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Distributional dynamics of patenting
across states in Mexico: A spatial
Markov chain approach

VicTtoR HuGO TORRES PRECIADO"
VICENTE GERMAN-SOTO™"

ABSTRACT

This investigation aims to analyze the distributional dynamics of paten-
ting across Mexican states. Our main results suggest, by means of
implementing a spatially conditioned Markov chain framework, the
regional context is relevant to understand the evolution of the state
patenting patterns of distribution over time and across space in Mexico.
In this regard, additional evidence suggests top-innovators states
interacting with neighboring states sharing similar levels of regional
patenting may benefit from positive spatial externalities, while those
states positioned in lower levels of the patenting distribution would
experience difficulties in accessing top-innovators’ technological
knowledge that may impede their upward transition to higher classes
within the patenting distribution.
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ABSTRACT

Estados de México: Un enfoque de cadenas de Markov espaciales
El objetivo de esta investigacion es analizar la dindmica distributiva del
patentamiento realizado en los estados mexicanos. Nuestros principales
resultados sugieren, mediante la aplicacion de un enfoque de cadenas
Markovianas condicionadas espacialmente, que el contexto regional es
relevante para comprender la evolucidon de los patrones distributivos
del patentamiento estatal a través del tiempo en México. En tal sentido,
evidencia adicional sugiere que los estados mas innovadores en inte-
raccion con estados geograficamente cercanos que comparten niveles
similares de patentamiento se beneficiarian de la presencia de externa-
lidades espaciales positivas, mientras que los estados con los menores
niveles en la distribucion de patentamiento estatal experimentarian difi-
cultades para acceder al conocimiento tecnoldgico de los estados mas
innovadores que pudieran obstruir su transicion hacia mayores niveles
de patentamiento.

Palabras clave: innovacion, patentamiento, cadenas de Markov
espaciales, México.

Clasificacion JEL: O31, R10, CO2.

INTRODUCTION

In the space-time distributional evolution of regional innovation, the
geographical proximity fulfills a determinant role because it tends to
disseminate the ideas and knowledge among nearest regions faster.
Consequently, and as in a chain of effects, it also contributes impro-
ving the regional productivity. Innovation means inventive capacity
of one economy besides improved designs and process that reduce
costs of production and raise benefits. Commonly, high levels of inno-
vation are compromised also with high rates of investment in R&D,
and this last input is in turn correlated with high level of knowledge.
Thus, innovation-knowledge-R&D are widely interrelated, but they
need adequate channels that easily spread the spillovers effects posi-
tively impacting the productivity. In this game of correlated forces,
the role played by the proximity has attracted much attention, lately.
It has been widely recognized the feature of multidimensionality
that own the proximity. For example, some types of proximity are
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geographic, cognitive, social, institutional, and organizational, but
also it is accepted that the geographical one facilitates the innova-
tion and reinforces other types of proximity (Boschma, 2005). Some
recent studies have found in the geographic clustering important
potential conduits of technology transfer and knowledge creation
(Attfield et al., 2000, Inoue et al., 2019), others highlight the techno-
logical catch-up faster (Griffith et al., 2009). This outcome is espe-
cially clear in regional contexts where clusters of firms and industrial
districts tend to be geographically concentrated producing important
spillovers on the neighboring. In addition, the transfer of technology
obtained through geographic connectivity is usually the solution to the
R&D financing problems that the most economically lagging regions
generally suffer.

Indeed, in our days, productivity significantly seems to be based
on some of the many ways materializing the innovation, such as tech-
nology (Griffith ez al., 2009, Alexopoulos and Cohen, 2019, Ardito et
al., 2019, Chen, 2020), creation of patents (Bilir, 2014, Guo, 2015),
and the protection to the property rights (Alvi et al, 2007, Sweet
and Eterovic, 2019, Chu et al., 2020). All these factors are mainly
highlighted among developed economies, for who the internal inves-
tment on R&D is essential, a condition that not always can be satisfied
in the less developed world, due to problems of financing. However,
the stock of investment on R&D is jealously monitored by developed
countries. Economies with higher R&D also tend to exhibit more
growth (Attfield et al., 2000, Ulku, 2004, Agénor and Neanidis, 2015)
because the technological progress from R&D displaces the produc-
tive capacity and, this way, higher rates of growth are possible.

The market failure on R&D investment can be replaced from
public financing. However, deviation of resources to increase the
expenditure on R&D is costly, and especially prohibitive for less
developed countries, therefore, business relationship is fundamental
among countries. With this end, the connectivity is also vital. More
connected countries can take advantage from technological advances
and improve their productivity. In this process, proximity becomes
very important, because the closer one economy is to another that
has created innovation, the easier and faster is to absorb this new
progress. Economic activity spatially concentrated is benefited from
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the knowledge spillovers. Short distances facilitate the knowledge
dissemination, while large distances difficult it.

As regions becomes more interconnected, they will be able to
expand its stock of knowledge, improving their productivity, without
necessarily increasing their internal investment in R&D. Conver-
sely, remaining isolated will not be influenced by the technology and
knowledge being created abroad, so improved productivity only will
be possible augmenting the internal investment in R&D, a mecha-
nism that not necessarily guarantees improvement of its inventive
capacity because innovation constitutes, for sectors and industries, a
process of maturation that takes some time. In change, the process
of linking through any of the previous channels speeds the acquisi-
tion of inventions, making possible the knowledge stock that allows
stimulating productivity.

In this respect, as occurs with the spatial distribution of economic
activity performance, the localized nature of innovation (Capello and
Camilla, 2013) and knowledge diffusion sensibility to distance (Varga
et al., 2005) render innovation to be unevenly spatially distributed
across countries and regions. Whereas this latter is an acknowledged
feature of innovation activity (Egger and Loumeau, 2018), what has
remained largely unexplored are its dynamical distributional charac-
teristics over space. Investigating this latter issue is of relevance,
first, because it may help elucidate the relationship between income/
growth inequality and technological innovation, a topic which has
recently gained interest (Foellmi and Zweimiiller, 2017; Acemoglu,
1998); and second, uncovering distributional properties such as the
more likely technological transition path over both short and long
run horizons, or what the role of geographical proximity could be in
shaping these paths, provide a standpoint not only to reevaluate the
national and regional innovation policy efforts, but also it may help to
their re-elaboration.

This investigation addresses the case of Mexico, a developing
country which although its efforts to increase the investments made
on R&D by public and private sectors, it appears to be insufficient to
boost technological innovation and therefore economic growth. The
country has devoted in recent years just 0.3% share of its GDP to R&D
expenditure, whereas its patent production has averaged about 7% in
its growth rate during the last fifteen years. In addition, at regional
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level, some states have witnessed a renewed interest about promoting
local innovation whereas, at the same time, not all the states seem to
encompass these initiatives, and thus giving rise to a heterogeneous
spatial distribution of regional technological innovation (German-
Soto et al., 2009, Torres-Preciado et al., 2014). However, due to the
changing feature of the regional distribution of innovation, it is not
clear whether states’ uneven spatial distribution of innovation tend to
reduce or to amplify over time; or how likely states would advance (or
retrocede) towards higher (or lower) levels of innovation activity, and
moreover, whether the spatial interaction mediated by geographical
proximity among states significantly accounts for the underlying
distributional evolution of regional innovation in Mexico.

In this context, this research aims to contribute to empirical studies
on technological innovation by investigating both the short-term and
long-term features of the distributional evolution of patents counts
across the Mexican states and how these distributional features might
change by accounting for the spatial dimension. In this regard, we
intend to particularly answer the following questions: What features
are descriptive of the distributional evolution of patenting across
states in Mexico? Does the evolution of the patenting distribution
over time show a convergence or divergence pattern across states?
Does spatial interaction matter in shaping the distributional evolution
of patenting across states in Mexico? If so, to what extent the geogra-
phical context influences the evolution of the patenting distribution
in Mexico? We provide answers to these questions by implementing
a spatially augmented Markovian chain framework proposed by Rey
(2001) which allows to investigate distribution dynamics when spatial
dependence between geographical units features spatial systems.

The reminder of this article is organized as follows. Section
1 reviews recent literature on innovation and economic inequality.
Section 2 describes the methodology to study the spatiotemporal
dynamics of patenting across states in Mexico. Section 3 discusses
the empirical findings and finally concludes.
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1. LITERATURE REVIEW

This review focuses on the lines in which technological knowledge
and innovation take place in the space or territory. Within the several
theories and approaches in this branch, the geographical proximity is
specially debated due to its importance in increasing the probability
of knowledge spillovers and supporting the innovative activities. Most
concentrates on the mechanisms on how the knowledge and innova-
tion take place in space (Capello, 2007) with a fruitful literature exam-
ining from a knowledge production function, as Fritsch (2002), who
compares qualities of regional innovation systems, or as Parent (2012),
who analyze the spatiotemporal regional spillovers. In Fornahl and
Brenner (2009) innovation results by the relationship between indus-
trial agglomeration and local knowledge production. Antonelli and
Colombelli (2017) find that access to external knowledge has posi-
tive effects on productivity of firms. Capello (2007) highlights spatial
elements playing important role that widely explain the regional growth
differentials. In regional growth, the geographic proximity is increas-
ingly taking much importance (Parent and LeSage, 2008). For example,
Boschma (2005) indicates that proximity facilitates interactive learning,
although it may also have negative effects on innovation, while Griffith
et al. (2009) find that proximity to frontier firms makes catch-up faster
in terms of productivity growth.

The analysis of the effects of globalization on multinationals by
Toulemonde (2008) finds that proximity —in this case firms agglom-
erate their production in a single plant— involves reductions of trade
costs. Other works seek explanations in the space-time (Parent and
LeSage, 2012) that can be simplified through estimates from Markov
chains, viewing how the geographic space can be considered as key
factor explaining the heterogeneous association between innovation
and inequality (Tselios, 2011). Advances on technology have their own
space-time development path forming frontiers on knowledge and skills
that constraint the movement to other places, creating path-dependent
time geographies (Oinas and Malecki, 2002).

Ozman (2009) and Oinas and Malecki (2002) sustain that local
interaction networks are very important for innovation and techno-
logical change but our understanding on this branch remains still few
explored. Pierrakis and Saridakis (2019) examine the social networks
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and find that public funds of capital have higher volumes of interactions.
Although strategic alliances are necessary to build a well-connected
infrastructure network (Yao, Li and Weng, 2018).

Regarding the knowledge spillovers, the geographical proximity is
not the unique element to consider, in fact exist many other types of
proximity as cognitive, organizational, social, institutional (Boschma,
2005 and Mattes, 2012), and personal proximity (Leszczynska and
Khachlouf, 2018), all they influencing the interactive learning and
innovation, but such as is highlighted by Boschma (2005), from a
dynamic approach, geographical proximity can reinforce other dimen-
sions of proximity.

Briefly, cognitive proximity is referred at the level of capabilities
owned by firms or showed by a region in the objective to absorb the
knowledge portrayed in new technologies. To the extent that knowl-
edge cannot be considered completely as public good, economic agents
should have a minimum level of knowledge in order to communicate
and learn from each other. If knowledge-level is not sufficient, costs to
treat with a particular technology will increase too much. Thus, regions
showing cognitive proximity may improve the productivity. Neverthe-
less, levels above to certain umbral can be detrimental for innovation
(Boschma, 2005).

Organizational proximity means capacity to coordinate and to
manage the stock of knowledge in organizations. Particularly, creation
of networks, market organization, appropriability, governance, among
others, tend to differ and, as consequence, the distance will be not the
same. Thus, this form of proximity can represent a relevant argue of the
productivity differences among regions.

Social proximity is a property more identified in relations at the
micro-level. It seeks explanation on the dependence of the regions from
social ties or relations to reach suitable economic outcomes. The idea is
that social relations developed by workers of different firms can help to
reinforce the ties of friendship making more effective interactions that,
finally, will derive from this brainstorming favoring the productivity.
Advances in telecommunications and connectivity from very diverse
mechanisms as cellphones, platforms as WhatsApp, Facebook, Twitter,
etc., will lead to reductions in the social distance, favoring the produc-
tive process.
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Institutional proximity can be understood at the macroeconomic
level of the social proximity (Boschma, 2005). In this case, institutional
structures as laws, rules, democracy, even the culture, can support the
innovation. To the extent that stronger institutions exist, more easily
will be the transition toward innovation and improved productivity.
Therefore, the institutional frame results influential.

Additionally, Leszczynska and Khachlouf (2018) propose sepa-
rate the personal traits from the social proximity because indi-
vidual characteristics differently impact the innovation. This notion
refers specific personality traits that can facilitates collaborations
and, this way, improves the access on innovation and influences the
productivity level.

Empirical findings treating with these types of proximity have been
diverse. In Feldman (1994) and Aw and Palangkaraya (2004) geograph-
ical proximity supports innovative activities and raise the probability
of knowledge spillovers. Carbonara and Giannoccaro (2011) define a
concept of proximity based on four of the above notions and evaluate
the influence of proximity in the competitiveness of the Industrial
Districts. Although results are in the direction that proximity favors
the competitiveness, they also highlight that much proximity is detri-
mental. Mattes (2012) investigates the differences between concepts of
proximity and suggests that the knowledge nature significantly acts for
the types of proximity, so they complement and substitute each other.
Marrocu et al. (2013) find that technological proximity outperforms the
geographic one in European regions. They also highlight a limited role
from social and organizational networks. Martinus and Sigler (2018)
use a concept of global city clusters to explain the linkages observed
from the different notions of proximity in Australia. Some of the results
identify a strong role of the geographical proximity in shaping regional
networks. Harris et al. (2019) report differentiated effects of the spatial
proximity on productivity by firm size of the UK economy. Effects were
positive only for larger plants, a result attributable to the absorptive
capacity characterizing this size of firms. Lee and Kim (2020) study
the neighboring effects between low-income and high-income regions
of South Korea. They find that negative effects from spatial proximity
are greater than the positive in the economic growth of the low-income
regions. Cappellano and Makkonen (2020) assess the role of the prox-
imity in the economic interaction of cross-border in a US-Canadian
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region. The results and conclusions on the role of the cognitive prox-
imity are not clear because in a first stage they are high, but in a second
one the region presents a low level of interactions.

All notions of proximity provide different ways to assess the impact
of the distance on innovation, and as consequence, in productivity. It
is possible that some of them are more important than others in affect
the innovation, depending of the level of development, the maturation
degree of the productive process, specific sectors or the interest shown
in some objective. In the present exercise our interest is the exam of
the Mexican regions, with the geographical proximity as the main
hypothesis to be tested. Some research in this area discus the distribu-
tion of the FDI conditioned to spatial interaction effects across Mexican
states (Torres et al., 2017), others investigate proximity effects using
Markov chain models when a set of regions transit to higher levels of
manufacturing industry (Flores-Segovia and Castellanos-Sosa, 2021).
However, studies on the spatial interaction effects of the innovation
are scarce, despite spatial interaction effects seem to be present in the
economies and that this avenue of research enjoys a longer tradition in
developed countries.

Finally, as technology constantly changes then evolution of the
innovation is characterized as path dependent and so it is affected by
technological change (Mokyr, 1990). In addition, depending of the
phase of a major innovation, proximity can have a positive or nega-
tive impact on innovation. At the end, the inventive process portrayed
in a patent can differ greatly across regions and over time, therefore,
a suitable tool of analysis is to see this dynamic from Markov chains,
from which it makes possible to infer about the evolution of the spatial
distribution of patenting.

2. SPATIAL DISTRIBUTION OF REGIONAL PATENTING IN
MEXICO: AN EXPLORATORY INSIGHT

An overall look at the spatial distribution of regional patenting in
Figure 1 shows it is unevenly configured across the entire territory in
Mexico with most of the northern states, and some center-located states,
featuring high levels of patenting that contrast those of southern states
mostly positioned at lower levels of the quantile classes. This spatial
configuration, however, evolutes over time according to transition
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dynamics specific to each state. In this regard, for example, the state of
Baja California although located at northern Mexico exhibits a transi-
tion to the lower levels of the quantile distribution before returning to
the upper levels in the next years. The states of Jalisco, Nuevo Leodn,
Estado de Mexico, and Ciudad de Mexico have shown, in contrast,
fewer fluctuating dynamics of transition that locate them within the
highest quantile class of patenting levels on a permanent basis. This
mixture of spatial transitions across the quantile classes also unveils the
evolution in the formation of spatial clustering between states of similar
patenting levels and its alteration into geographical patterns showing
proximate states sharing dissimilar patenting levels which speak about
how spatial interaction evolve.

FIGURE 1
SPATIAL DISTRIBUTION OF PATENTS IN MEXICO 2000-2020
(QUANTILES)

2000 2005
Quantile: 2000 Quantile: 2005
[] 10:01(4) [ o:2am
[ n:302) 3:46
m o m 5
B [r2: 1661 W 115:212(8)
2010 2015
Quantile: 2010 Quantile: 2015
[ n:am 800
[ 8:11](9 [ 18:21(10)
W (12:22)(8) W (22:41)(8)
W (31:321)(8) W 42:367)(8)

2020

Quantile: 2020
[1:5
[ mae
I (16:42)(8)
W 54:220](8)

Source: own elaboration.
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Additional insight can be gained regarding the predominant sort of
spatial interaction between a specific state and its geographic neighbors
that is likely to expect by means of implementing a Markovian version
of the local indicators of spatial association statistics which classify, in
four types, its relative spatial transitions over time towards four possible
classes (See Table Al in Annex). Accordingly, a type O transition from
class HH(t) towards class HH(t+1) representing the joint spatial transi-
tion between a specific state and its neighbors sharing the characteristic
of having high (above average) patenting levels shows a high prob-
ability, ranging from 0.74 to 0.80 across the four displayed subperiods,
indicating the next year they will likely remain within the same class
(table 1). However, joint spatial transitions between the state-neighbor
pair from class LL(t) towards class LL(t+1) stand as the highest transi-
tion probability across the four subperiods suggesting, therefore, spatial
clustering of low patenting levels might persist over time. It is also worth
noticing the remaining two spatial transitions of type 0 also exhibit high
probabilities, particularly that from class LH(t) towards class LH(t+1),
which grows slightly across the subperiods. In correspondence, the
remaining pairwise of spatial transitions within the fourth-type clas-
sification system exhibit lower probability levels, though type-I move-
ments from class H(t)L(t) towards L(t)L(t) tend to display non-negli-
gible probabilities which suggests some states holding high levels of
patenting might equate its neighbors’ lower patenting levels. In this
regard, the higher probability of witnessing a spatial transition of type
0 seems to attribute spatial stability to the regional patenting dynamics
over the short run. From a long run perspective, however, the corre-
sponding spatial transition probabilities within the steady-state vector
in Table 1 shows consistently, across the four subperiods, both the
formation of spatial clusters of low patenting activity between the state-
neighbor pair and the spatial association between low-patenting states
surrounded by high-patenting neighbor states, as more likely forms of
spatial interaction.
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TABLE 1
LOCAL INDICATOR OF SPATIAL ASSOCIATION (LISA) PROBABILITY TRANSITION MATRIX
OF REGIONAL PATENTING IN MEXICO

2005
Quadrants HH(t+1) HL(t+1) LH(t+1) LL(t+1) Steady state
HH(t) 0.80 0.00 0.20 0.00 0.18
HL(t) 0.14 0.71 0.07 0.07 0.12
LH(t) 0.05 0.05 0.83 0.07 0.40
LL(t) 0.00 0.05 0.08 0.87 0.30
2010
Quadrants HH(t+1) HL(t+1) LH(t+1) LL(t+1) Steady state
HH(t) 0.75 0.08 0.17 0.00 0.09
HL(t) 0.06 0.72 0.06 0.16 0.13
LH(t) 0.04 0.03 0.85 0.07 0.37
LL(t) 0.00 0.04 0.07 0.88 0.41
2015
Quadrants HH(t+1) HL(t+1) LH(t+1) LL(t+1) Steady state
HH(t) 0.74 0.08 0.18 0.00 0.09
HL(t) 0.07 0.76 0.03 0.14 0.15
LH(t) 0.04 0.04 0.86 0.06 0.33
LL(t) 0.00 0.04 0.06 0.90 0.42
2020
Quadrants HH(t+1) HL(t+1) LH(t+1) LL(t+1) Steady state
HH(t) 0.80 0.07 0.13 0.00 0.10
HL(t) 0.07 0.75 0.02 0.15 0.16
LH(t) 0.03 0.03 0.88 0.06 0.31
LL(t) 0.00 0.05 0.05 0.89 0.42

Note: Each subperiod for which the spatial LISA statistics were calculated initiates in 2000 and respectively
ends in the indicated year.
Source: own calculations.

Additional summary measures corroborate that spatial stability would
likely be the predominant feature of the short run spatial dynamics of
patenting as the probability of witnessing a type O spatial transition, in
which the state-neighbor pair prevails the next period within the same
class, stands as the higher among the remaining probability transitions
over the four subperiods (table 2). Moreover, a measure of the flux or
instability in the spatial system involving transitions of types I and II
altogether show lower and even slightly decreasing probabilities across
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the four investigated subperiods, thus reinforcing spatial stability as
key characteristic of the dynamics in the patenting distribution. A note-
worthy additional feature of the short run spatial dynamics is its highly
cohesive behavior which, as implied by the spatial cohesion measure
involving transitions of types 0 and IIIA, suggests the state-neighbor
pair will likely preserve its relative spatial relation whether they remain
or not within the same class'.

TABLE 2
TRANSITION PROBABILITIES IN THE SPATIAL DYNAMICS OF PATENTING IN MEXICO
ACCORDING TO A FOURTH-TYPE CLASSIFICATION SYSTEM

2005
Type 0 | 1l A 111B Cohesion
0.84 0.06 0.08 0.0 0.02 0.84
Ascend 0.039 0.055 0.000 0.016 Flux
Descend 0.023 0.023 0.000 0.008 0.14
2010
Type O | Il A 1B Cohesion
0.84 0.07 0.07 0.00 0.02 0.84
Ascend 0.035 0.042 0.000 0.010 Flux
Descend 0.031 0.031 0.000 0.007 0.14
2015
Type O | 1l 1A 11IB Cohesion
0.85 0.07 0.06 0.00 0.02 0.85
Ascend 0.033 0.036 0.000 0.011 Flux
Descend 0.033 0.027 0.000 0.004 0.13
2020
Type O | Il A 1B Cohesion
0.86 0.07 0.06 0.00 0.01 0.86
Ascend 0.035 0.033 0.000 0.010 Flux
Descend 0.033 0.026 0.000 0.003 0.13

Note: The probabilities associated to each type of the spatial transitions were calculated as their
corresponding relative frequency with respect to the total number of possible transitions for each year.
Under a similar calculation, the cohesion measure involved transitions of types 0 and IlIA altogether, and
the flux measure included only transitions of types | and II.

Source: own calculations.

' It is worth to notice, however, the spatial transitions of type IIIA have nil probabilities across

the four investigated subperiods which explains that the cohesion index reflects type O transi-
tions, only.
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3. METHODOLOGICAL FRAMEWORK

Although the exploratory analysis in the previous section provided
useful insights regarding the kind of spatial interaction and spatial
transitions that likely characterize the spatial-temporal dynamics of
patenting in Mexico, it offers, however, limited information concerning
the evolution of the patenting distribution as LISA Markov statistics
are constructed only upon 2 quantile classes and, furthermore, it does
not take into consideration how spatial interaction may condition the
spatial transitions across the patenting distribution. To overcome these
limitations, the analysis of the evolution of the patenting distribution is
proposed to be conducted using Rey’s (2001) spatial Markov approach
which explicitly considers geographical proximity.

The Markovian approach, in this regard, provides an adequate
framework for the purpose of our research due to its methodological
advantages over different alternatives which are often implemented in
the economic literature?. In this regard, this framework can provide a
more accurate understanding of the underlying evolution of regional
distributions as it informs about the entire sample distribution over time
(Quah, 1996b; Rey, 2001). In addition, the Markovian framework is
sufficiently flexible a methodological tool that can be extended as to
explicitly include potential spatial interaction effects thus providing
a fully integration of the regional context into the analysis of distri-
bution patterns (Rey, 2001) and, moreover, based on some of its
mathematical properties, it can also account for the long-run features in
regional distributions.

In this respect, consider a stochastic process has the Markovian
property if its distribution in the next state or class depends on the

In the economic literature two empirical approaches to investigate the evolution of regional
distributions have predominated. One, trough the calculation of statistical measures of disper-
sion such as the sample variance across countries, regions or states; and second, by means of
so-called absolute (or conditional) convergence models where cross country/regional growth
rates are regressed against initial income levels and some other conditional regressors. In the
first case, changes in the dispersion over time may inform about a convergence or divergence
process, but not whether this process is leading to higher or lower classes. The second approach
has been criticized because it is based only on two separate points in time, and not the entire
sample, to infer about the underlying cross-country/regional distributional process which may
also be sensitive to changes in the timeframe. See Quah (1993b) for a thorough examination of
both types of approaches.
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previous state or class and not on its entire past. A Markov process
consists of two objects: a probabilistic transition matrix with dimen-
sion recording the probability of moving from class i to class j in the
next period and a vector with dimension comprising the probabilities at
initial stage. In this regard, the elements of the transition matrix can be
formally described as a stochastic matrix according to the expression:

P, = Prob(xm =e, X, :ei) (1)

The transition probability matrix thus provides useful information for
analyzing the evolution of the regional patenting distribution based
on several of its properties. In this regard, based on the assumption of
time invariant probabilities which reads as P, = P, . it is possible to
approximate the average time to move from class i to j, and owing to the
ergodicity property, the limiting distribution of the probability transition
matrix converges to a steady-state vector that also provides information
regarding the long run features of the distribution. Notwithstanding, as
noted by Rey (2001), a proper treatment of regional distributions would
require explicit consideration of spatial proximity as spatial spillovers
may potentially condition its time evolution, and thus, he proposes an
extension of the Markov process described in expression (1).

In this respect, for ease of clarity, Table 3 exemplifies the arrange-
ment of the elements for the spatially conditioned transitional stochastic
matrix. The entire matrix dimension is nxnxn where the column labeled
as spatial lag represents the contiguous state neighbors to a specific
region 1 which is distributed in three different states or classes: low,
medium, and high. Thus, by positioning in the low-class spatial lag
column, the element informs about the probability a region i interacting
with contiguous neighbors characterized for having a low patenting
level remains in a low level of patenting the next period. Similarly,
expresses the conditional probability that a region i improves its inno-
vativeness by moving from low to medium regional patenting the next
period once spatial interaction with low-patenting neighboring states
has been accounted.
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TABLE 3
EXAMPLE OF A NXNXN SPATIALLY CONDITIONED STOCHASTIC
TRANSITION MATRIX

;Z?::;:::) Class Low Medium High
Low PLL|L PLM|L PLH|L

Low Medium PML|L PMM|L PMH|L
High PHL|L PHM|L PHH|L

Low PLLIM PLM|M PLH|M

Medium Medium PML|M PMM|M PMH|M
High PHL|M PHM|M PHH|M

Low PLL|H PLM|H PLH|L

High Medium PML|H PMM|H PMH|L
High PHL|H PHM |H PHH|H

Source: own elaboration.

As noticed by Bickenbach and Bode (2003), however, if spatial prox-
imity may indeed condition the distributional evolution over time, then,
the property of spatial independence would not hold, and consequently,
the estimated limiting distribution of the transition probabilities from
the spatially unconditioned matrix may provide misguided inference
regarding the long run distribution. Moreover, a similar issue arises in
presence of time inhomogeneity which imply that one or more structural
changes are part of the regional distribution dynamics thus violating
the assumption of stationary or time invariant transitions probabilities
within the Markov matrix. The potential violation of the assumptions
underlying the Markov chain approach thus led Bickenbach and Bode
(2003) to develop a set of statistical tests based on the Pearson (Q)
and Likelihood Ratio (LR) statistics, which are implemented below,
to help discern under the null whether the Markov process sketched in
(1) is accurate to describe the evolution of the patenting distribution
across states against the alternate, which otherwise suggest the distribu-
tion dynamics is not stationary along the time dimension and spatially
dependent, respectively. In particular, the time homogeneity tests are
performed by splitting, first, the transitions from the entire period into
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M=4 subperiods, and then, comparing each patenting transition matrix
from each subperiod with the transition matrix of the entire sample
period. The spatial independence tests required to form distribution
classes based on patenting levels in neighboring regions, and then, each
spatially conditioned transition matrix compared against the transition
matrix from the total sample. The Q and LR statistics thus described
follows a distribution with degrees of freedom (d.f.).

3.1. Database and spatial structure
The statistical data consist of the number of patent counts from 2000
to 2020 for the thirty-two Mexican states and were obtained from the
Mexican Institute for the Industrial Property (IMPI by its acronym in
Spanish). Some previous transformations were applied to the raw data
to perform Markov chain calculations. First, a relative measure of the
number of patents was calculated for each state as a deviation from
its mean over the entire period which, in turn, was used to calculate
terciles over the pooled data. Using terciles to represent the transition
state space is useful to investigate mobility of the 32 states between
low, medium, and high levels of patenting across the sample time span’.
The spatial interaction was modelled using a spatial weight matrix
W with size 32x32 designed according to a queen-type criterion. In
this respect, a state i may show spatial dependence with its neigh-
boring states j when touching a border or vortex, where j =1, ..., N
assuming 0 < wij < 1 and i # j with wij = 0 when i =j. Additionally, the
spatial weight matrix W has been standardized thus > wij = 1, which
defines the spatial lag as a weighted average of neighboring states.

4. EMPIRICAL RESULTS

An examination of our calculations in Table 4, which summarizes
the transition probabilities across the patenting distribution without
accounting for geographic proximity between states, show high prob-
ability values at its diagonal indicating that states would feature high
persistence over time. In specific, states initially located at the high
class, for example, have a 0.88 probability of prevailing within this same

3 In addition, from a technical point of view, choosing only terciles allowed us to avoid sparsity

in the stochastic matrices of transition.
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class the next period, while states located at the bottom class exhibit
a 0.74 probability of prevailing as low patenting states. Furthermore,
states within the bottom class also show a significant probability of
advancing towards the medium class. Moreover, the steady state vector
of probabilities which describes the evolution of the patenting distribu-
tion in the long run exhibits slight differences between their magni-
tudes suggesting a convergence process towards the high patenting
class would be underway. In addition, Table A3 in Appendix shows the
mean recurrence time and mean first passage time which respectively
describe the number of years a state would spend in returning to one of
the three classes and in moving between two different classes for the
first time*. In this regard, a state located at the low class would spend
3.4 years in moving towards the medium class for the first time, while
it would require 16.4 years in arriving at the high class. Conversely,
the implied number of years that a state located at the high patenting
class would require in moving towards the bottom and medium classes
for the first time are, respectively, 18.1 and 8.9 in average. Conse-
quently, the high persistence characterizing the global probability tran-
sition matrix at its diagonal thus implies the states would spend fewer
years when returning to their initial class location. This feature is also
summarized by the Shorrocks’ mobility index which underlines a rather
low mobility between classes (table A4 in Appendix).

TABLE 4
GLOBAL PROBABILITY TRANSITION MATRIX OF THE STATE PATENTING DISTRIBUTION IN
MEXICO
Low Med High
Class Steady state
Prob. Prob. Prob.
Low 0.74 0.26 0.00 0.30
Med 0.24 0.62 0.14 0.33
High 0.00 0.12 0.88 0.37

Source: own calculations and Table A2 in Appendix.

In assessing whether the global probability transition matrix in Table
4 would accurately describe the distribution dynamics of patenting

4 The mean first passage time from state to state is calculated according to the expression
myZ(zjj—zy/s ) which elements corresponds, respectively, to matrices Z=(I-P+S)"' and S repre-
senting the fundamental matrix, Z, the identity matrix, /, the probability transition matrix, P,
and the steady state probability matrix, S.
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across states, we performed both the time homogeneity and spatial
independence tests as proposed by Kang and Rey (2018) and Bicken-
bach and Bode (2003). The statistical tests results based on both the Q
and LR statistics shown in Table A5 in Appendix suggests non-rejec-
tion of the null stipulating the global probability transition matrices
for the entire and subsample periods are not statistically different, thus
indicating the distribution dynamics of patenting can be considered
homogeneous across the complete sample period and, therefore, may
be accurately described by its associated global probability transition
matrix. Regarding the spatial independency test which stablishes that
the global probability transition matrix in Table 4 equals each spatially
conditioned probability transition matrix in Table 5, the obtained results
based both on the likelihood ratio (LR) and Q statistics show rejection
of the null which strongly suggests geographical proximity is relevant
to understand the evolution of patenting distribution across states in
Mexico (table A8 in appendix).

In this regard, according to the spatially conditioned probabilities of
transition in Table 5, spatial stability would remain as a likely overall
feature of the spatial patenting system in Mexico. However, particulari-
ties in our results indicate that low patenting states in interaction with
low patenting neighboring states show a significant low persistence,
amounting to a probability of 0.68, in prevailing at the low patenting
class which contrasts the higher persistence implied by the 0.74 prob-
ability in the global probability transition matrix (table 4). Moreover,
states located at the medium patenting class which interacts with low
patenting neighboring states showed a slight increase in its measured
persistence with respect to transition probabilities in the global matrix,
though their probability of moving towards a low patenting class
increased notably thus suggesting states at the medium class of the
patenting distribution may be negatively affected by its geographic
proximity to low patenting states. Our calculations suggest, notwith-
standing, that states located at the high patenting class would be less
affected by its geographic proximity to low patenting states.

In addition, probability figures in Table 5 show that spatial interac-
tion with neighboring states located at the medium class would be less
beneficial for states located at the low patenting class as it is demon-
strated by a higher probability of prevailing in the low class of the
patenting distribution than the corresponding transition probabilities
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in the global and the spatially-conditioned-to-low-patenting-neighbors
matrices, which suggests strong barriers to cross border diffusion of
technological knowledge may be present. Notwithstanding, geographic
proximity with neighboring states at the medium class of the patenting
distribution might facilitate the transition from the medium class
towards the high class of patenting as suggested by the corresponding
probability amounting to 0.35 which surpasses its probabilities counter-
parts within the global and the spatially-conditioned-to-low-patenting-
neighbors matrices estimated in 0.14 and 0.07, respectively.

According to our calculations, however, spatial stability would
accentuate across the patenting distribution when spatial interaction
occurs with high patenting neighboring states. In this respect, as evinced
by a probability amounting to 0.91, states located at the high patenting
class showed the highest persistence when compared against the global
probability matrix as well as among states interacting with neighbors
within any part of the distribution, thus suggesting geographic prox-
imity may enforce the innovative performance of high patenting states
through cross border diffusion of technological knowledge. Although,
accentuation of the spatial stability also implies increased persistence
in states located at the low and medium classes and, therefore, a smaller
probability of moving upward in distribution of the Mexican patenting
system (table 5).

TABLE 5
SPATIALLY CONDITIONED PROBABILITY TRANSITION MATRIX OF PATENTING ACROSS
STATES IN MEXICO

Spatial lag Class Low Med High
Low 0.68 0.33 0.00

Low Med 0.30 0.63 0.07
High 0.00 0.14 0.86

Low 0.78 0.22 0.00

Med Med 0.18 0.47 0.35
High 0.00 0.15 0.85

Low 0.79 0.22 0.00

High Med 0.21 0.71 0.07
High 0.00 0.09 0.91

Source: own calculations.

Moreover, in Table 6 calculated steady state transition probabilities
highlights several key features regarding the long run distribution of
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patenting in Mexico, for example, spatial interaction with low patenting
states would render a convergence process towards the medium class
of the patenting distribution. Additionally, in concordance with our
calculated probabilities of transition in Table 5, spatial interaction with
medium patenting neighboring states shows a convergence process
towards the high class in the long run which corroborates that positive
spatial externalities arising from low barriers to technological knowl-
edge diffusion would be present. Geographic proximity with high
patenting states, however, would render a divergence process character-
ized by a bimodal distribution towards the low and medium classes of
the patenting distribution which may derive from high barriers to cross
border diffusion of technological knowledge.

TABLE 6
SPATIALLY CONDITIONED STEADY STATE PROBABILITY TRANSITION MATRIX OF
PATENTING ACROSS STATES IN MEXICO

Spatial lag/Class Low Med High
Low 0.37 0.41 0.22
Med 0.20 0.24 0.56
High 0.35 0.36 0.29

Source: own calculations.

Additional insight can be obtained by examining the mean recurrence
time and mean first passage time statistics in Table 7 which suggest
that low patenting states in interaction with low patenting neighbors
would spend 3.1 years in arriving to the medium class for the first time,
while, in concordance with transition probabilities in Table 5, medium
patenting states would spend 5.2 years in arriving to the low patenting
class; geographic proximity with medium patenting neighbors, however,
would imply 4.5 years for low patenting states moving upwards to the
medium class of the distribution, while medium states would require
5.3 years in achieving the high patenting class, for the first time, and
high patenting states would experience 1.8 years, the lowest calculated
magnitude, in returning to the high class of the patenting distribution.
Interaction with high patenting states, however, would require that low
patenting states spend more than three decades in moving towards the
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high patenting class which demonstrates that barriers to cross border
technological knowledge diffusion would be present.

TABLE 7
MEAN RECURRENCE TIME AND MEAN FIRST PASSAGE TIME OF THE SPATIALLY
CONDITIONED PROBABILITY TRANSITION MATRIX OF PATENTING ACROSS STATES
IN MEXICO (YEARS)

Spatial lag Class Low Med High
Low 2.7 3.1 28.9

Low Med 5.2 2.5 25.9
High 12.6 7.4 4.5

Low 5.0 4.5 9.8

Med Med 18.4 4.2 5.3
High 253 6.8 1.8

Low 2.8 4.6 32.7
High Med 8.8 2.8 28.0
High 19.8 113 35

Source: own calculations.

These results conform with the calculations for the Shorrocks’ summary
measures of mobility in Table A9 in Appendix, which clearly suggest
those states interacting with low or medium patent-producers display
higher mobility, whereas those interacting with high patenting neigh-
bors show relatively less mobility.

CONCLUSIONS

The present investigation seeks to contribute to the empirical litera-
ture on the economics of innovation by focusing on the spatiotem-
poral evolution of innovation activity in a developing country. Our
main results suggest regional context is relevant to understand the
evolution of patenting distribution across states in Mexico. Moreover,
evidence based on a spatial Markov framework suggests top-innova-
tors states interacting with alike neighboring states may benefit from
positive spatial externalities, whereas is apparent that lower innovators
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experience significant difficulties in gaining access to top-innovators’
technological knowledge stock. Additionally, bottommost-patenting-
states interacting with alike neighboring states may benefit poorly
from spatial positive externalities thus unveiling a situation that helps
explain the low-patenting efforts characterizing most southern states. In
contrast, states interacting with medium-class neighboring states may
significantly benefit from positive spatial externalities.

The aforesaid results help elucidate some implications for tech-
nology policy design and implementation. Accordingly, the national
technology policy should pursue a regional perspective that considers
the heterogenous spatial distribution of technology development and
the apparent difficulties some states are facing acceding to regional
technological knowledge. In particular, the results call for the need of
designing and implementing regional technology policies aiming the
creation and diffusion of innovation in southern states and promoting
interregional cooperation mechanisms that help facilitating access
to top-innovators’ technological knowledge stock. These sort of
regional technology policies would open the possibility of changing
the observed long-run patterns from a multimodal to a unimodal one.

Finally, future empirical analysis can be extended in several ways,
for example, focusing on the spatiotemporal distribution of techno-
logical innovation among countries, sectors or quality-differenced
innovations; also, empirically and theoretically assessing the factors
behind the observed spatial-time dynamics of innovation and how the
observed distributional dynamics relates to growth dynamics among
countries or regions.
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APPENDIX
TABLE Al
CLASSIFICATION OF THE SPATIAL TRANSITIONS
Quadrants HH(t+1) HL(t+1) LH(t+1) LL(t+1)
HH(t) 0 Il | A
HL(t) I 0 s} |
LH(t) I 1I:} 0 1l
LL(t) 1A | ] 0

Note: Type 0 spatial transitions describes transitions in which the state-neighbor pair keeps the next period
within the same class; spatial transitions of types | and Il describe, respectively, a movement of only the
state and only the neighbors; spatial transitions of type IlIA and IlIB describe a simultaneous movement of
both a state and its neighbors in the same and opposite directions respectively.

Source: Own elaboration based on Rey (2001).

TABLE A2
GLOBAL TRANSITION MATRIX OF STATE PATENTING IN MEXICO
Class Low Med High
Low 153 54 0
Med 48 124 28
High 0 25 176

Source: own calculations.

TABLE A3
MEAN RECURRENCE TIME AND MEAN FIRST PASSAGE TIME FOR THE GLOBAL
TRANSITION MATRIX OF STATE PATENTING IN MEXICO (YEARS)

Low Med High
Class
Years Years Years
Low 33 3.8 17.6
Med 8.9 3.0 13.7
High 16.9 8.1 2.7

Source: own calculations.
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TABLE A4
SHORROCKS’ MOBILITY INDEX FOR THE GLOBAL PROBABILITY TRANSITION MATRIX
n 3
tr(P) 2.24
n-1 2
m 0.38
Source: own calculations.
TABLE A5
TIME HOMOGENEITY TEST
Subperiod d.f. Q LR
2000-2020 6 19.04 8.24
2000-2005 4 4.15 1.60
2005-2010 4 11.12 5.25
2010-2015 4 1.58 0.82
2015-2020 4 2.20 0.57

Source: own calculations based on Tables A6 and A7.

TABLE A6
SUMMANDS OF THE PEARSON TEST STATISTIC FOR TESTING TIME HOMOGENEITY FOR
EACH SUBPERIOD

Subperiod 2000-2005

Class at t-1 Observations Low Med High Sum
Low 45 0.05 0.01 0.00 0.05
Med 41 0.48 0.10 2.43 3.01
High 42 0.00 0.95 0.13 1.09

Sum 4.15
Subperiod 2005-2010

Class at t-1 Observations Low Med High Sum
Low 44 0.38 1.08 0.00 1.46
Med 43 5.72 2.81 0.16 8.69
High 41 0.00 0.85 0.12 0.98

Sum 11.12
Subperiod 2010-2015

Class at t-1 Observations Low Med High Sum
Low 46 0.12 0.34 0.00 0.45
Med 40 0.70 0.06 0.35 1.11
High 42 0.00 0.01 0.00 0.01

Sum 1.58
Subperiod 2015-2020

Class at t-1 Observations Low Med High Sum
Low 43 0.16 0.44 0.00 0.60
Med 44 0.23 0.00 0.55 0.78
High 41 0.00 0.72 0.10 0.82

Sum 2.20

Source: own calculations.
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TABLE A7
SUMMANDS OF THE LIKELIHOOD RATIO (LR) TEST STATISTIC FOR TESTING TIME
HOMOGENEITY FOR EACH SUBPERIOD

Subperiod 2000-2005

Low 45 -1.24 0.27 0.00 -0.96

High 42 0.00 -1.67 2.29 0.62

Subperiod 2005-2010

Low 44 -3.32 4.01 0.00 0.69

High 41 0.00 -1.58 2.14 0.56

Subperiod 2010-2015

Low 46 2.06 -1.83 0.00 0.24

High 42 0.00 -0.20 0.21 0.00

Subperiod 2015-2020

High 41 0.00 0.12 0.08 0.21

Source: own calculations.
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TABLE A8
MARKOV SPATIAL INDEPENDENCY TEST
Number of classes: 3
Number of transitions: 608
Number of regimes: 3
Test Likelihood ratio Chi-2
Statistic 25.59 28.82
Degree of freedom 8 8
P-value 0.001 0.000
P(HO) Low Med High
Low 0.74 0.26 0.00
Med 0.24 0.62 0.14
High 0.00 0.12 0.88

Source: own calculations.

TABLE A9
SHORROCKS’ MOBILITY INDEX FOR THE SPATIALLY
CONDITIONED PROBABILITY TRANSITION MATRIX

n 3
tr(P) 217
n-1 2
m 0.42
tr(P) 2.10
n-1 2
m 0.45
tr(P) 241
n-1 2
m 0.29

Source: own calculations.



