000	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.005	0.002	0.000	0.000	0.698	
0.011	0.000	0.003	0.005	0.005	0.003	0.031	0.001	0.001	0.003	0.235	0.021	0.029	0.002	0.010	0.005	0.007	0.000	0.002	0.001	00000	0.007	0.020	0.083	0.063	0.007	0.001	39.321	
0.001	00000	00000	00000	00000	00000	00000	00000	00000	00000	00000	00000	00000	00000	00000	0.001	00000	00000	00000	0000	00000	0.000	00000	0000	0.007	0000	0.000	2.437	
0.026	0.003	0.001	0.002	0.001	0.031	0.010	0.000	0.001	0.003	0.002	0.008	0.009	0.000	0.025	0.050	0.039	0.001	0.002	0.001	0.000	0.010	0.017	0.007	0.004	0.001	0.003	25.368	
0.047	0.001	600.0	0.009	600.0	0.028	090'0	0.003	0.001	0.013	0.027	0.027	0.039	0.001	0.353	0.217	0.103	0.000	0.008	0.001	0.000	0.128	3.050	5.219	096'0	0.161	0.471	36.457	
0.000	0.000	0.000	0000	0.000	0.000	0.001	0.000	0.000	0000	0.001	0.000	0.001	0.000	0.000	0.002	0.001	0.000	0.000	0.000	0.000	0.000	0.002	00:00 9	900'0	0.004	0.000	52 2.817	
0.036	0.001	0.008	0.020	900'0	0.018	0.143	0.004	0.005	0.001	0.003	0.048	0.083	0000	0.407	0.232	0.148	0.001	0.205	0.002	0.004	0.012	1.760	38.166	900'0	0.014	0.013	16 214.562	
0.007	0.000	0.002	0.006	0.001	0.003	0.026	0.001	0.001	0.001	0.001	0.066	0.027	0.000	0.059	0.078	0.079	0.000	0.049	0.001	0.000	0.005	0.004	11.608	0.004	0.003	0.004	320.536	
0.783	0.008	0.074	0.892	0.070	990.0	3.318	0.242	0.028	0.277	0.102	1.081	0.546	0.082	1.252	0.501	0.667	0.009	0.223	0.055	0.071	0.709	1.948	0.295	0.033	0.913	0.010	62.752	
0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0000	0.000	0000	0.000	0000	0.000	0000	0.000	0000	0.000	0.000	74,359	
0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	55.291	
0.051	0.000	0.007	0.009	0.004	0.003	0.039	0.002	0.001	0.004	0.010	0.035	0.012	0.003	0.015	0.017	0.027	0.000	0.004	0.002	0.001	0.011	0.090	0.459	0.248	0.024	0.001	329.198	
0.000	0000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0000	0.000	0.000	0.000	0.004	0.000	0.000	0.000	0.743	
00000	0.000	00000	0.000	00000	0000	00000	0000	0.000	0000	0.000	0000	0.000	0.000	0.000	0000	00000	0.000	00000	0000	00000	0000	00000	0.012	00000	0.000	0.000	1.527	
0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.000	0.000	0.000	0.000	0.002	0.001	0.000	0.001	0.002	0.002	0.000	0.001	0.000	0.000	0.000	0.000	0.388	0.000	0.000	0.000	47.063	
488	493	511	512	515	517	522	523	524	531	532	541	561	295	119	621	622	623	624	7117	712	713	721	722	811	812	813	onto de VBP rdido	

Fuente: esquema de resultados de Extracción Hipotética Forkward Linkage sistematizada en Python 3.6.

0.99 1.34 1.13

0.01 5.91

ECONOMÍA DEL ESTADO DE ZACATECAS. ESQUEMA TOTAL DE EXTRACCIÓN HIPOTÉTICA POR FORWARD LINKAGE. MILLONES DE PESOS A PRECIOS BASICOS CUADRO A3.

813	2.523	0.000	0.002	0.000	890.0	0.050	0.124	810.0	0.333	660.0	0.004	900'0	0.005	0.001	0.013	0.004	60000	0.011	6200	0.146	0.024	0.055	0.005	0.204	600.0	0.030	0.206	0.020	0.034
812	8.935	00000	00000	00000	0.003	0.001	0.002	0.000	0.045	900.0	0.001	0.001	0.001	0.000	0.000	00000	0.004	0.025	0.004	0.003	0.001	800.0	0.000	0.013	0.001	0.004	0.004	0.004	0.001
118	47.863	900'0	0.027	0.003	3.965	1.180	1.719	0.115	999'9	2.619	0.012	0.137	0.502	0.018	0.109	0.003	0.210	0.070	1.891	1.466	0.363	2.366	0.032	6.575	0.349	0.365	1.012	1.803	3.134
222	57.075	0.001	0.020	0.000	0.157	0.103	0.224	0.034	0.452	0.403	0.003	0.020	0.241	0.003	0.273	0.001	0.330	0.073	0.941	0.289	0.216	1.260	0.019	2.837	0.075	0.162	0.904	0.677	0.613
721	15.849	0.000	0.001	0.000	0.354	0.293	0.430	0.037	0.823	0.382	0.002	0.008	0.028	0.004	0.036	0.002	0.012	0.026	0.370	0.183	0.084	1.221	910.0	2.791	0.218	0.153	0.101	0.296	0.391
713	13.358	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.000	0.000	0.000	0.000
712	0.438	0.000	00000	0.000	00000	0.000	0.000	0.000	0.000	0.000	00000	00000	00000	0.000	00000	00000	00000	00000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	00000	0.000	0.000	0.000
IE.	0.961	0.000	0.000	0.000	0.000	0.001	0.000	0.000	0.004	0.007	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.000	0.001	0.000	0.005	0.000	0.000	0.004	0.000	0.000
624	5.501	00000	00000	00000	00000	00000	00000	0.000	0.000	0.000	00000	0.000	00000	00000	0.000	00000	00000	00000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	00000	0.000	0.000	00000
623	0.241	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
622	8.879	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
621	8.843	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	00000	0.000	00000	0.000	00000	0.000	00000	0.000	0.000	0.002	0.000	0.004	0.000	0.001	0.000	0.063	0.000	0.000	0.000
119	8.685	0.000	00000	00000	0.002	0.001	0.001	0.000	900'0	990:0	00000	00000	00000	0.000	00000	00000	0.001	00000	880.0	0.002	0.001	0.017	0.001	0.175	0.001	0.003	0.013	00000	00000
562	1.690	0.000	0.000	0.000	0.001	0.005	0.011	0.000	0.002	0.001	0.001	0.000	0.001	0.000	0.000	0.000	0.001	0.038	0.002	0.001	0.011	0.002	0.000	0.008	0.000	0.000	0.020	0.000	0.000
261	21.246	7000	0.173	0.011	6.206	0.453	1.934	0.032	13.858	7.807	0.130	0.334	2.099	0.194	0.158	0.044	2.213	1.362	10.266	8.225	1.889	7.430	0.162	36.756	0.675	1.496	5.227	0.821	1.411
541	21.677	0.004	190.0	800.0	2.912	0.772	1.325	0.116	7.497	4.556	0.027	0.081	0.739	0.043	601.0	910.0	0.747	0.523	1.714	1.811	1.252	2.474	0.132	13.408	0.469	0.801	1.858	0.145	0.427
532	6.937	0.001	0.011	0.031	0.631	0.400	61870	0.189	0.781	0.162	900'0	0.043	0.113	0.007	0.024	0.002	0.149	0.021	0.228	0.345	0.077	809.0	600.0	0.911	0.055	0.132	0.251	0.085	0.110
<u>8</u>	1.432	0.002	600.0	0.001	0.278	0.394	0.195	0.067	4.371	0.929	0.032	0.101	0.758	690.0	090'0	0.011	0.557	0.154	1.364	1.098	0.433	1.754	0.047	4.914	3.154	0.773	1.813	0.142	909'0
524	4.574	0.000	0.001	0.000	900.0	0.005	0.015	0.001	0.010	0.005	0.001	0.000	0.002	0.001	0.000	0.001	0.001	0.014	0.007	0.005	0.009	0.015	0.008	860.0	0.001	0.007	0.010	0.005	0.003
523	5.360	0.000	0.007	0.000	0.067	60000	0.011	0.000	0.015	0.012	00000	00000	0.002	0.001	0.000	00000	0.001	800.0	0.015	0.012	0.025	0.007	0.004	0.028	0.001	0.003	0.044	0.002	0.001
522	111.705	0.008	0.033	0.004	909.0	0.432	0.853	0.026	2.344	0.603	0.051	0.031	0.406	0.029	0.019	0.007	0.139	0.185	0.550	0.492	0.400	1.341	0.029	3.114	0.118	0.173	1.587	0.061	690'0
517	20.736	0.001	0.013	0.002	0.117	0.389	0.195	0.083	0.577	0.983	60000	0.024	0.237	0.026	0.031	0.005	0.143	0.100	0.258	0.271	0.607	0.664	0.055	2.615	0.120	0.378	0.324	0.085	0.133
515	11.091	0.000	0000	00000	0.024	0.011	0.015	0.001	1.229	2.233	0.001	0.002	0.015	0.005	0.003	0.001	0.025	0.058	0.064	0.115	0.051	0.170	0.010	1.013	0.026	0.035	0.717	0.003	0.013
512	13.285	0.000	0.000	0.000	900.0	0.003	0.003	0.000	0.320	0.033	0.000	0.000	0.002	0.000	0.000	0.000	0.002	0.002	9000	900'0	0.003	0.010	0.000	0.064	0.001	0.002	0.160	0.001	0.001
511	7.770	0.000	0.000	0.000	0.003	0.004	0.003	0.000	0.317	0.102	0.001	0.001	0.010	0.003	0.001	0.002	0.018	0.044	0.025	0.036	0.068	0.138	0.013	0.781	0.022	0.052	0.018	0.007	0.042
493	0.814	0.000	0.000	0.000	0.002	0.003	0.002	0.000	0.198	691.0	800.0	0.004	0.011	0.005	0.001	0.004	0.011	0.120	0.070	0.082	0.014	0.049	0.013	0.202	0.034	0.120	0.131	0.035	0.001
888	19.706	0.002	0.019	0.001	0.045	0.038	0.048	0.003	685.0	0.153	0.003	900'0	0.027	0.004	800'0	0.001	0.036	0.031	0.150	0.108	0.104	0.174	0.005	1.612	0.021	0.029	0.025	959'0	0.382
487	1.437	0.000	0000	0.000	0000	0.000	0.000	0.000	0.000	0.000	00000	00000	00000	0.000	0.000	0.000	00000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.000	0.000	0.000	0.000	0.000
NO. SCIAN NO. SCIAN	1112	114	1115	212	236	237	238	311	312	313	314	315	316	321	322	323	325	326	327	331	332	333	336	337	339	431	484	485	487

0.10 0.04 0.01 0.24 0.63 2.09 1.79 0.19 0.11

0.04 0.17 0.17 0.16 0.00

2.22 3.93

0.09 1.31 0.31

0.28 0.37 0.63 2.34 0.12

0.04 0.19

0.001	0.254	0.003	0.046	680'0	0.008	0.422	0.194	0.017	0.004	0.032	0.115	0.503	810.0	0.000	0.003	0.002	0.002	0.000	0.001	0.001	900'0	0.494	0.003	0.012	0.007	0.003	6.321	
0.000	0.002	00000	0.015	0.015	0.002	0.005	0.517	900'0	0.013	0.000	0.070	0.015	0.170	0.000	0.062	0.095	0.185	0.007	0.017	00000	0.000	600.0	0.012	0.032	900'0	0.000	10.322	
0.125	1.555	0.017	0.250	862'0	0.220	0.974	4.305	0.310	0.084	0.042	0.677	1.336	0.833	0.077	0.271	0.162	0.155	800.0	060'0	600.0	0.013	0.430	0.078	2.021	0.393	0.057	12866	
0.058	909.0	0.015	0.127	0.491	0.095	0.214	0.842	0.025	0.013	0.022	690.0	0.816	2.533	600.0	0.404	0.088	0.101	0.012	1.245	0.050	0.035	0.377	0.046	0.186	0.265	0.386	116.536	
0.009	2.808	0.032	809.0	0.291	0.551	1.870	3.033	0.208	0.017	0.014	0.098	17.17.1	0.043	0.001	0.175	0.108	0.033	0.000	0.009	0.004	0.012	0.019	0.023	0.021	0.007	0.002	35.275	
0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.000	0.000	0.000	13.360	
0.000	0.000	00000	0.000	00000	00000	00000	00000	00000	00000	00000	00000	00000	00000	00000	00000	00000	00000	0.000	00000	0.000	0.000	0.000	00000	0.000	00000	00000	0.438	
0.000	0.001	0.000	0.001	0.169	0.347	0.001	0.005	00000	0000	0.000	0000	0.002	0.003	0.000	0.001	0.001	0000	0.010	0.007	0.000	0.146	0.045	0.550	0.000	0.000	0.067	2.344	
00000	0.000	00000	0.000	00000	0.000	00000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	00000	0.000	00000	00000	0000	0.000	0.000	0.000	0.000	5.501	
0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.241	
0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	8.879	
0.000	0000	00000	00000	00000	00000	0.000	0000	00000	0000	0.000	0000	0.001	0000	0.000	0000	0.343	0000	0000	0.000	0.000	00000	00000	0.002	0.000	0.000	0.000	9262	
0.000	0.000	0.000	0.000	0000	0.000	0.001	0.256	0.002	900'0	0.000	0.000	0.045	0.001	0000	0.034	900'0	0.000	0.003	0.002	0.001	0.002	0.000	0.002	0.001	0.000	0.004	9.430	
0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.231	600.0	0.004	0.000	0.000	0.018	0.001	0.005	0.011	0.026	0.000	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	2.105	
0.087	3.865	0.296	2.096	1.815	3.575	3.943	43.858	2.320	1.438	0.109	0.522	5.415	0.277	1.028	0.560	0.682	0.035	0.621	0.331	860.0	3.462	2.014	5.728	1.556	0.492	0.287	219.131	
0.029	1300	0.044	2.108	2.261	1.434	2.212	30.568	IIII	2.291	0.260	0.445	4.905	090'0	0.913	0.700	0.602	0.017	0.328	080'0	0.093	1.804	0.801	2.041	668'0	0.463	0.284	123.758	
0.012	0.265	0.008	860.0	0.211	0.038	0.283	0.470	0.014	0.014	0.023	0.711	0.212	0.028	0.078	0.081	0.019	0.002	0.026	0.005	0.001	0.146	0.045	0.132	0.854	0.128	0.008	17.109	
0.022	2411	0.141	0.682	4.019	0.927	6.164	15.170	0.637	0.178	1.013	3.571	1.784	0.049	0.496	0.560	0.168	0.018	0.523	0.061	0.027	1.826	0.743	0.731	2.181	3.199	0.137	72.955	
0.000	0.005	0.000	0.001	0.001	0.000	0.005	0.033	0.001	0.000	0.001	0.002	0.005	0.000	0.001	0.000	0.000	0.000	0.001	0.000	0.000	0.001	0.002	0.001	0.001	0.002	0.000	4.870	
0.000	0.010	0.001	0.003	0.004	0.005	0.326	0.258	690'0	0.002	0.003	0.020	0.014	00000	0.001	0.001	0.000	00000	0.001	0.001	0.000	0.010	0.028	0.002	0.001	0.007	0.002	6.405	
0.009	0.139	0.011	0.039	0.050	0.109	0.774	0.308	0.281	0.145	0.070	0.634	0.483	0.045	0.173	0.076	0.109	0.001	0.007	0.076	0.005	0.297	0.510	0.190	0.105	0.026	600.0	130.096	
0.009	0.209	0.033	0.082	0.136	0.151	2.033	0.149	0.151	0.045	0.051	0.807	0.660	0.015	0.188	0.153	0.036	0.004	0.036	0.008	0.003	0.141	0.107	0.174	0.363	0.154	0.077	35.156	
0.003	0.030	0.015	0.167	0.081	0.016	1.265	0.030	0.009	600.0	0.037	0.075	0.525	900'0	0.210	0.203	0.048	0.001	0.011	0.012	0.007	0.272	0.127	0.402	0.033	0.042	0.018	20.587	
0.000	0.002	0.000	0.034	1.011	0.004	0.058	0.002	0.004	0.001	0.001	0.519	0.012	0.000	0.004	0.003	0.002	0.000	0.001	0.000	0.001	0.005	0.002	0.010	0.003	0.001	0.001	15.595	
0.000	0.057	0.001	0.172	0.226	0.049	0.110	0.003	0.005	0.049	0.049	0.063	0.031	0.000	0.130	0.007	0.010	0.000	0.005	0.005	0.004	0.020	0.005	0.011	0.005	0.004	0.004	10.505	
0.000	090'0	0.021	0.001	0.001	0.001	0.003	0000	00000	0000	0.003	0.010	0.011	0000	900'0	0.001	0.001	0000	0.000	00000	0.000	0.001	0.001	0.021	0.004	00000	0000	2.251	
0.095	0.001	900'0	900'0	0.014	0.041	0.034	0.001	680'0	0.001	0.053	0.051	0.027	0.005	0.022	600'0	0.010	0.001	0.003	0.004	0.000	0.007	600.0	0.041	0.052	900'0	0.002	24.579	
0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	1.438	
488	493	511	512	515	517	522	523	524	531	532	541	199	562	119	621	622	623	624	7117	7112	7113	721	722	811	812	813	onto de VBP rdido	

Fuente: esquema de resultados de Extracción Hipotética Forward Linkage sistematizada en Python 3.6.