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Distributional dynamics of patenting 
across states in Mexico: A spatial 
Markov chain approach 

Víctor Hugo Torres Preciado* 

Vicente Germán-Soto**

Abstract
This investigation aims to analyze the distributional dynamics of paten-
ting across Mexican states. Our main results suggest, by means of  
implementing a spatially conditioned Markov chain framework, the 
regional context is relevant to understand the evolution of the state 
patenting patterns of distribution over time and across space in Mexico. 
In this regard, additional evidence suggests top-innovators states  
interacting with neighboring states sharing similar levels of regional 
patenting may benefit from positive spatial externalities, while those 
states positioned in lower levels of the patenting distribution would 
experience difficulties in accessing top-innovators’ technological 
knowledge that may impede their upward transition to higher classes 
within the patenting distribution.
Keywords: innovation, patenting, spatial Markov chains, Mexico.
JEL classification: O31, R10, CO2.
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Abstract
Estados de México: Un enfoque de cadenas de Markov espaciales
El objetivo de esta investigación es analizar la dinámica distributiva del 
patentamiento realizado en los estados mexicanos. Nuestros principales 
resultados sugieren, mediante la aplicación de un enfoque de cadenas 
Markovianas condicionadas espacialmente, que el contexto regional es 
relevante para comprender la evolución de los patrones distributivos 
del patentamiento estatal a través del tiempo en México. En tal sentido, 
evidencia adicional sugiere que los estados más innovadores en inte-
racción con estados geográficamente cercanos que comparten niveles 
similares de patentamiento se beneficiarían de la presencia de externa-
lidades espaciales positivas, mientras que los estados con los menores 
niveles en la distribución de patentamiento estatal experimentarían difi-
cultades para acceder al conocimiento tecnológico de los estados más 
innovadores que pudieran obstruir su transición hacia mayores niveles 
de patentamiento.
Palabras clave: innovación, patentamiento, cadenas de Markov  
espaciales, México.
Clasificación JEL: O31, R10, CO2.

Introduction

In the space-time distributional evolution of regional innovation, the 
geographical proximity fulfills a determinant role because it tends to 
disseminate the ideas and knowledge among nearest regions faster. 
Consequently, and as in a chain of effects, it also contributes impro-
ving the regional productivity. Innovation means inventive capacity 
of one economy besides improved designs and process that reduce 
costs of production and raise benefits. Commonly, high levels of inno-
vation are compromised also with high rates of investment in R&D, 
and this last input is in turn correlated with high level of knowledge. 
Thus, innovation-knowledge-R&D are widely interrelated, but they 
need adequate channels that easily spread the spillovers effects posi-
tively impacting the productivity. In this game of correlated forces, 
the role played by the proximity has attracted much attention, lately. 

It has been widely recognized the feature of multidimensionality 
that own the proximity. For example, some types of proximity are 
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geographic, cognitive, social, institutional, and organizational, but 
also it is accepted that the geographical one facilitates the innova-
tion and reinforces other types of proximity (Boschma, 2005). Some 
recent studies have found in the geographic clustering important 
potential conduits of technology transfer and knowledge creation 
(Attfield et al., 2000, Inoue et al., 2019), others highlight the techno-
logical catch-up faster (Griffith et al., 2009). This outcome is espe-
cially clear in regional contexts where clusters of firms and industrial 
districts tend to be geographically concentrated producing important 
spillovers on the neighboring. In addition, the transfer of technology 
obtained through geographic connectivity is usually the solution to the 
R&D financing problems that the most economically lagging regions  
generally suffer.

Indeed, in our days, productivity significantly seems to be based 
on some of the many ways materializing the innovation, such as tech-
nology (Griffith et al., 2009, Alexopoulos and Cohen, 2019, Ardito et 
al., 2019, Chen, 2020), creation of patents (Bilir, 2014, Guo, 2015), 
and the protection to the property rights (Alvi et al., 2007, Sweet 
and Eterovic, 2019, Chu et al., 2020). All these factors are mainly 
highlighted among developed economies, for who the internal inves-
tment on R&D is essential, a condition that not always can be satisfied 
in the less developed world, due to problems of financing. However, 
the stock of investment on R&D is jealously monitored by developed 
countries. Economies with higher R&D also tend to exhibit more 
growth (Attfield et al., 2000, Ulku, 2004, Agénor and Neanidis, 2015) 
because the technological progress from R&D displaces the produc-
tive capacity and, this way, higher rates of growth are possible.

The market failure on R&D investment can be replaced from 
public financing. However, deviation of resources to increase the 
expenditure on R&D is costly, and especially prohibitive for less 
developed countries, therefore, business relationship is fundamental 
among countries. With this end, the connectivity is also vital. More 
connected countries can take advantage from technological advances 
and improve their productivity. In this process, proximity becomes 
very important, because the closer one economy is to another that 
has created innovation, the easier and faster is to absorb this new 
progress. Economic activity spatially concentrated is benefited from 
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the knowledge spillovers. Short distances facilitate the knowledge 
dissemination, while large distances difficult it.

As regions becomes more interconnected, they will be able to 
expand its stock of knowledge, improving their productivity, without 
necessarily increasing their internal investment in R&D. Conver-
sely, remaining isolated will not be influenced by the technology and 
knowledge being created abroad, so improved productivity only will 
be possible augmenting the internal investment in R&D, a mecha-
nism that not necessarily guarantees improvement of its inventive 
capacity because innovation constitutes, for sectors and industries, a 
process of maturation that takes some time. In change, the process 
of linking through any of the previous channels speeds the acquisi-
tion of inventions, making possible the knowledge stock that allows  
stimulating productivity.

In this respect, as occurs with the spatial distribution of economic 
activity performance, the localized nature of innovation (Capello and 
Camilla, 2013) and knowledge diffusion sensibility to distance (Varga 
et al., 2005) render innovation to be unevenly spatially distributed 
across countries and regions. Whereas this latter is an acknowledged 
feature of innovation activity (Egger and Loumeau, 2018), what has 
remained largely unexplored are its dynamical distributional charac-
teristics over space. Investigating this latter issue is of relevance, 
first, because it may help elucidate the relationship between income/
growth inequality and technological innovation, a topic which has 
recently gained interest (Foellmi and Zweimüller, 2017; Acemoglu, 
1998); and second, uncovering distributional properties such as the 
more likely technological transition path over both short and long 
run horizons, or what the role of geographical proximity could be in 
shaping these paths, provide a standpoint not only to reevaluate the 
national and regional innovation policy efforts, but also it may help to 
their re-elaboration.

This investigation addresses the case of Mexico, a developing 
country which although its efforts to increase the investments made 
on R&D by public and private sectors, it appears to be insufficient to 
boost technological innovation and therefore economic growth. The 
country has devoted in recent years just 0.3% share of its GDP to R&D 
expenditure, whereas its patent production has averaged about 7% in 
its growth rate during the last fifteen years. In addition, at regional 



9Distributional dynamics of patenting across states in...  Torres Preciado, V. H. y V. Germán-Soto

level, some states have witnessed a renewed interest about promoting 
local innovation whereas, at the same time, not all the states seem to 
encompass these initiatives, and thus giving rise to a heterogeneous 
spatial distribution of regional technological innovation (Germán-
Soto et al., 2009, Torres-Preciado et al., 2014). However, due to the 
changing feature of the regional distribution of innovation, it is not 
clear whether states’ uneven spatial distribution of innovation tend to 
reduce or to amplify over time; or how likely states would advance (or 
retrocede) towards higher (or lower) levels of innovation activity, and 
moreover, whether the spatial interaction mediated by geographical 
proximity among states significantly accounts for the underlying 
distributional evolution of regional innovation in Mexico.

In this context, this research aims to contribute to empirical studies 
on technological innovation by investigating both the short-term and 
long-term features of the distributional evolution of patents counts 
across the Mexican states and how these distributional features might 
change by accounting for the spatial dimension. In this regard, we 
intend to particularly answer the following questions: What features 
are descriptive of the distributional evolution of patenting across 
states in Mexico? Does the evolution of the patenting distribution 
over time show a convergence or divergence pattern across states? 
Does spatial interaction matter in shaping the distributional evolution 
of patenting across states in Mexico? If so, to what extent the geogra-
phical context influences the evolution of the patenting distribution 
in Mexico? We provide answers to these questions by implementing 
a spatially augmented Markovian chain framework proposed by Rey 
(2001) which allows to investigate distribution dynamics when spatial 
dependence between geographical units features spatial systems.

The reminder of this article is organized as follows. Section 
1 reviews recent literature on innovation and economic inequality. 
Section 2 describes the methodology to study the spatiotemporal 
dynamics of patenting across states in Mexico. Section 3 discusses 
the empirical findings and finally concludes.
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1. Literature review

This review focuses on the lines in which technological knowledge 
and innovation take place in the space or territory. Within the several 
theories and approaches in this branch, the geographical proximity is 
specially debated due to its importance in increasing the probability 
of knowledge spillovers and supporting the innovative activities. Most 
concentrates on the mechanisms on how the knowledge and innova-
tion take place in space (Capello, 2007) with a fruitful literature exam-
ining from a knowledge production function, as Fritsch (2002), who 
compares qualities of regional innovation systems, or as Parent (2012), 
who analyze the spatiotemporal regional spillovers. In Fornahl and 
Brenner (2009) innovation results by the relationship between indus-
trial agglomeration and local knowledge production. Antonelli and 
Colombelli (2017) find that access to external knowledge has posi-
tive effects on productivity of firms. Capello (2007) highlights spatial 
elements playing important role that widely explain the regional growth 
differentials. In regional growth, the geographic proximity is increas-
ingly taking much importance (Parent and LeSage, 2008). For example, 
Boschma (2005) indicates that proximity facilitates interactive learning, 
although it may also have negative effects on innovation, while Griffith 
et al. (2009) find that proximity to frontier firms makes catch-up faster 
in terms of productivity growth. 

The analysis of the effects of globalization on multinationals by 
Toulemonde (2008) finds that proximity –in this case firms agglom-
erate their production in a single plant– involves reductions of trade 
costs. Other works seek explanations in the space-time (Parent and 
LeSage, 2012) that can be simplified through estimates from Markov 
chains, viewing how the geographic space can be considered as key 
factor explaining the heterogeneous association between innovation 
and inequality (Tselios, 2011). Advances on technology have their own 
space-time development path forming frontiers on knowledge and skills 
that constraint the movement to other places, creating path-dependent 
time geographies (Oinas and Malecki, 2002).

Ozman (2009) and Oinas and Malecki (2002) sustain that local 
interaction networks are very important for innovation and techno-
logical change but our understanding on this branch remains still few 
explored. Pierrakis and Saridakis (2019) examine the social networks 
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and find that public funds of capital have higher volumes of interactions. 
Although strategic alliances are necessary to build a well-connected 
infrastructure network (Yao, Li and Weng, 2018).

Regarding the knowledge spillovers, the geographical proximity is 
not the unique element to consider, in fact exist many other types of 
proximity as cognitive, organizational, social, institutional (Boschma, 
2005 and Mattes, 2012), and personal proximity (Leszczyńska and 
Khachlouf, 2018), all they influencing the interactive learning and  
innovation, but such as is highlighted by Boschma (2005), from a 
dynamic approach, geographical proximity can reinforce other dimen-
sions of proximity. 

Briefly, cognitive proximity is referred at the level of capabilities 
owned by firms or showed by a region in the objective to absorb the 
knowledge portrayed in new technologies. To the extent that knowl-
edge cannot be considered completely as public good, economic agents 
should have a minimum level of knowledge in order to communicate 
and learn from each other. If knowledge-level is not sufficient, costs to 
treat with a particular technology will increase too much. Thus, regions 
showing cognitive proximity may improve the productivity. Neverthe-
less, levels above to certain umbral can be detrimental for innovation 
(Boschma, 2005).

Organizational proximity means capacity to coordinate and to 
manage the stock of knowledge in organizations. Particularly, creation 
of networks, market organization, appropriability, governance, among 
others, tend to differ and, as consequence, the distance will be not the 
same. Thus, this form of proximity can represent a relevant argue of the 
productivity differences among regions.

Social proximity is a property more identified in relations at the 
micro-level. It seeks explanation on the dependence of the regions from 
social ties or relations to reach suitable economic outcomes. The idea is 
that social relations developed by workers of different firms can help to 
reinforce the ties of friendship making more effective interactions that, 
finally, will derive from this brainstorming favoring the productivity. 
Advances in telecommunications and connectivity from very diverse 
mechanisms as cellphones, platforms as WhatsApp, Facebook, Twitter, 
etc., will lead to reductions in the social distance, favoring the produc-
tive process.
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Institutional proximity can be understood at the macroeconomic 
level of the social proximity (Boschma, 2005). In this case, institutional 
structures as laws, rules, democracy, even the culture, can support the 
innovation. To the extent that stronger institutions exist, more easily 
will be the transition toward innovation and improved productivity. 
Therefore, the institutional frame results influential. 

Additionally, Leszczyńska and Khachlouf (2018) propose sepa-
rate the personal traits from the social proximity because indi-
vidual characteristics differently impact the innovation. This notion 
refers specific personality traits that can facilitates collaborations 
and, this way, improves the access on innovation and influences the  
productivity level. 

Empirical findings treating with these types of proximity have been 
diverse. In Feldman (1994) and Aw and Palangkaraya (2004) geograph-
ical proximity supports innovative activities and raise the probability 
of knowledge spillovers. Carbonara and Giannoccaro (2011) define a 
concept of proximity based on four of the above notions and evaluate 
the influence of proximity in the competitiveness of the Industrial 
Districts. Although results are in the direction that proximity favors 
the competitiveness, they also highlight that much proximity is detri-
mental. Mattes (2012) investigates the differences between concepts of 
proximity and suggests that the knowledge nature significantly acts for 
the types of proximity, so they complement and substitute each other. 
Marrocu et al. (2013) find that technological proximity outperforms the 
geographic one in European regions. They also highlight a limited role 
from social and organizational networks. Martinus and Sigler (2018) 
use a concept of global city clusters to explain the linkages observed 
from the different notions of proximity in Australia. Some of the results 
identify a strong role of the geographical proximity in shaping regional 
networks. Harris et al. (2019) report differentiated effects of the spatial 
proximity on productivity by firm size of the UK economy. Effects were 
positive only for larger plants, a result attributable to the absorptive 
capacity characterizing this size of firms. Lee and Kim (2020) study 
the neighboring effects between low-income and high-income regions 
of South Korea. They find that negative effects from spatial proximity 
are greater than the positive in the economic growth of the low-income 
regions. Cappellano and Makkonen (2020) assess the role of the prox-
imity in the economic interaction of cross-border in a US-Canadian 
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region. The results and conclusions on the role of the cognitive prox-
imity are not clear because in a first stage they are high, but in a second 
one the region presents a low level of interactions.

All notions of proximity provide different ways to assess the impact 
of the distance on innovation, and as consequence, in productivity. It 
is possible that some of them are more important than others in affect 
the innovation, depending of the level of development, the maturation 
degree of the productive process, specific sectors or the interest shown 
in some objective. In the present exercise our interest is the exam of 
the Mexican regions, with the geographical proximity as the main 
hypothesis to be tested. Some research in this area discus the distribu-
tion of the FDI conditioned to spatial interaction effects across Mexican 
states (Torres et al., 2017), others investigate proximity effects using 
Markov chain models when a set of regions transit to higher levels of  
manufacturing industry (Flores-Segovia and Castellanos-Sosa, 2021). 
However, studies on the spatial interaction effects of the innovation 
are scarce, despite spatial interaction effects seem to be present in the 
economies and that this avenue of research enjoys a longer tradition in 
developed countries.

Finally, as technology constantly changes then evolution of the 
innovation is characterized as path dependent and so it is affected by 
technological change (Mokyr, 1990). In addition, depending of the 
phase of a major innovation, proximity can have a positive or nega-
tive impact on innovation. At the end, the inventive process portrayed 
in a patent can differ greatly across regions and over time, therefore, 
a suitable tool of analysis is to see this dynamic from Markov chains, 
from which it makes possible to infer about the evolution of the spatial 
distribution of patenting.

2. Spatial distribution of regional patenting in 
Mexico: an exploratory insight

An overall look at the spatial distribution of regional patenting in 
Figure 1 shows it is unevenly configured across the entire territory in 
Mexico with most of the northern states, and some center-located states, 
featuring high levels of patenting that contrast those of southern states 
mostly positioned at lower levels of the quantile classes. This spatial 
configuration, however, evolutes over time according to transition 
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dynamics specific to each state. In this regard, for example, the state of 
Baja California although located at northern Mexico exhibits a transi-
tion to the lower levels of the quantile distribution before returning to 
the upper levels in the next years. The states of Jalisco, Nuevo León, 
Estado de Mexico, and Ciudad de Mexico have shown, in contrast, 
fewer fluctuating dynamics of transition that locate them within the 
highest quantile class of patenting levels on a permanent basis. This 
mixture of spatial transitions across the quantile classes also unveils the 
evolution in the formation of spatial clustering between states of similar 
patenting levels and its alteration into geographical patterns showing 
proximate states sharing dissimilar patenting levels which speak about 
how spatial interaction evolve.

Figure 1
Spatial distribution of patents in Mexico 2000-2020 

(Quantiles)
2000 2005

2010 2015

2020

Source: own elaboration.
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Additional insight can be gained regarding the predominant sort of 
spatial interaction between a specific state and its geographic neighbors 
that is likely to expect by means of implementing a Markovian version 
of the local indicators of spatial association statistics which classify, in 
four types, its relative spatial transitions over time towards four possible 
classes (See Table A1 in Annex). Accordingly, a type 0 transition from 
class HH(t) towards class HH(t+1) representing the joint spatial transi-
tion between a specific state and its neighbors sharing the characteristic 
of having high (above average) patenting levels shows a high prob-
ability, ranging from 0.74 to 0.80 across the four displayed subperiods, 
indicating the next year they will likely remain within the same class 
(table 1). However, joint spatial transitions between the state-neighbor 
pair from class LL(t) towards class LL(t+1) stand as the highest transi-
tion probability across the four subperiods suggesting, therefore, spatial 
clustering of low patenting levels might persist over time. It is also worth 
noticing the remaining two spatial transitions of type 0 also exhibit high 
probabilities, particularly that from class LH(t) towards class LH(t+1), 
which grows slightly across the subperiods. In correspondence, the 
remaining pairwise of spatial transitions within the fourth-type clas-
sification system exhibit lower probability levels, though type-I move-
ments from class H(t)L(t) towards L(t)L(t) tend to display non-negli-
gible probabilities which suggests some states holding high levels of 
patenting might equate its neighbors’ lower patenting levels. In this 
regard, the higher probability of witnessing a spatial transition of type 
0 seems to attribute spatial stability to the regional patenting dynamics 
over the short run. From a long run perspective, however, the corre-
sponding spatial transition probabilities within the steady-state vector 
in Table 1 shows consistently, across the four subperiods, both the 
formation of spatial clusters of low patenting activity between the state-
neighbor pair and the spatial association between low-patenting states 
surrounded by high-patenting neighbor states, as more likely forms of  
spatial interaction.
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Table 1
Local indicator of spatial association (LISA) probability transition matrix 

of regional patenting in Mexico
2005

Quadrants HH(t+1) HL(t+1) LH(t+1) LL(t+1) Steady state

HH(t) 0.80 0.00 0.20 0.00 0.18

HL(t) 0.14 0.71 0.07 0.07 0.12

LH(t) 0.05 0.05 0.83 0.07 0.40

LL(t) 0.00 0.05 0.08 0.87 0.30

2010

Quadrants HH(t+1) HL(t+1) LH(t+1) LL(t+1) Steady state

HH(t) 0.75 0.08 0.17 0.00 0.09

HL(t) 0.06 0.72 0.06 0.16 0.13

LH(t) 0.04 0.03 0.85 0.07 0.37

LL(t) 0.00 0.04 0.07 0.88 0.41

2015

Quadrants HH(t+1) HL(t+1) LH(t+1) LL(t+1) Steady state

HH(t) 0.74 0.08 0.18 0.00 0.09

HL(t) 0.07 0.76 0.03 0.14 0.15

LH(t) 0.04 0.04 0.86 0.06 0.33

LL(t) 0.00 0.04 0.06 0.90 0.42

2020

Quadrants HH(t+1) HL(t+1) LH(t+1) LL(t+1) Steady state

HH(t) 0.80 0.07 0.13 0.00 0.10

HL(t) 0.07 0.75 0.02 0.15 0.16

LH(t) 0.03 0.03 0.88 0.06 0.31

LL(t) 0.00 0.05 0.05 0.89 0.42

Note: Each subperiod for which the spatial LISA statistics were calculated initiates in 2000 and respectively 
ends in the indicated year.
Source: own calculations.

Additional summary measures corroborate that spatial stability would 
likely be the predominant feature of the short run spatial dynamics of 
patenting as the probability of witnessing a type 0 spatial transition, in 
which the state-neighbor pair prevails the next period within the same 
class, stands as the higher among the remaining probability transitions 
over the four subperiods (table 2). Moreover, a measure of the flux or 
instability in the spatial system involving transitions of types I and II 
altogether show lower and even slightly decreasing probabilities across 
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the four investigated subperiods, thus reinforcing spatial stability as 
key characteristic of the dynamics in the patenting distribution. A note-
worthy additional feature of the short run spatial dynamics is its highly 
cohesive behavior which, as implied by the spatial cohesion measure 
involving transitions of types 0 and IIIA, suggests the state-neighbor 
pair will likely preserve its relative spatial relation whether they remain 
or not within the same class1.

Table 2
Transition probabilities in the spatial dynamics of patenting in Mexico 

according to a fourth-type classification system
2005

Type 0 I II IIIA IIIB Cohesion

0.84 0.06 0.08 0.0 0.02 0.84

Ascend 0.039 0.055 0.000 0.016 Flux

Descend 0.023 0.023 0.000 0.008 0.14

2010

Type 0 I II IIIA IIIB Cohesion

0.84 0.07 0.07 0.00 0.02 0.84

Ascend 0.035 0.042 0.000 0.010 Flux

Descend 0.031 0.031 0.000 0.007 0.14

2015

Type 0 I II IIIA IIIB Cohesion

0.85 0.07 0.06 0.00 0.02 0.85

Ascend 0.033 0.036 0.000 0.011 Flux

Descend 0.033 0.027 0.000 0.004 0.13

2020

Type 0 I II IIIA IIIB Cohesion
0.86 0.07 0.06 0.00 0.01 0.86

Ascend 0.035 0.033 0.000 0.010 Flux
Descend 0.033 0.026 0.000 0.003 0.13

Note: The probabilities associated to each type of the spatial transitions were calculated as their 
corresponding relative frequency with respect to the total number of possible transitions for each year. 
Under a similar calculation, the cohesion measure involved transitions of types 0 and IIIA altogether, and 
the flux measure included only transitions of types I and II.
Source: own calculations.

1	 It is worth to notice, however, the spatial transitions of type IIIA have nil probabilities across 
the four investigated subperiods which explains that the cohesion index reflects type 0 transi-
tions, only.
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3. Methodological framework

Although the exploratory analysis in the previous section provided 
useful insights regarding the kind of spatial interaction and spatial 
transitions that likely characterize the spatial-temporal dynamics of 
patenting in Mexico, it offers, however, limited information concerning 
the evolution of the patenting distribution as LISA Markov statistics 
are constructed only upon 2 quantile classes and, furthermore, it does 
not take into consideration how spatial interaction may condition the 
spatial transitions across the patenting distribution. To overcome these 
limitations, the analysis of the evolution of the patenting distribution is 
proposed to be conducted using Rey’s (2001) spatial Markov approach 
which explicitly considers geographical proximity.

The Markovian approach, in this regard, provides an adequate 
framework for the purpose of our research due to its methodological 
advantages over different alternatives which are often implemented in 
the economic literature2. In this regard, this framework can provide a 
more accurate understanding of the underlying evolution of regional 
distributions as it informs about the entire sample distribution over time 
(Quah, 1996b; Rey, 2001). In addition, the Markovian framework is 
sufficiently flexible a methodological tool that can be extended as to 
explicitly include potential spatial interaction effects thus providing 
a fully integration of the regional context into the analysis of distri-
bution patterns (Rey, 2001) and, moreover, based on some of its  
mathematical properties, it can also account for the long-run features in 
regional distributions.

In this respect, consider a stochastic process has the Markovian 
property if its distribution in the next state or class  depends on the 

2	 In the economic literature two empirical approaches to investigate the evolution of regional 
distributions have predominated. One, trough the calculation of statistical measures of disper-
sion such as the sample variance across countries, regions or states; and second, by means of 
so-called absolute (or conditional) convergence models where cross country/regional growth 
rates are regressed against initial income levels and some other conditional regressors. In the 
first case, changes in the dispersion over time may inform about a convergence or divergence 
process, but not whether this process is leading to higher or lower classes. The second approach 
has been criticized because it is based only on two separate points in time, and not the entire 
sample, to infer about the underlying cross-country/regional distributional process which may 
also be sensitive to changes in the timeframe. See Quah (1993b) for a thorough examination of 
both types of approaches. 
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previous state or class  and not on its entire past. A Markov process 
consists of two objects: a probabilistic transition matrix  with dimen-
sion  recording the probability of moving from class i to class j in the 
next period and a vector  with dimension  comprising the probabilities at 
initial stage. In this regard, the elements of the transition matrix  can be 
formally described as a stochastic matrix according to the expression:

Pij = Prob xt+1 = e j | xt = ei( )    (1)

The transition probability matrix  thus provides useful information for 
analyzing the evolution of the regional patenting distribution based 
on several of its properties. In this regard, based on the assumption of 
time invariant probabilities which reads as Pt,ij = Pt+b,ij, it is possible to 
approximate the average time to move from class i to j, and owing to the 
ergodicity property, the limiting distribution of the probability transition 
matrix  converges to a steady-state vector that also provides information 
regarding the long run features of the distribution. Notwithstanding, as 
noted by Rey (2001), a proper treatment of regional distributions would 
require explicit consideration of spatial proximity as spatial spillovers 
may potentially condition its time evolution, and thus, he proposes an 
extension of the Markov process described in expression (1).

In this respect, for ease of clarity, Table 3 exemplifies the arrange-
ment of the elements for the spatially conditioned transitional stochastic 
matrix. The entire matrix dimension is nxnxn where the column labeled 
as spatial lag represents the contiguous state neighbors to a specific 
region i which is distributed in three different states or classes: low, 
medium, and high. Thus, by positioning in the low-class spatial lag 
column, the element  informs about the probability a region i interacting 
with contiguous neighbors characterized for having a low patenting 
level remains in a low level of patenting the next period. Similarly,  
expresses the conditional probability that a region i improves its inno-
vativeness by moving from low to medium regional patenting the next 
period once spatial interaction with low-patenting neighboring states 
has been accounted.
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Table 3
Example of a NxNxN spatially conditioned stochastic  

transition matrix

Spatial lag 
(neighbors)

Class Low Medium High

 
Low

 

Low PLL|L PLM|L PLH|L

Medium PML|L PMM|L PMH|L

High PHL|L PHM|L PHH|L

 
Medium

 

Low PLL|M PLM|M PLH|M

Medium PML|M PMM|M PMH|M

High PHL|M PHM|M PHH|M

 
High

 

Low PLL|H PLM|H PLH|L

Medium PML|H PMM|H PMH|L

High PHL|H PHM|H PHH|H

Source: own elaboration.

As noticed by Bickenbach and Bode (2003), however, if spatial prox-
imity may indeed condition the distributional evolution over time, then, 
the property of spatial independence would not hold, and consequently, 
the estimated limiting distribution of the transition probabilities from 
the spatially unconditioned matrix may provide misguided inference 
regarding the long run distribution. Moreover, a similar issue arises in 
presence of time inhomogeneity which imply that one or more structural 
changes are part of the regional distribution dynamics thus violating 
the assumption of stationary or time invariant transitions probabilities 
within the Markov matrix. The potential violation of the assumptions 
underlying the Markov chain approach thus led Bickenbach and Bode 
(2003) to develop a set of statistical tests based on the Pearson (Q) 
and Likelihood Ratio (LR) statistics, which are implemented below, 
to help discern under the null whether the Markov process sketched in 
(1) is accurate to describe the evolution of the patenting distribution 
across states against the alternate, which otherwise suggest the distribu-
tion dynamics is not stationary along the time dimension and spatially 
dependent, respectively. In particular, the time homogeneity tests are 
performed by splitting, first, the transitions from the entire period into 



21Distributional dynamics of patenting across states in...  Torres Preciado, V. H. y V. Germán-Soto

M=4 subperiods, and then, comparing each patenting transition matrix 
from each subperiod with the transition matrix of the entire sample 
period. The spatial independence tests required to form distribution 
classes based on patenting levels in neighboring regions, and then, each 
spatially conditioned transition matrix compared against the transition 
matrix from the total sample. The Q and LR statistics thus described 
follows a  distribution with  degrees of freedom (d.f.).

3.1. Database and spatial structure
The statistical data consist of the number of patent counts from 2000 
to 2020 for the thirty-two Mexican states and were obtained from the 
Mexican Institute for the Industrial Property (IMPI by its acronym in 
Spanish). Some previous transformations were applied to the raw data 
to perform Markov chain calculations. First, a relative measure of the 
number of patents was calculated for each state as a deviation from 
its mean over the entire period which, in turn, was used to calculate 
terciles over the pooled data. Using terciles to represent the transition 
state space is useful to investigate mobility of the 32 states between 
low, medium, and high levels of patenting across the sample time span3.

The spatial interaction was modelled using a spatial weight matrix 
W with size 32x32 designed according to a queen-type criterion. In 
this respect, a state i may show spatial dependence with its neigh-
boring states j when touching a border or vortex, where j = 1, . . ., N  
assuming 0 ≤ wij ≤ 1 and i ≠ j with wij = 0 when i = j. Additionally, the 
spatial weight matrix W has been standardized thus ∑wij = 1, which 
defines the spatial lag as a weighted average of neighboring states.

4. Empirical results

An examination of our calculations in Table 4, which summarizes 
the transition probabilities across the patenting distribution without 
accounting for geographic proximity between states, show high prob-
ability values at its diagonal indicating that states would feature high 
persistence over time. In specific, states initially located at the high 
class, for example, have a 0.88 probability of prevailing within this same 

3	 In addition, from a technical point of view, choosing only terciles allowed us to avoid sparsity 
in the stochastic matrices of transition.
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class the next period, while states located at the bottom class exhibit 
a 0.74 probability of prevailing as low patenting states. Furthermore, 
states within the bottom class also show a significant probability of 
advancing towards the medium class. Moreover, the steady state vector 
of probabilities which describes the evolution of the patenting distribu-
tion in the long run exhibits slight differences between their magni-
tudes suggesting a convergence process towards the high patenting 
class would be underway. In addition, Table A3 in Appendix shows the 
mean recurrence time and mean first passage time which respectively 
describe the number of years a state would spend in returning to one of 
the three classes and in moving between two different classes for the 
first time4. In this regard, a state located at the low class would spend 
3.4 years in moving towards the medium class for the first time, while 
it would require 16.4 years in arriving at the high class. Conversely, 
the implied number of years that a state located at the high patenting 
class would require in moving towards the bottom and medium classes 
for the first time are, respectively, 18.1 and 8.9 in average. Conse-
quently, the high persistence characterizing the global probability tran-
sition matrix at its diagonal thus implies the states would spend fewer 
years when returning to their initial class location. This feature is also 
summarized by the Shorrocks’ mobility index which underlines a rather 
low mobility between classes (table A4 in Appendix).

Table 4
Global probability transition matrix of the state patenting distribution in 

Mexico

Class
Low Med High

Steady state
Prob. Prob. Prob.

Low 0.74 0.26 0.00 0.30
Med 0.24 0.62 0.14 0.33
High 0.00 0.12 0.88 0.37

Source: own calculations and Table A2 in Appendix.

In assessing whether the global probability transition matrix in Table 
4 would accurately describe the distribution dynamics of patenting 

4	 The mean first passage time from state to state is calculated according to the expression 
mij=(zjj-zij/sj) which elements corresponds, respectively, to matrices Z=(I-P+S)-1 and S repre-
senting the fundamental  matrix, Z, the identity matrix, I, the probability transition matrix, P, 
and the steady state probability matrix, S.



23Distributional dynamics of patenting across states in...  Torres Preciado, V. H. y V. Germán-Soto

across states, we performed both the time homogeneity and spatial 
independence tests as proposed by Kang and Rey (2018) and Bicken-
bach and Bode (2003). The statistical tests results based on both the Q 
and LR statistics shown in Table A5 in Appendix suggests non-rejec-
tion of the null stipulating the global probability transition matrices 
for the entire and subsample periods are not statistically different, thus 
indicating the distribution dynamics of patenting can be considered 
homogeneous across the complete sample period and, therefore, may 
be accurately described by its associated global probability transition 
matrix. Regarding the spatial independency test which stablishes that 
the global probability transition matrix in Table 4 equals each spatially 
conditioned probability transition matrix in Table 5, the obtained results 
based both on the likelihood ratio (LR) and Q statistics show rejection 
of the null which strongly suggests geographical proximity is relevant 
to understand the evolution of patenting distribution across states in 
Mexico (table A8 in appendix).

In this regard, according to the spatially conditioned probabilities of 
transition in Table 5, spatial stability would remain as a likely overall 
feature of the spatial patenting system in Mexico. However, particulari-
ties in our results indicate that low patenting states in interaction with 
low patenting neighboring states show a significant low persistence, 
amounting to a probability of 0.68, in prevailing at the low patenting 
class which contrasts the higher persistence implied by the 0.74 prob-
ability in the global probability transition matrix (table 4). Moreover, 
states located at the medium patenting class which interacts with low 
patenting neighboring states showed a slight increase in its measured 
persistence with respect to transition probabilities in the global matrix, 
though their probability of moving towards a low patenting class 
increased notably thus suggesting states at the medium class of the 
patenting distribution may be negatively affected by its geographic 
proximity to low patenting states. Our calculations suggest, notwith-
standing, that states located at the high patenting class would be less 
affected by its geographic proximity to low patenting states.

In addition, probability figures in Table 5 show that spatial interac-
tion with neighboring states located at the medium class would be less 
beneficial for states located at the low patenting class as it is demon-
strated by a higher probability of prevailing in the low class of the 
patenting distribution than the corresponding transition probabilities 
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in the global and the spatially-conditioned-to-low-patenting-neighbors 
matrices, which suggests strong barriers to cross border diffusion of 
technological knowledge may be present. Notwithstanding, geographic 
proximity with neighboring states at the medium class of the patenting 
distribution might facilitate the transition from the medium class 
towards the high class of patenting as suggested by the corresponding 
probability amounting to 0.35 which surpasses its probabilities counter-
parts within the global and the spatially-conditioned-to-low-patenting-
neighbors matrices estimated in 0.14 and 0.07, respectively.

According to our calculations, however, spatial stability would 
accentuate across the patenting distribution when spatial interaction 
occurs with high patenting neighboring states. In this respect, as evinced 
by a probability amounting to 0.91, states located at the high patenting 
class showed the highest persistence when compared against the global 
probability matrix as well as among states interacting with neighbors 
within any part of the distribution, thus suggesting geographic prox-
imity may enforce the innovative performance of high patenting states 
through cross border diffusion of technological knowledge. Although, 
accentuation of the spatial stability also implies increased persistence 
in states located at the low and medium classes and, therefore, a smaller 
probability of moving upward in distribution of the Mexican patenting 
system (table 5).

Table 5
Spatially conditioned probability transition matrix of patenting across 

states in Mexico
Spatial lag Class Low Med High

Low

Low 0.68 0.33 0.00

Med 0.30 0.63 0.07

High 0.00 0.14 0.86

Med

Low 0.78 0.22 0.00

Med 0.18 0.47 0.35

High 0.00 0.15 0.85

High

Low 0.79 0.22 0.00

Med 0.21 0.71 0.07

High 0.00 0.09 0.91

Source: own calculations.

Moreover, in Table 6 calculated steady state transition probabilities 
highlights several key features regarding the long run distribution of 
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patenting in Mexico, for example, spatial interaction with low patenting 
states would render a convergence process towards the medium class 
of the patenting distribution. Additionally, in concordance with our 
calculated probabilities of transition in Table 5, spatial interaction with 
medium patenting neighboring states shows a convergence process 
towards the high class in the long run which corroborates that positive 
spatial externalities arising from low barriers to technological knowl-
edge diffusion would be present. Geographic proximity with high 
patenting states, however, would render a divergence process character-
ized by a bimodal distribution towards the low and medium classes of 
the patenting distribution which may derive from high barriers to cross 
border diffusion of technological knowledge.

Table 6
Spatially conditioned steady state probability transition matrix of 

patenting across states in Mexico
Spatial lag/Class Low Med High

Low 0.37 0.41 0.22

Med 0.20 0.24 0.56

High 0.35 0.36 0.29

Source: own calculations.

Additional insight can be obtained by examining the mean recurrence 
time and mean first passage time statistics in Table 7 which suggest 
that low patenting states in interaction with low patenting neighbors 
would spend 3.1 years in arriving to the medium class for the first time, 
while, in concordance with transition probabilities in Table 5, medium 
patenting states would spend 5.2 years in arriving to the low patenting 
class; geographic proximity with medium patenting neighbors, however, 
would imply 4.5 years for low patenting states moving upwards to the 
medium class of the distribution, while medium states would require 
5.3 years in achieving the high patenting class, for the first time, and 
high patenting states would experience 1.8 years, the lowest calculated 
magnitude, in returning to the high class of the patenting distribution. 
Interaction with high patenting states, however, would require that low 
patenting states spend more than three decades in moving towards the 
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high patenting class which demonstrates that barriers to cross border 
technological knowledge diffusion would be present.

Table 7
Mean recurrence time and mean first passage time of the spatially 

conditioned probability transition matrix of patenting across states  
in Mexico (years)

Spatial lag Class Low Med High

Low

Low 2.7 3.1 28.9

Med 5.2 2.5 25.9

High 12.6 7.4 4.5

Med

Low 5.0 4.5 9.8

Med 18.4 4.2 5.3

High 25.3 6.8 1.8

High

Low 2.8 4.6 32.7

Med 8.8 2.8 28.0

High 19.8 11.3 3.5

Source: own calculations.

These results conform with the calculations for the Shorrocks’ summary 
measures of mobility in Table A9 in Appendix, which clearly suggest 
those states interacting with low or medium patent-producers display 
higher mobility, whereas those interacting with high patenting neigh-
bors show relatively less mobility.

Conclusions

The present investigation seeks to contribute to the empirical litera-
ture on the economics of innovation by focusing on the spatiotem-
poral evolution of innovation activity in a developing country. Our 
main results suggest regional context is relevant to understand the 
evolution of patenting distribution across states in Mexico. Moreover, 
evidence based on a spatial Markov framework suggests top-innova-
tors states interacting with alike neighboring states may benefit from 
positive spatial externalities, whereas is apparent that lower innovators 
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experience significant difficulties in gaining access to top-innovators’ 
technological knowledge stock. Additionally, bottommost-patenting-
states interacting with alike neighboring states may benefit poorly 
from spatial positive externalities thus unveiling a situation that helps 
explain the low-patenting efforts characterizing most southern states. In 
contrast, states interacting with medium-class neighboring states may 
significantly benefit from positive spatial externalities.

The aforesaid results help elucidate some implications for tech-
nology policy design and implementation. Accordingly, the national 
technology policy should pursue a regional perspective that considers 
the heterogenous spatial distribution of technology development and 
the apparent difficulties some states are facing acceding to regional 
technological knowledge. In particular, the results call for the need of 
designing and implementing regional technology policies aiming the 
creation and diffusion of innovation in southern states and promoting 
interregional cooperation mechanisms that help facilitating access 
to top-innovators’ technological knowledge stock. These sort of 
regional technology policies would open the possibility of changing 
the observed long-run patterns from a multimodal to a unimodal one. 

Finally, future empirical analysis can be extended in several ways, 
for example, focusing on the spatiotemporal distribution of techno-
logical innovation among countries, sectors or quality-differenced 
innovations; also, empirically and theoretically assessing the factors 
behind the observed spatial-time dynamics of innovation and how the 
observed distributional dynamics relates to growth dynamics among 
countries or regions. 
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Appendix

Table A1
Classification of the spatial transitions

Quadrants HH(t+1) HL(t+1) LH(t+1) LL(t+1)

HH(t) 0 II I IIIA

HL(t) II 0 IIIB I

LH(t) I IIIB 0 II

LL(t) IIIA I II 0

Note: Type 0 spatial transitions describes transitions in which the state-neighbor pair keeps the next period 
within the same class; spatial transitions of types I and II describe, respectively, a movement of only the 
state and only the neighbors; spatial transitions of type IIIA and IIIB describe a simultaneous movement of 
both a state and its neighbors in the same and opposite directions respectively.
Source: Own elaboration based on Rey (2001).

Table A2
Global transition matrix of state patenting in Mexico

Class Low Med High

Low 153 54 0

Med 48 124 28

High 0 25 176

Source: own calculations.

Table A3
Mean recurrence time and mean first passage time for the global 

transition matrix of state patenting in Mexico (years)

Class
Low Med High

Years Years Years

Low 3.3 3.8 17.6

Med 8.9 3.0 13.7

High 16.9 8.1 2.7

Source: own calculations.
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Table A4
Shorrocks’ mobility index for the global probability transition matrix

n 3
tr(P) 2.24
n-1 2
m 0.38

Source: own calculations.

Table A5
Time homogeneity test

Subperiod d.f. Q LR

2000-2020 6 19.04 8.24

2000-2005 4 4.15 1.60

2005-2010 4 11.12 5.25

2010-2015 4 1.58 0.82

2015-2020 4 2.20 0.57

Source: own calculations based on Tables A6 and A7.

Table A6
Summands of the Pearson  test statistic for testing time homogeneity for 

each subperiod
Subperiod 2000-2005

Class at t-1 Observations Low Med High Sum
Low 45 0.05 0.01 0.00 0.05
Med 41 0.48 0.10 2.43 3.01
High 42 0.00 0.95 0.13 1.09

Sum 4.15
Subperiod 2005-2010

Class at t-1 Observations Low Med High Sum
Low 44 0.38 1.08 0.00 1.46
Med 43 5.72 2.81 0.16 8.69
High 41 0.00 0.85 0.12 0.98

Sum 11.12
Subperiod 2010-2015

Class at t-1 Observations Low Med High Sum
Low 46 0.12 0.34 0.00 0.45
Med 40 0.70 0.06 0.35 1.11
High 42 0.00 0.01 0.00 0.01

Sum 1.58
Subperiod 2015-2020

Class at t-1 Observations Low Med High Sum
Low 43 0.16 0.44 0.00 0.60
Med 44 0.23 0.00 0.55 0.78
High 41 0.00 0.72 0.10 0.82

Sum 2.20
Source: own calculations.
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Table A7
Summands of the Likelihood Ratio (LR) test statistic for testing time 

homogeneity for each subperiod
Subperiod 2000-2005 

Class at t-1 Observations Low Med High Sum

Low 45 -1.24 0.27 0.00 -0.96

Med 41 2.39 1.65 -2.10 1.94

High 42 0.00 -1.67 2.29 0.62

Sum 1.60

Subperiod 2005-2010

Class at t-1 Observations Low Med High Sum

Low 44 -3.32 4.01 0.00 0.69

Med 43 10.01 -7.07 1.06 4.00

High 41 0.00 -1.58 2.14 0.56

Sum 5.25

Subperiod 2010-2015

Class at t-1 Observations Low Med High Sum

Low 46 2.06 -1.83 0.00 0.24

Med 40 -2.21 1.23 1.56 0.58

High 42 0.00 -0.20 0.21 0.00

Sum 0.82

Subperiod 2015-2020

Class at t-1 Observations Low Med High Sum

Low 43 0.12 0.09 0.00 0.22

Med 44 0.05 0.00 0.10 0.15

High 41 0.00 0.12 0.08 0.21

Sum 0.57

Source: own calculations.
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Table A8
Markov spatial independency test

Number of classes: 

Number of transitions: 

Number of regimes:

3 

608 

3
 

Test Likelihood ratio Chi-2

Statistic 25.59 28.82

Degree of freedom 8 8

P-value 0.001 0.000

P(H0) Low Med High

Low 0.74 0.26 0.00

Med 0.24 0.62 0.14

High 0.00 0.12 0.88

Source: own calculations.

Table A9
Shorrocks’ mobility index for the spatially 
conditioned probability transition matrix

n 3

tr(P) 2.17

n-1 2

m 0.42

tr(P) 2.10

n-1 2

m 0.45

tr(P) 2.41

n-1 2

m 0.29

Source: own calculations.


