Bioformulados para mantener la viabilidad de rizobacterias y su aplicación en *Theobroma cacao* L. CCN-51*

Bioformulated to maintain the viability of rhizobacteria and their application in *Theobroma cacao* L. CCN-51

Hayron Fabricio Canchignia Martínez

Universidad Técnica Estatal de Quevedo, Quevedo,

Ecuador

hcanchignia@uteq.edu.ec

©https://orcid.org/0000-0003-1195-5446

Dayanara Nicolle Tapia Quintana

Universidad Técnica Estatal de Quevedo, Quevedo,

Ecuador

dayanara.tapia2016@uteq.edu.ec

©https://orcid.org/0009-0004-0370-7893

Javier Andrés Auhing Arcos

Universidad Técnica Estatal de Quevedo, Quevedo,

Ecuador

javier.auhing@uteq.edu.ec

©https://orcid.org/0000-0003-4537-7234

Cristhian John Macías Holguín

Universidad Técnica Estatal de Quevedo, Quevedo,

Ecuador

cristhian.macias2016@uteq.edu.ec

©https://orcid.org/0000-0003-2068-8503

Ángel Virgilio Cedeño Moreira

Universidad Técnica Estatal de Quevedo, Quevedo,

Ecuador

acedenom@uteq.edu.ec

©https://orcid.org/0000-0002-6564-5569

Luis Fernando Vera Benites

Universidad Técnica Estatal de Quevedo, Quevedo,

Ecuador

luisf.vera@uteq.edu.ec

https://orcid.org/0000-0003-4567-1919

Recepción: 20 Octubre 2023 Aprobación: 18 Marzo 2024

Acceso abierto diamante

Notas de autor

luisf.vera@uteq.edu.ec

Resumen

Introducción. El empleo de bioformulados de rizobacterias promotoras del crecimiento vegetal es una alternativa para reducir la dependencia de pesticidas en la agricultura, por su acción biocontroladora de patógenos y solubilizadora de nutrientes. Objetivo. Evaluar el efecto de los bioformulados sobre la viabilidad celular de las rizobacterias y su influencia en *Theobroma cacao* L. Materiales y métodos. La investigación se desarrolló de enero a diciembre del año 2020 en los laboratorios de Microbiología y Biología Molecular de la Universidad Técnica Estatal de Quevedo y en la finca Ignolia, La Maná, Ecuador. Se evaluaron: las características potenciales de las bacterias para ser consideradas como rizobacterias; la identificación del gen chiA por reacción de la cadena de la polimerasa; el efecto de los bioformulados sobre la viabilidad celular de rizobacterias y su aplicación a campo para evaluar productividad y estado fitosanitario de *T. cacao*. Resultados. Las rizobacterias tuvieron la capacidad de solubilizar nutrientes, producir enzimas hidrolíticas y generadoras de biopelículas. El 80 % de las cepas presentaron el gen *chiA*, con actividad antifúngica contra hongos patógenos. El bioformulado BIO-QPGPRs, con *A. calcoaceticus*, *E. asburiae*, *S. marcescens*, *P. protegens* y *P. veronii*, mostró mayor persistencia celular (1,83E+5, 1,80E+5, 1,63E+5 y 1,63E+5) durante los 26 días. Su aplicación edáfica e inyección en temporada lluviosa incrementó las emisiones foliares con 100 y 108; además, redujo la incidencia de *Phytophthora* spp. y mejoró el rendimiento del grano seco (1270,6 kg/ha). Conclusiones. BIO-QPGPRs conservó las rizobacterias con viabilidad celular durante 26 días. Su aplicación en campo incrementó el número de emisiones foliares, redujo la incidencia de *Phytophthora* spp. en mazorcas y aumentó el rendimiento del cultivo.

Palabras clave: control de plagas, gen, inocuidad, microbiología, sustancia bioquímica.

Abstract

Introduction. The use of bioformulated plant growth-promoting rhizobacteria is an alternative to reduce the dependence on pesticides in agriculture, due to their pathogen biocontrol and nutrient solubilizing action. Objective. To evaluate the effect of bioformulates on the cell viability of rhizobacteria and their effect on *Theobroma cacao* L. Materials and methods. The research was conducted from January to December 2020 in the Microbiology and Molecular Biology laboratories of the Universidad Técnica Estatal de Quevedo and at the Ignolia farm, located in La Maná, Ecuador. The following were evaluated: the potential characteristics of bacteria to be considered as rhizobacteria; the identification of the chiA gene through polymerase chain reaction; the effect of bioformulations on the cell viability of rhizobacteria; and their field application to assess the productivity and phytosanitary status of *Theobroma cacao*. Results. *Rhizobacteria* had the capacity to solubilize of nutrients, producers of hydrolytic and biofilm-generating enzymes. Eighty percent of the strains presented the chiA gene, with antifungal activity against pathogenic fungi. The BIOQPGPRs bioformulated with *A. calcoaceticus*, *E. asburiae*, *S. marcescens*, *P. protegens* and *P. veronii* showed greater cell persistence (1.83E+5, 1.80E+5, 1.63E+5 and 1.63E+5) during the 26 days. Its edaphic application and injection in the rainy season increased leaf emissions with 100 and 108, and reduce the incidence of *Phytophthora* spp. and its edaphic application of the bacterial consortium improve dry grain yield (1270.6 kg/ha). Conclusions. BIOQPGPRs preserved rhizobacteria with cell viability for 26 days. Its field application increased the number of foliar emissions, reduced the incidence of *Phytophthora* spp. on pods, and improved crop yield.

Keywords: pest control, gene, innocuousness, microbiology, biochemical substance.

Introducción

El sector cacaotero representa uno de los rubros económicos más importantes del Ecuador (García-Cruzatty et al., 2020). El material genético CCN-51, está entre los cultivares con mayor extensión en el país por su alta productividad y adaptabilidad a las diversas condiciones climáticas (Boza et al., 2014). Sin embargo, este clon es susceptible a patógenos como *Moniliophthora roreri*, *Phytophthora palmivora* y *Moniliophthora perniciosa*, cuya prevalencia se incrementa con una elevada humedad relativa, baja temperatura y las deficiencias nutricionales del cultivo (Gutiérrez et al., 2016; Villamizar-Gallardo et al., 2019).

El empleo de insecticidas (Carbofuram, Metomyl, Phoxim) y fungicidas (cúpricos y triazoles) mitiga las plagas y enfermedades en el cultivo de cacao (Boateng et al., 2023). Además, para suplir las necesidades nutricionales del cultivo se utilizan fertilizantes nitrogenados, fosforados y potásicos (Yaseen et al., 2021). Sin embargo, se ha reportado que el uso prolongado de estos insumos químicos desencadena una reducción en la eficiencia de sus componentes activos (Chandini et al., 2019), así como la resistencia de plagas y patógenos (Akrofi et al., 2017; Roman et al., 2021).

El empleo de rizobacterias promotoras de crecimiento vegetal (plant growth promoting rhizobacteria, PGPR por sus siglas en inglés) es una alternativa para controlar patógenos y mejorar la eficiencia en la absorción de nutrientes (Babu et al., 2015). Una de sus principales características es la acción solubilizadora de nutrientes y biocontroladora por la liberación de componentes enzimáticos y ácidos orgánicos (Devi et al., 2022; Jha & Subramanian, 2018). Ejemplo de ello es la producción de exoquitinasas chiA, implicada en la degradación de quitina, componente principal de la pared celular de hongos fitopatógenos como ascomicetos y basidiomicetos (Morales-Ruiz et al., 2021). Esta funcionalidad permite que exista una mayor utilización de las PGPR, sobre todo en problemas nutricionales y en el control de enfermedades; sin embargo, su multiplicación masiva es una de las limitantes para su producción (Tirado-Gallego et al., 2016; Tyśkiewicz et al., 2022).

Los bioformulados PGPR de bajo costo son una alternativa para aumentar la producción de microorganismos con una menor inversión (Mishra et al., 2020; Sarmiento-López et al., 2022). El desarrollo de esta tecnología se concentra en disponer fuentes nutricionales adecuadas en la multiplicación y protección de la biomasa bacteriana (Lobo et al., 2019), dado que los microorganismos requieren de medios específicos (Anith et al., 2017). La efectividad de los productos biológicos de origen bacteriano depende del número de colonias viables en el tiempo y del pH. Por tal motivo, el contenido de carbohidratos, proteínas y macromicroelementos es esencial para una óptima multiplicación y crecimiento (Chandra & Sharma, 2021).

Las aplicaciones de bioformulaciones de PGPR en la agricultura generan una aceptación por mejorar las características morfológicas y productivas (Sriwati et al., 2019). Así por ejemplo, se aplicaron formulaciones de *Bacillus* sp., para promover el sistema radicular de plántulas de cacao (Thomas et al., 2011). Otras investigaciones evidenciaron la eficacia de *Pseudomonas aeruginosa* y *Chryseobacterium proteolyticum* en la reducción de *P. palmivora*, donde se confirmó una inhibición del 100 % en mazorcas de cacao (Alsultan et al., 2019), y que las aplicaciones de microorganismos al suelo incrementan la solubilización de minerales y mejoran las características morfológicas y productivas en *T. cacao* (Hipólito-Romero et al., 2017).

Con el fin de resolver los problemas de manejo nutricional y fitosanitario del cultivo de cacao, además de promover el manejo sostenible del cultivo con alternativas inocuas y de bajo costo, la presente investigación tuvo como objetivo evaluar el efecto de los bioformulados sobre la viabilidad celular de las rizobacterias y su influencia en *T. cacao* L.

Materiales y métodos

Descripción de área de estudio

La investigación se ejecutó en dos etapas. La primera fase se llevó a cabo en el Laboratorio de Microbiología y Biología Molecular de la Universidad Técnica Estatal de Quevedo (UTEQ), en el Campus Universitario Manuel Haz Álvarez, ubicado en el km 1,5 vía Quevedo-Santo Domingo, Ecuador (01° 00' 44" latitud Sur y 79° 28' 22" de longitud Occidental), a 73 m s. n. m. La segunda fase se desarrolló en la finca Ignolia, localizada en el recinto el Moral, cantón La Maná, provincia de Cotopaxi, Ecuador (0° 57' 38" latitud sur y 79° 16' 22" longitud occidental), con una altitud de 187 m s. n. m.

Caracterización bioquímica de la capacidad solubilizadora de minerales

Las cepas bacterianas (Cuadro 1) se reactivaron de forma individual en medio de cultivo King B líquido (KBL) a 28 °C a 180 rpm por 24 h, y se usaron para determinar la capacidad hidrolítica de urea a dióxido de carbono por el método de Christensen (1946), la actividad fosfatasa (Pikovskaya, 1948) y la producción de ácidos orgánicos para solubilización de potasio (Hu et al., 2006) y de zinc (Saravanan et al., 2004). La generación de biofilm se determinó de forma cualitativa por el método de cristal violeta (Alexander & Zuberer, 1991) y producción de quitinasa (Moon et al., 2017). En cada prueba se empleó como control negativo agua desionizada estéril.

Cuadro 1

Características de las rizobacterias con producción de metabolitos antagónicos, sideróforos, producción de ácido indol-3-acético y cultivo de procedencia. Ecuador, 2020.

		Meta	bolitos	antagó	nicos		Producción	Cultivo de
Organismo	Cepas	PR	HCN	Prn	DAPG	Sideróforos	de AIA	procedencia
A. calcoaceticus	BMR2-12			+		+		Banano
S. marcescens	PM3-8	+	+			+		Banano
P. protegens	CHA0	+	+	+	+	+	+	Tabaco
P. veronii	R4	+		+		+	+	Uva
E. asburiae	PM3-14	+	+	+		+		Banano

PR: proteasa. HCN: cianuro de hidrógeno. Prn: Pirrolnitrina. DAPG: 2,4-diacetilfloroglucinol, sideróforos. AIA: producción de ácido indol-3-acético (Chávez Arteaga et al., 2020; Montes et al., 2016; Peñafiel Jaramillo et al., 2016). / PR: protease. HCN: hydrogen cyanide. Prn: pyrrolnitrin. DAPG: 2,4-diacetylphloroglucinol, siderophores. IAA: production of Indole-3-acetic Acid (Chávez Arteaga et al., 2020; Montes et al., 2016; Peñafiel Jaramillo et al., 2016).

Table 1. Characteristics of rhizobacteria with antagonistic metabolite production, siderophores, indole-3-acetic acid production and crop of origin. Ecuador, 2020.

Chávez Arteaga et al. (2020), Montes et al. (2016), Peñafiel Jaramillo et al. (2016)

La producción de ureasa, fosfatasa, ácidos orgánicos y quitinasa se evaluó por el tamaño del halo. La presencia de biofilm se determinó por la aparición de biopelículas formadas en los tubos de ensayo por la adhesión de bacterias. Se definieron valores por la intensidad del anillo en el tubo. Los valores se registraron de acuerdo con la metodología definida por Holt et al. (1994), utilizando los siguientes valores cualitativos: mayor presencia (++), presencia (+) y ausencia (-).

Determinación de la presencia del gen chiA por PCR

El ADNg bacteriano se obtuvo al emplear PureLink™ Genomic DNA Mini Kit - Thermo Fisher Scientific, según el protocolo descrito por el fabricante. Para la amplificación molecular, se emplearon los primers específicos chiAF (5'GATATCGACTGGGAGTTCCC3') y chiAR (5'CATAGAAGTCGTAGGTCATC3'), con producto de amplificación 225 pb (Ramaiah et al., 2000). La reacción de PCR se realizó en 20 μL, con 5,0 μL Buffer (1X); 1,2 μL de MgCl2 (6 mM); 1,0 μL de DNTP's (0,2 mM); 1 μL / cada primer (0,2 mM); 0,2 μL de Taq polimerasa (Promega¹); 1 μL de ADN (50 ng/mL), y 11,6 μL de H₂O. Se empleó un termociclador (TECHME¹) y se ajustó su perfil térmico a 94 °C durante 4 min;

35 ciclos de desnaturalización a 92 °C; alineamiento a 58 °C, y polimerización a 72 °C por 1 min, seguidos de 7 min de extensión a 72 °C. Los productos de amplificación se verificaron por electroforesis en gel de agarosa al 1,5 % y teñidos en bromuro de etidio. Los fragmentos se determinaron por comparación con el marcador de peso molecular 100 pb (Invitrogen[®]).

Bioformulaciones líquidas para la determinación de la viabilidad celular de las rizobacterias

Las cepas *Acinetobacter calcoaceticus* BM2-12, *Serratia marcescens* PM3-8, *P. protegens* CHA0, P. veronii R4 y Enterobacter asburiae PM3-14, provenientes del banco de germoplasma de la Universidad Técnica Estatal de Quevedo, seleccionadas por su propiedad antifúngica, nematicida y promotoras de crecimiento vegetal (Cuadro 1), fueron reactivadas. Luego, se cultivaron de forma individual en 100 mL de KBL ([g/L]: peptona de carne 20,0; glicerol, 15,0 mL; fosfato dipotásico, 1,5; sulfato de magnesio heptahidratado, 1,5; agua destilada [pH 7,2]), suplementado con chloramphenicol (13 μg/mL), ampicilina (40 μg/mL) por 48 h (King et al., 1954) (Figura 1A).

Figura 1

Proceso de multiplicación celular de las rizobacterias en formulaciones líquidas. A) Crecimiento del preinóculo bacteriano. B) Fermentación de las bacterias en tanques de 50 L. C) Concentración celular 24 horas después del análisis microbiológico. Quevedo, Ecuador, 2020.

Figure 1. Process of cell multiplication of the rhizobacteria in liquid formulations. A) Growth of the bacterial pre-inoculum. B) Cell development in 50 L fermenters. C) Cell concentration 24 hours after microbiological analysis. Quevedo, Ecuador, 2020.

El preinóculo de las cinco bacterias se recuperó por sedimentación y se aplicó de forma individual un volumen de 100 mL a una concentración de 1,0E+8 UFC/mL en 40 L de medio de cultivo alternativo (Cuadro 2). Se procedió a su respectiva fermentación y/o masificación de forma individual mediante fermentadores con capacidad de 50 L. Se mantuvieron en agitación con una presión de aire de 0,007 MPa durante 24 h; cada fermentador contenía un filtro de nitrocelulosa de 0,45 micras x 47 mm a entrada y salida del flujo de aire (Figura 1B). Al finalizar las 24 h de agitación, se colectaron tres muestras de 50 mL de cada tratamiento en tubos Falcon. El número de muestras forma parte de las repeticiones; se tomaron en consideración tres unidades experimentales por cada repetición y se conservaron a temperatura ambiente (25 °C) durante 26 días.

Cuadro 2
Composición de los diferentes formulados para el crecimiento y viabilidad de rizobacterias. Ecuador, 2020.

Formulado	Ingrediente	
BIO-M3	Melaza (g/L)	20
	Harina de maíz (g/L)	20
	Sal en grano (g/L)	5,0
	Glicerina (mL)	7,0
	рН	6,5
PGPRs-4N	Melaza (g/L)	20
	Harina de maíz (g/L)	20
	Sal en grano (g/L)	5,0
	Roca fosfórica (g/L)	1,5
	Glicerina (mL)	7,0
	pН	6,5
BIO-IMPULSE	Melaza (g/L)	20
	Harina de maíz (g/L)	20
	Sal en grano (g/L)	5,0
	Roca fosfórica (g/L)	1,5
	Glicerina (mL)	7,0
	Aceite mineral (mL)	5,0
	рН	6,5
BIO-QPGPRs	Melaza (g/L)	10
	Harina de maíz (g/L)	20
	Sal en grano (g/L)	5,0
	Roca fosfórica (g/L)	1,5
	Glicerina (mL)	7,0
	Fijador (mL)	5,0
	Lixiviado de raquis de	15
	banano (mL)	
	рН	6,5

Table 2. Composition of the different formulation under study for the growth and viability of rhizobacteria. Ecuador, 2020.

Variables evaluadas en los bioformulados

Para determinar la viabilidad celular de las rizobacterias se recuperaron muestras de 100 ul a (1, 6, 11, 16, 21 y 26 días) después de su proceso de fermentación. Se evaluaron las siguientes variables: unidades formadoras de colonias por mililitro (UFC/mL) en tiempo y potencial de hidrógeno (pH), con base en las metodologías de Dickson (1993) y Sharpe y Kilsby (1971) (Figura 1C).

Aplicación de bioformulados en plantaciones de T. cacao CCN-51

El bioformulado se seleccionó por su mayor viabilidad celular de las rizobacterias evaluadas de la fase *in vitro*, para la multiplicación y/o masificación. El bioformulado se fermentó durante 24 h y se homogenizó en relación v/v al 20 %. Se obtuvo una concentración bacteriana de 7,6E+6 UFC/mL para su aplicación en plantación de CCN-51 de cuatro años de edad. La forma de aplicación de los bioformulados con sus respectivos controles se describe en el Cuadro 3.

Cuadro 3
Descripción de la forma de aplicación de los bioformulados. Ecuador, 2020.

Aplicación	Descripción	Frecuencia de aplicación durante el año 2020
Edáfico	Se realizó una limpieza de 0,60 m desde el centro del tallo hacia la corona de la planta, y se aplicaron, vía edáfica, 250 mL/planta de bioformulados al 20 % en relación v/v, con la ayuda de un pulverizador de mochila Cooper Pegler CP3 Classic Knapsack Sprayer CP846320.	
Foliar	Se esparcieron al área foliar 300 ml/planta de bioformulados al 20 % v/v mediante una fumigadora.	Cuatro veces (enero, marzo, julio, septiembre)
Inyección	A una altura de 0,20 m desde la base del tallo, se perforó un hoyo de 8 cm de profundidad con un diámetro de 1,2 cm y una inclinación de 45°, con 10 mL/planta de bioformulado al 20 % en relación v/v. La perforación se selló con parafilm.	
Químico	Se aplicó fungicida de forma foliar 3 kg/ha de oxicloruro de cobre (Oxithane) y 1 kg/ha de fertilizante completo soluble 13-40-13 (kristalon - YaraTera).	Tres veces (enero, abril, agosto)
Control	De forma foliar, se aplicaron 200 ml de agua destilada	

Table 3. Description of the form of application of bioformulates. Ecuador, 2020.

Variables evaluadas en el cultivo

Las variables evaluadas en CCN-51 fueron las siguientes: a) número de emisión foliar (brote joven), para lo cual se contabilizaron los brotes dos meses después de la poda de formación y mantenimiento; b) incidencia de *Phytophthora* spp., *M. roreri*; c) rendimiento del cultivo (kg/ha), con base en la metodología descrita por Anzules (2019), y d) número de granos, que se obtuvo al contar el total de semillas de cada mazorca. Estas variables fueron obtenidas cada mes (temporada lluviosa y seca), durante un año.

Labores culturales

Como labores culturales se realizaron dos podas (formación y mantenimiento) durante el año, en los meses de enero y junio. Además, se realizó un control de maleza cuatro veces al año, con aplicaciones de paraquat (2,0 L/ha) y desmalezadora a motor. La fertilización química se realizó en tres aplicaciones fraccionadas de urea (N46 %) 150 g/planta; DAP (N 18 %, P 46 %) 70 g/planta; KCl (K 60 %) 150 g/planta y sulfato de Mg (Mg 27% y S 20%) 29 g/planta. La aplicación del fertilizante se realizó al voleo, mediante aplicación directa al suelo, desde la base de la planta a un metro a la redonda lo que cubrió la corona de forma homogénea (Ruales et al., 2011).

Diseño experimental y análisis de datos

En el experimento de viabilidad celular de rizobacterias se aplicó un diseño completamente al azar (DCA) con arreglo factorial conformado por formulados y cepas. Se realizaron tres réplicas con tres unidades experimentales. A nivel de campo, en la aplicación de bioformulados en plantaciones de *T. cacao* CCN-51, se empleó un diseño factorial en bloques completamente al azar (DBCA), para su temporada y formas de

aplicación. Cada tratamiento contenía cuatro repeticiones con cuatro unidades experimentales; se evaluaron dieciséis plantas por tratamiento.

Para garantizar la confiabilidad en la estadística paramétrica como análisis de varianza (ANDEVA), los datos fueron sometidos a normalidad mediante Kolmogorov-Smirnov y se aplicó la prueba de Bartlett para verificar el supuesto de homogeneidad de la varianza. Los datos fueron sometidos al ANDEVA y separados por procedimiento de comparación múltiple de Tukey, al nivel de significancia de $p \le 0,05$. Para el análisis se utilizó el software estadístico Infostat 2020 y la versión 19.1.0 del software Minitab (Di Rienzo et al., 2020; Minitab, 2021).

Resultados

Caracterización bioquímica con potencial a ser considerada

Las cinco rizobacterias mostraron la capacidad de hidrolizar urea y producir quitinasa, solubilizadora de fósforo, potasio y zinc de una fuente insoluble presente en el medio. Además, cuatro cepas fueron productoras de biofilm (Cuadro 4; Figura 2).

Cuadro 4

Selección de rizobacterias con capacidad para producir quitinasa, ureasa, fosfatasa, ácidos orgánicos y biopelículas. Ecuador, 2020.

Cepas	Caracterización bioquímica											
	Quitinasa	Fosfatasa	Ácido orgánico (potasio)	Ureasa	Ácido orgánico (zinc)	Biofilm						
BM2-12	++	++	++	+	++	+						
PM3-14	+	+	++	+	+	-						
PM3-8	++	+	+	+	++	+						
CHA0	++	++	+	++	+	++						
R4	++	+	+	++	++	++						

Los signos indican: (-) ausencia, (+) presencia, (++) mayor presencia. / Signs indicate: (-) absence, (+) presence, (++) increased presence.

Table 4. Selection of rhizobacteria with capacity to produce chitinase, urease, phosphatase, organic acids and biofilms. Ecuador, 2020.

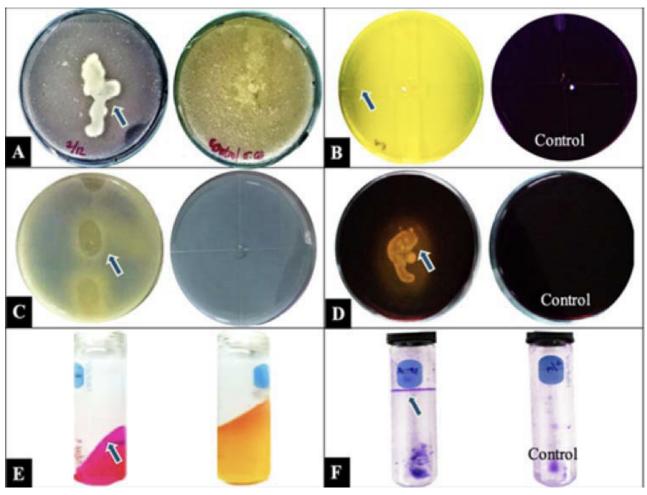


Figura 2

Producción enzimática de las PGPR para la solubilización de cada componente. A. Quitinasa. B. Ácidos orgánicos para la solubilización de potasio. C. Fosfatasas. D. Ácidos orgánicos para la solubilización de zinc. E. Ureasa. F. Biofilm. Flechas indican el sitio de liberación de compuestos por las PGPR. Ecuador, 2020.

Figure 2. Enzymatic production of PGPRs for solubilization of each component. A. Chitinase. B. Organic acids for potassium solubilization. C. Phosphatases. D. Organic acids for zinc solubilization. E. Urease. F. Biofilm. Arrows indicate the site of compound release by PGPR. Ecuador, 2020.

Identificación del gen chiA por PCR

Se determinó la presencia de *chiA*, gen que codifica el dominio catalítico de las quitinasas bacterianas con un producto de amplificación de 225 pb en las rizobacterias (PM3-8, PM3-14, BM2-12, CHA0). No existió amplificación en la cepa R4 ni en el control negativo (agua) (Figura 3).

Figura 3

Amplificación del gen chiA por PCR para la identificación de cepas bacterianas productoras de quitinasas. Del carril 1-6 (R4, CHA0, BM2-12, PM3-8, PM3-14, Control, M) (marcador de masa molecular Ladder 100 pb Invitrogen).

Ecuador, 2020.

Figure 3. PCR amplification of the chiA gene for the identification of chitinase-producing bacterial strains. From lane 1-6 (R4, CHA0, BM2-12, PM3-8, PM3-14, Control, M) (Invitrogen 100 bp Ladder molecular mass marker). Ecuador, 2020.

Determinación de la viabilidad celular y plataforma de multiplicación de rizobacterias

La generación de los bioformulados define valores significativos al proceso de multiplicación de rizobacterias, viabilidad celular y sus interacciones (p < 0,001) en los días (1, 6, 11, 16, 21 y 26). En cuanto a la viabilidad celular al día 1, los bioformulados BIO-QPGPRs, BIO-M3 y PGPRs-4N alcanzaron la concentración celular de CHA0 con 7,87E+11, 6,63E+9 y 4,80E+8 UFC/mL, respectivamente. La disponibilidad de los nutrientes del bioformulado BIO-IMPULSE mantuvo la viabilidad celular en las rizobacterias (R4 y PM3-8), con 1,05E+10 UFC/mL. Esto indica que el alto contenido de UFC/mL está relacionado con la alta disponibilidad de los nutrientes, que mejora la actividad biológica del bioformulado (Cuadro 5).

Cuadro 5 Unidades formadoras de colonias en bioformulaciones de rizobacterias durante 26 días de evaluación. Ecuador, 2020.

Formulados	Bacterias	Día 1	Día 1 Día 6		6	Día 1	1	Día 1	6	Día 2	1	Día 26	
													_
BIO-QPGPRs	CHA0	7,87E+11	A	3,83E+8	AB	4,70E+7	BC	1,57E+6	DEF	1,60E+5		1,83E+5	
BIO-QPGPRs	BM2-12	1,11E+10	В	5,50E+7	EFG	4,37E+7	BCD	3,23E+6	CDE	1,73E+5	DE	6,30E+4	В
BIO-QPGPRs	PM3-14	6,17E+9	В	1,90E+8	DE	5,40E+7	BC	1,10E+7	В	1,43E+6	C	1,80E+5	Α
BIO-QPGPRs	PM3-8	1,27E+9	В	2,57E+8	BCD	6,07E+7	В	1,53E+6	DEF	2,10E+5	DE	1,63E+5	Α
BIO-QPGPRs	R4	1,27E+9	В	2,57E+8	BCD	6,07E+7	В	1,47E+6	EF	2,43E+5	DE	1,63E+5	Α
BIO-IMPULSE	CHA0	3,53E+8	В	1,27E+7	FG	3,73E+5	F	0	F	0	E	0	C
BIO-IMPULSE	BM2-12	8,70E+7	В	3,90E+6	G	5,17E+5	F	0	F	0	E	0	C
BIO-IMPULSE	PM3-14	6,07E+9	В	3,07E+6	G	2,67E+6	F	2,10E+4	F	0	E	0	C
BIO-IMPULSE	PM3-8	1,05E+10	В	1,53E+8	DEFG	4,00E+5	F	0	F	0	E	0	C
BIO-IMPULSE	R4	1,05E+10	В	1,53E+8	DEFG	4,00E+5	F	0	F	0	E	0	C
BIO-M3	CHA0	6,63E+09	В	4,77E+8	Α	2,03E+8	Α	2,70E+7	Α	3,60E+6	Α	0	C
BIO-M3	BM2-12	1,27E+08	В	1,60E+8	DEF	1,87E+7	DEF	4,83E+5	F	9,60E+4	DE	2,53E+4	C
BIO-M3	PM3-14	1,00E+9	В	3,50E+8	ABC	1,80E+7	DEF	2,70E+6	CDE	2,63E+6	В	0	C
BIO-M3	PM3-8	1,27E+9	В	2,27E+8	CD	2,93E+7	CDE	2,47E+6	CDE	2,13E+5	DE	0	C
BIO-M3	R4	1,27E+9	В	2,27E+8	CD	2,93E+7	CDE	2,93E+6	CDE	2,40E+5	DE	0	C
PGPRs-4N	CHA0	4,80E+8	В	2,57E+7	FG	2,93E+7	CDE	2,30E+6	CDE	2,57E+5	D	1,60E+4	C
PGPRs-4N	BM2-12	3,73E+7	В	1,20E+7	FG	6,63E+5	F	3,30E+5	F	2,73E+4	DE	0,00E+0	C
PGPRs-4N	PM3-14	1,13E+8	В	7,13E+6	G	6,10E+6	EF	3,27E+6	CD	2,10E+5	DE	1,63E+4	C
PGPRs-4N	PM3-8	4,73E+8	В	4,10E+7	EFG	1,23E+7	EF	3,00E+6	CDE	1,13E+5	DE	1,63E+4	C
PGPRs-4N	R4	4,73E+8	В	4,10E+7	EFG	1,23E+7	EF	3,47E+6	C	1,10E+5	DE	1,63E+4	C
P (formul	ados)	< 0,000	1	< 0,0	001	< 0,00	001	< 0,0001		< 0,0001		< 0,000	1
P (bacte	rias)	< 0,000	1	< 0,0	001	< 0,00	001	< 0,0001		< 0,00	01	< 0,000	1
P (interac	cción)	< 0,000	1	< 0,0	001	< 0,00	001	< 0,0001		< 0,00	< 0,000	1	

Los valores de p indican el efecto de los factores sobre la variable dependiente mediante un análisis de varianza de dos vías (formulado × bacteria). Los valores con letras similares no presentan diferencias estadísticas significativas al nivel de $p \le 0.05$, según el procedimiento de comparación múltiple de Tukey. Al tiempo de muestreo (1, 6, 11, 16, 21 y 26 días). / The p values indicate the effect of the factors on the dependent variable using a two-way analysis of variance (formulated × bacterial). Values with similar letters do not present significant statistical differences at the level of $p \le 0.05$, according to Tukey's multiple comparison procedure. At sampling time (1, 6, 11, 16, 21 and 26 days).

Table 5. Colony-forming units in rhizobacterial bioformulations during 26 days of evaluation. Ecuador, 2020.

En cuanto a la viabilidad celular al día 6, los bioformulados BIO-M3 y BIO-QPGPRs lograron mantener la UFC/mL en 4,77E+8 y 3,83E+8 en la rizobacteria CHA0, respectivamente. La viabilidad celular se redujo en BIO-IMPULSE con 1,53E+8 UFC/mL, de las rizobacterias PM3-8 y R4 (Cuadro 5).

Viabilidad celular al día 11, disminuyó el número de células UFC/mL en BIO-IMPULSE, BIO-M3 y PGPRs-4N entre 3,73E+5 y 1,87E+7; a diferencia de BIO-QPGPRs que mantiene su concentración celular de 4,37E+7 y 6,07E+7 para las rizobacterias CHAO, M2-12, BM3-14, PM3-8 y R4. Sin embargo, el bioformulado BIO-M3 mantiene la concentración celular en 2,03E+8 UFC/mL para CHAO (Cuadro 5).

Para el día 16, los bioformulados BIO-M3 y BIO-QPGRs mantuvieron la concentración celular en CHA0 y PM3-14 en 2,70E+7 y 1,10E+7 UFC/ml. La disponibilidad de células vivas para las rizobacterias CHAO, M2-12, PM3-8 y R4 tuvo un efecto negativo en BIO-IMPULSE que decreció en su totalidad la presencia de células vivas (Cuadro 5).

Al día 21, el bioformulado BIO-IMPULSE evidenció una respuesta negativa al proceso de almacenamiento de rizobacterias con la disminución de su totalidad de células vivas para BM3-14. Al contrario, BIO-QPGPRs y BIO-M3 mantuvieron la mayor viabilidad celular entre 1,60E+5 y 1,43E+6 UFC/ml, y 9,6E+4 y 3,60E+6 UFC/ml, respectivamente.

Por último, al día 26, el bioformulado BIO-QPGPRs suministró las condiciones óptimas para una mayor estabilidad celular a su almacenamiento en las rizobacterias CHA0, BM2-12, BM3-14, PM3-8 y R4 con 1,83E+5, 6,30E+4, 1,80E+5, 1,63E+5 y 1,63E+5 UFC/ml, respectivamente (Cuadro 5). Este bioformulado BIO-QPGPRs es la alternativa viable para masificar y preservar células bacterianas hasta los 26 días. Además, es

un sustituto viable para la masificación de PGPR, por su bajo costo y viabilidad en el tiempo, para la aplicación en cultivos agrícolas en la segunda fase de investigación (aplicación en campo).

Determinación del pH de los formulados

Los niveles de pH en procesos de biofermentación y conservación de las células bacterianas determinaron valores significativos para los bioformulados, las rizobacterias y sus interacciones (p < 0,001) en los días (1, 6, 11, 16, 21 y 26). Se deduce que el cultivo bacteriano presenta una disminución considerable del pH en los días 6, 11, 16, 21 y 26, en comparación con el día 1. En la evaluación del pH al día 21, la composición del bioformulado BIO-M3 logró mantener un pH entre (4,07, 4,13 y 4,22) para las rizobacterias (CHA0 BM2-12 y PM3-8), respectivamente (Cuadro 6).

Cuadro 6
Potencial de hidrógeno (pH) en bioformulaciones de rizobacterias durante 26 días de evaluación. Ecuador, 2020.

Formulados	Bacterias	Día	1	Día	6	Día	a 11	Día	16	Día	21	Día	26
BIO-QPGPRs	CHA0	4,29	HI	3,88	Е	3,81	EFG	3,77	K	3,77	G	3,81	EFG
BIO-QPGPRs	BM2-12	4,21	IJK	3,66	G	3,37	I	3,31	0	4,34	Α	4,43	Α
BIO-QPGPRs	PM3-14	4,26	HIJ	3,98	D	3,93	DEF	3,98	G	3,99	E	3,92	DE
BIO-QPGPRs	PM3-8	4,35	Н	3,84	EF	3,89	EF	3,94	Н	3,95	E	3,85	DEF
BIO-QPGPRs	R4	4,13	K	3,84	EF	3,76	EFGH	3,81	J	3,81	FG	3,73	FGH1
BIO-IMPULSE	CHA0	4,30	Н	3,78	F	3,92	DEF	3,90	I	3,85	F	3,74	FGH
BIO-IMPULSE	BM2-12	5,10	C	4,78	В	4,23	BC	4,12	D	4,07	J	3,74	FGH
BIO-IMPULSE	PM3-14	4,20	JK	3,86	EF	3,92	DEF	3,49	M	3,76	G	3,58	IJ
BIO-IMPULSE	PM3-8	4,86	EF	3,97	D	3,68	FGH	3,72	L	3,53	Н	3,57	J
BIO-IMPULSE	R4	4,74	G	3,62	G	3,50	HI	3,46	N	3,42	I	3,33	K
BIO-M3	CHA0	5,23	В	5,04	Α	4,78	Α	4,29	В	4,13	C	3,72	FGH:
BIO-M3	BM2-12	5,05	C	3,91	DE	3,98	CDE	4,07	E	4,07	D	3,96	CDE
BIO-M3	PM3-14	5,43	Α	4,65	C	4,40	В	4,01	F	3,95	E	3,63	В
BIO-M3	PM3-8	5,12	C	5,05	Α	4,92	Α	4,25	C	4,22	В	4,18	HIJ
BIO-M3	R4	5,03	CD	4,97	Α	4,88	Α	4,67	Α	3,81	FG	3,72	FGH:
PGPRs-4N	CHA0	5,04	CD	4,61	C	4,19	BCD	4,08	E	3,83	F	3,66	HIJ
PGPRs-4N	BM2-12	5,03	CD	3,67	G	3,54	GHI	3,88	I	3,24	K	3,35	K
PGPRs-4N	PM3-14	4,83	F	3,91	DE	4,32	В	4,08	Ε	3,99	E	3,68	GHI
PGPRs-4N	PM3-8	4,95	DE	3,87	E	3,80	EFG	4,23	C	4,00	E	3,98	CD
PGPRs-4N	R4	5,28	В	3,88	E	4,01	CDE	3,84	J	3,83	F	4,10	ВС
P (formula	ados)	< 0,0	0001	< 0,0	0001	< 0	,0001	< 0,0	001	< 0,0	001	< 0,	,0001
P (bacter	rias)	< 0,0	0001	< 0,0	0001	< 0	,0001	< 0,0001		< 0,0001		< 0,0001	
P (interac	ción)	< 0,0	0001	< 0,0	0001	< 0	,0001	< 0,0	001	< 0,0	001	< 0,	,0001

Los valores de p indican el efecto de los factores sobre la variable dependiente mediante un análisis de varianza de dos vías (formulado \times bacteria). Los valores con letras similares no presentan diferencias estadísticas significativas al nivel de $p \le 0.05$, según el procedimiento de comparación múltiple de Tukey, al tiempo de muestreo (1, 6, 11, 16, 21 y 26 días). / The p values indicate the effect of the factors on the dependent variable using a two-way analysis of variance (formulated \times bacterial). Values with similar letters do not present significant statistical differences at the level of $p \le 0.05$, according to Tukey's multiple comparison procedure, at sampling time (1, 6, 11, 16, 21 and 26 days).

Table 6. Hydrogen potential (pH) in rhizobacterial bioformulations during 26 days of evaluation. Ecuador, 2020.

La acidificación continua del medio causa la muerte celular de los microorganismos, por efecto de los ácidos orgánicos que afectan la adecuada estabilidad de pH en el medio. Al día 26, se tomó en consideración que algunos valores de pH se mantienen y otros se reducen de forma sustancial; situación que presentó BIOQ-PGPRs con BM2-12, donde se mantiene el nivel de pH entre (3,73 y 4,43). La reducción del pH está sujeta a los compuestos acidificantes que formaron las bacterias por la disponibilidad de azúcares y proteínas, así como su capacidad de liberar enzimas, como los ácidos orgánicos, que disminuyen los niveles de pH del medio.

Incidencia del bioformulado BIOQ-PGPRs en CCN-51 según la forma de aplicación en temporada seca y lluviosa

Las rizobacterias crecieron en el bioformulado BIOQ-PGPRs. Su aplicación a campo se realizó en consorcio en parcelas de CCN-51, que define valores significativos a la forma de aplicación (edáfica, foliar e inyección), la temporada (lluviosa y seca) y sus interacciones para las variables morfológicas y productivas.

La evaluación de emisión foliar de las aplicaciones de rizobacterias en CCN-51, tuvo un aumento del número de hojas con similar respuesta a su aplicación edáfica e inyección en temporada lluviosa y seca, con 100 y 52, y 108 y 53, respectivamente (Cuadro 7). Hubo un incremento de la masa foliar por las aplicaciones de las rizobacterias, a diferencia de las parcelas de CCN-51 tratadas con control químico y sin aplicación; se redujo la emisión foliar con 73 y 35 en temporada lluviosa y seca, respectivamente (Cuadro 7).

Cuadro 7

Emisiones foliares, número de granos y rendimiento de T. cacao durante la época seca y lluviosa. Ecuador, 2020.

Forma de aplicación	Época	166.0		nero d es fol		Núm	lúmero de granos Rendimiento				Rendimiento kg		
Edáfico	Lluviosa	100	±	11,9	AB	51	±	2,2	Α	157,3	±	43,6	D
Edáfico	Seca	52	±	3,9	DE	42,2	±	4,5	BCD	1270,6	±	235	Α
Foliar	Lluviosa	97	±	17,9	AB	45,2	±	1,4	ABC	117,4	±	39,5	D
Foliar	Seca	61	±	17,2	CDE	44,8	±	3,5	ABC	486	±	146	С
Inyección	Lluviosa	108	±	18,2	Α	46,2	±	3,1	ABC	85,6	±	25,9	D
Inyección	Seca	53	±	10,6	DE	36,8	±	3,7	D	804	±	129	В
Químico	Lluviosa	73	±	13,9	BCD	46,8	±	3,3	AB	94,3	±	15,1	D
Químico	Seca	54	±	5,9	DE	45	±	1,3	ABC	723	±	103	В
Testigo	Lluviosa	84	±	16,6	ABC	40,2	±	2,1	CD	60,7	±	20,5	D
Testigo	Seca	35	±	6,5	E	36,4	±	3,6	D	473	±	63,9	С
P (forma aplicaci			0	,001		<0,0001 <0,0001			001				
P (épo	ca)		<0	,0001			0,0	0005		<0,0001			
P (interac	ción)		0,	0255			0,0	0001		<0,0001			

Los valores de p indican el efecto de los factores sobre la variable dependiente mediante un análisis de varianza de dos vías (forma de aplicación \times época). Los valores con letras similares no presentan diferencias estadísticas significativas al nivel de $p \le 0.05$, según el procedimiento de comparación múltiple de Tukey. Los valores de desviación estándar \pm corresponden a n = 16. / The p values indicate the effect of the factors on the dependent variable using a two-way analysis of variance (application method \times time). Values with similar letters do not present significant statistical differences at the level of $p \le 0.05$, according to Tukey's multiple comparison procedure. Standard deviation \pm values correspond to n = 16.

Table 7. Leaf emissions, bean number and yield of *T. cacao* during the dry and rainy season. Ecuador, 2020.

La formación de granos en CCN-51, bajo aplicaciones edáficas de las rizobacterias, generó un promedio anual de 47 semillas/mazorca entre las temporadas (lluviosa y seca). Con similar respuesta, las parcelas de CCN-51 tratadas con fertilizante foliar y fungicidas (químico), obtuvieron un promedio de 46 semillas/mazorca entre las dos temporadas (Cuadro 7). Este resultado evidencia que el proceso de colonización de las rizobacterias en CCN-51 ejerce cambios a nivel fisiológico que permiten asimilar los nutrientes para favorecer la formación de mazorcas.

El rendimiento de CCN-51 disminuyó en la temporada lluviosa, característica de este clon. En esta investigación, la aplicación constante de rizobacterias a nivel edáfico ejerció un incremento de 1270,6 kg/ha en

la época seca, y se disminuyó a 157 kg/ha en la época lluviosa. Las parcelas de CCN-51 tratadas con fertilización foliar y fungicidas (químico) alcanzaron 723 kg/ha en la temporada seca. Las aplicaciones de microorganismos potenciaron el mecanismo de protección de este clon y mejoraron el proceso de asimilación de minerales, lo que contribuyó al incremento en la producción de semillas de cacao (Cuadro 7). En la temporada lluviosa, se redujo la producción de mazorcas por efecto de las condiciones climáticas, que disminuyen la formación de flores e incrementan las enfermedades.

Incidencia de enfermedades en mazorcas de CCN-51 según la forma de aplicación del bioformulado en temporada seca y lluviosa

La aplicación del bioformulado BIOQ-PGPRs mostró diferencias significativas en la interacción de formas de aplicación y temporadas (p < 0,0001). Las aplicaciones edáficas del bioformulado BIOQ-PGPRs disminuyeron la incidencia de *Phytophthora* spp., en mazorcas de cacao, donde las rizobacterias activan el mecanismo de protección a nivel fisiológico en CCN-51 para responder de manera más eficiente a enfermedades. La mayor incidencia de la enfermedad fue evidente en las parcelas de CCN-51 no tratadas con fungicidas químicos con un incremento de infección en mazorcas del 9,7 % (Cuadro 8).

Cuadro 8
Incidencia de *Phytophthora* spp. y *M. roreri* durante la época seca y lluviosa. Ecuador, 2020.

Forma de	Tammanada	Incidencia en mazorca (%)										
aplicación	Temporada	Ph	ytophi	thora s	M. roreri							
Edáfico	Lluviosa	3,6	±	0,5	CD	10,9	±	1,4	В			
Edáfico	Seca	0,8	±	0,1	AB	34,1	±	3	F			
Foliar	Lluviosa	5,4	±	1,1	D	13,6	±	1,4	ВС			
Foliar	Seca	7,8	±	0,8	E	13,6	±	1,4	ВС			
Inyección	Lluviosa	8,3	±	1,2	E	30,7	±	1,6	EF			
Inyección	Seca	0	±	0	Α	20,9	±	3,4	D			
Químico	Lluviosa	2,7	±	0,8	BC	3,61	±	0,4	Α			
Químico	Seca	4,0	±	1,0	CD	28,0	±	3,3	Е			
Control	Lluviosa	4,0	±	1,1	CD	17,7	±	1,8	CD			
Control	Seca	9,7	±	1,5	E	42,9	±	3	G			
P (forma de	<0,0001				<0,0001							
P (é	poca)		0,1	.985		<0,0001						
P (inte	racción)		<0,	0001			<0,0001					

Los valores de p indican el efecto de los factores sobre la variable dependiente mediante un análisis de varianza de dos vías (forma de aplicación \times época). Los valores con letras similares no presentan diferencias estadísticas significativas al nivel de $p \le 0.05$, según el procedimiento de comparación múltiple de Tukey. Los valores de desviación estándar \pm corresponden a n=16. / The p values indicate the effect of the factors on the dependent variable using a two-way analysis of variance (application method \times time). Values with similar letters do not present significant statistical differences at the level of $p \le 0.05$, according to Tukey's multiple comparison procedure. Standard deviation \pm values correspond to n=16.

Table 8. Incidence of *Phytophthora* spp. and *M. roreri* during the dry and rainy seasons. Ecuador, 2020.

La proliferación de *M. roreri* en mazorcas de cacao disminuyó con la aplicación del bioformulado BIOQ-PGPRs a nivel foliar, con niveles de infección del 13,6 % para sus dos temporadas, actuó sobre la mazorca de cacao. La aplicación edáfica del bioformulado PGPRs en temporada seca se incrementó un 34 % de infección

6

en mazorca de CCN-51 (Cuadro 8). Estos resultados sugieren que la efectividad de las diferentes formas de aplicación para el control de *Phytophthora* spp. y *M. roreri* puede variar según la temporada del año.

Discusión

Las PGPR en esta investigación presentaron capacidad de producir biopelículas o exopolisacáridos, enzimas quitinasa y ureasa, diferentes tipos de fitohormonas, metabolitos fijadores de hierro (sideróforos) y solubilizadores de minerales del suelo. Las bacterias del género *Pseudomonas, Acinetobacter*, *Serratia, Enterobacter* y *Aeromonas* son productoras de ácidos orgánicos, controlan hongos fitopatógenos por actividad de la enzima quitinasa, disminuyen el estrés y estimulan el crecimiento de plantas hospederas mediante la producción de fitohormonas y enzimas ACC desaminasa, precipitan metales pesados por la producción de biopelículas (Cadirci & Yilmaz, 2023; Haque et al., 2023; Nagrale et al., 2023; Wang et al., 2023). Esta particularidad mejora el estado fisiológico de las especies vegetales, ya sea directa o indirecta, incrementa la productividad de cultivos agrícolas y minimiza la dependencia de los agroquímicos (Mishra et al., 2020).

Se determinó la presencia del gen chiA en las cepas PM3-8, PM3-14, BM2-12 y CHA0, con el producto de amplificación 225 pb, que codifica el dominio catalítico a la producción de quitinasas bacterianas. Se han reportado cepas de los géneros *Serratia*, *Pseudomonas*, *Acinetobacter* y *Enterobacter* con presencia del gen chiA, como un indicativo para el control de enfermedades en cultivos agrícolas (Cucu et al., 2019; Medina-de la Rosa et al., 2016; Okay & Alshehri, 2020; Verma et al., 2023).

Con el bioformulado BIO-QPGPRs, se pudieron masificar y preservar células bacterianas hasta los 26 días. Sin embargo, la reducción de las UFC día 26 está influenciada por el metabolismo de los microorganismos y la dosis de cada ingrediente; en especial de los azúcares que pueden formar alcoholes, elemento que minimiza la presencia del oxígeno y acelera la muerte celular (Arriel-Elias et al., 2018).

Las fuentes de nutrientes, adherentes y estabilizadores juegan un rol fundamental en la protección y viabilidad de las formulaciones líquidas de bacterias (Lee et al., 2016). Esto indica que el bioformulado tiene componentes activos con la capacidad de preservar células bacterianas por un tiempo determinado. Por tal motivo, es relevante conocer las UFC/mL en los bioformulados, ya que son indicativas de calidad del producto (Lobo et al., 2019).

Los bioformulados en estudio presentaron una disminución del pH del día 1 al 26, con valores inferiores a 5. Las PGPR se desarrollan en medios con melaza a pH 4-9; sin embargo, el pH óptimo para la mayoría de los aislados bacterianos está entre 6,5 y 7 (Mustapha et al., 2022). No obstante, existen reportes que indican que altas concentraciones de azúcares desarrollan una inestabilidad en las características químicas (pH) de las formulaciones líquidas que ocasionan la reducción y muerte bacteriana (Guerra López & Zúñiga Dávila, 2018). Por tal motivo, los componentes utilizados en las formulaciones podrían influir en la disminución celular. En este contexto, las características de tolerancia a las condiciones ácidas del formulado podrían ser una alternativa para usar en suelos con estas mismas condiciones (Ma et al., 2020).

La aplicación a nivel de campo del bioformulado BIO-QPGPRs a manera de consorcio de PGPR, en plantación de *T. cacao* CCN-51, promovió las emisiones foliares durante la época lluviosa, en su aplicación foliar. La aplicación del bioformulado con *P. aeruginosa* aumentó el número de brotes en manzanas (*Malus domestica* L.) en condiciones de campo (Sharma & Sharma, 2022). La aplicación de bioformulados PGPR en *Solanum tuberosum* mostró mayor biomasa y área foliar en comparación con las plantas sin aplicación (Batool et al., 2020). Las PGPR tienen un efecto en el crecimiento foliar de *T. cacao* (Loguercio et al., 2023), el cual se origina porque las rizobacterias estimulan una mayor densidad de cloroplastos, clorofila y nutriente por unidad de área foliar, por liberación de hormonas citoquininas.

El incremento en el número de granos presentado en la interacción edáfica y la época seca está regulado por el proceso de disponibilidad de nutrientes, en el cual las rizobacterias juegan un rol sustancial en la capacidad de solubilizar minerales y que estén disponibles para CCN-51, en comparación con el control sin aplicaciones.

El bioformulado con *P. fluorescens* promovió un mayor número y peso de semillas por planta de *Brassica juncea* en comparación con el control (Mishra et al., 2020). Las PGPR mejoran la solubilización y eficiencia en la absorción de nutrientes que retribuyen en la producción y calidad de semillas (Hakim et al., 2021). Esto demuestra que las aplicaciones edáficas de la bioformulación son eficientes para incrementar el número de semillas en los cultivos.

La forma de aplicación edáfica en la época seca incrementó el rendimiento del cultivo de cacao (1270,6 kg/ha), en comparación con las aplicaciones por inyección y foliar. La aplicación de la formulación de la emulsión de aceite con *P. fluorescens* FP79, productora de AIA y citoquininas, aumentó significativamente el rendimiento del plátano (68,12 t/ha) en comparación con el control (66,49 t/ha) (Peeran et al., 2014). Se reportó que la aplicación de formulaciones de *Pseudomonas* y *Azospirillum* generó un incremento en el rendimiento y la calidad del fruto de tomate (Pérez-Rodriguez et al., 2020). Esta alternativa mejora la eficiencia de los agroquímicos y el rendimiento en el cultivo de cacao.

En cuanto al control fitosanitario de *Phytophthora* spp. y *M. roreri* en mazorcas de cacao, se observó una disminución bajo la aplicación del bioformulado BIOQ-PGPRs tanto a nivel foliar como edáfico. Se han reportado estudios en los que la formulación orgánica basada en PGPR ocasionó un efecto biocontrolador por la acción de PGPR, generando un efecto antagónico frente a hongos patógenos en especies vegetales (Chakravarty, 2023; Meena et al., 2020; Pathma et al., 2021).

Existen pocos reportes sobre el empleo de formulaciones PGPR al control biológico de infecciones ocasionadas por hongos en CCN-51. Sin embargo, la alternativa es viable según Waisen et al. (2023) y Anderson y Kim (2020), quienes utilizaron el producto comercial *P. chlororaphis* AFS009 (Howler™, AgBiome Inc., USA) para la protección en plantas contra los fitopatógenos *Alternaria* sp., *Botrytis* sp., *Colletotrichum* sp., *Fusarium* sp., *Phytophthora* sp., *Pythium* sp., *Rhizoctonia* sp. y *Sclerotinia* sp., por la producción de fenazinas antimicrobianas, insecticidas y nematicidas (Anderson y Kim, 2020; Waisen et al., 2023). La producción de compuestos como el 2,4 diacetilfloroglucinol (DAPG), fenazinas, pioluteorina y cianuro de hidrógeno podrían estar ligada a la acción de biocontrol en enfermedades fúngicas (Balmes et al., 2022; Chávez Arteaga et al., 2020). Además, mediante pruebas bioquímicas y moleculares, se encontró que la mayoría de las PGPR son productoras de quitinasas, lo cual es fundamental para el control de hongos con estructura quinolitica, como *M. roreri*.

Conclusiones

Los bioformulados de rizobacterias presentaron variabilidad en las unidades formadoras de colonias (UFC) y el potencial de hidrógeno (pH) durante el periodo de evaluación, ubicándose el bioformulado BIOQPGPRs con las cepas P. protegens CHA0, M2-12, *E. asburiae* BM3-14, *S. marcescens* M3-8 y *P. veronii* R4 en UFC/mL como el medio con mayor estabilidad con respecto a las variables antes mencionadas, durante los 26 días de evaluación.

En el cultivo de cacao, la aplicación por inyección en la época lluviosa incrementó el número de emisiones foliares (108), mientras que la aplicación edáfica en la misma época aumentó el número de granos (51). En época seca, el rendimiento del peso seco del cacao (1270 kg/ha) mejoró cuando las aplicaciones de los formulados se realizaron de forma edáfica. Además, en la temporada seca, se presentó una disminución total de *Phytophthora* (0 %) por el efecto de las aplicaciones por inyección.

Agradecimientos

Los autores expresan su agradecimiento al señor Hernán Canchignia, por permitir disponer del área de investigación en la etapa de campo y al Magister Antonio Mendoza por su colaboración en los experimentos. Asimismo, agradecen al Fondo Competitivo de Investigación Científica y Tecnológica (FOCICYT) de la Universidad Técnica Estatal de Quevedo por el financiamiento del trabajo de investigación.

Referencias

- Akrofi, A. Y., Terlabie, J. L., Amoako-Attah, I., & Asare, E. K. (2017). Isolation and characterization of bacteria from different cacao progenies and their antagonistic activity against the black pod disease pathogen, *Phytophthora palmivora*. *Journal of Plant Diseases and Protection: Scientific Journal of the German Phytomedical Society*, 124(2), 143–152. https://doi.org/10.1007/s41348-017-0082-z
- Alexander, D. B., & Zuberer, D. A. (1991). Use of chrome azurol S reagents to evaluate siderophore production by rhizosphere bacteria. *Biology and Fertility of Soils*, 12(1), 39–45. https://doi.org/10.1007/bf00369386
- Alsultan, W., Vadamalai, G., Khairulmazmi, A., Saud, H. M., Al-Sadi, A. M., Rashed, O., Jaaffar, A. K. M., & Nasehi, A. (2019). Isolation, identification and characterization of endophytic bacteria antagonistic to Phytophthora palmivora causing black pod of cocoa in Malaysia. *European Journal of Plant Pathology*, 155(4), 1077–1091. https://doi.org/10.1007/s10658-019-01834-8
- Anderson, A. J., & Kim, Y. C. (2020). Insights into plant-beneficial traits of probiotic *Pseudomonas chlororaphis* isolates. *Journal of Medical Microbiology*, 69(3), 361–371. https://doi.org/10.1099/jmm.0.001157
- Anith, K. N., Vaishakhi, A. S., Viswanathan, A., Varkey, S., & Aswini, S. (2017). Population dynamics and efficiency of coconut water based liquid formulation of *Pseudomonas fluorescens* AMB-8. *Journal of Tropical Agriculture*, 54(2), 184–184. http://jtropag.kau.in/index.php/ojs2/article/view/381
- Anzules Toala, V. V. (2019). Sustentabilidad de sistemas de producción de cacao (Theobroma cacao L.) en Santo Domingo de Los Tsáchilas, Ecuador [Tesis de Doctorado, Universidad Nacional Agraria La Molina]. Repositorio Universidad Nacional La Molina. https://repositorio.lamolina.edu.pe/bitstreams/3c4efb87-faf1-4034-9dc0-bb9a15e1e552/download
- Arriel-Elias, M. T., Oliveira, M. I., Silva-Lobo, V. L., Corsi Filippi, M. C., Babana, A. H., Cardoso Conceição, E., & Cortes, M. V. de D. B. (2018). Shelf life enhancement of plant growth promoting rhizobacteria using a simple formulation screening method. *African Journal of Microbiology Research* 12(5), 115–126. https://doi.org/10.5897/AJMR2017.8787
- Babu, A. G., Shea, P. J., Sudhakar, D., Jung, I.-B., & Oh, B.-T. (2015). Potential use of *Pseudomonas koreensis* AGB-1 in association with Miscanthus sinensis to remediate heavy metal(loid)-contaminated mining site soil. *Journal of Environmental Management*, 151, 160–166. https://doi.org/10.1016/j.jenvman.2014.12.045
- Balmes, P., Cheng, J., Hirae, K., & Kaur, H. (2022). The effect of environmental pH on the antifungal activity of *Pseudomonas protegens* CHA0 against *Verticillium dahliae*. *Undergraduate Journal of Experimental Microbiology and Immunology*, 27, 1–6.
- Batool, T., Ali, S., Seleiman, M. F., Naveed, N. H., Ali, A., Ahmed, K., Abid, M., Rizwan, M., Shahid, M. R., Alotaibi, M., Al-Ashkar, I., & Mubushar, M. (2020). Plant growth promoting rhizobacteria alleviates

- drought stress in potato in response to suppressive oxidative stress and antioxidant enzymes activities. *Scientific Reports, 10*(1), Article 16975. https://doi.org/10.1038/s41598-020-73489-z
- Boateng, K. O., Dankyi, E., Amponsah, I. K., Awudzi, G. K., Amponsah, E., & Darko, G. (2023). Knowledge, perception, and pesticide application practices among small-holder cocoa farmers in four Ghanaian cocoa-growing regions. *Toxicology Reports*, 10, 46–55. https://doi.org/10.1016/j.toxrep.2022.12.008
- Boza, E. J., Motamayor, J. C., Amores, F. M., Cedeño-Amador, S., Tondo, C. L., Livingstone, D. S., Schnell, R. J., & Gutiérrez, O. A. (2014). Genetic characterization of the cacao cultivar CCN 51: Its impact and significance on global cacao improvement and production. *American Society for Horticultural Science*, 139(2), 219–229. https://doi.org/10.21273/jashs.139.2.219
- Cadirci, B. H., & Yilmaz, G. (2023). Comparison of in vitro antifungal activity methods using extract of chitinase-producing *Aeromonas* sp. BHC02. *The Protein Journal*, 42(2), 125–134. https://doi.org/10.1007/s10930-023-10098-5
- Chakravarty, G. (2023). Management of bacterial wilt disease of brinjal by P. fluorescens based bioformulation: experimental investigation. *Emerging Issues in Agricultural Sciences*, 2, 130–150. https://doi.org/10.9734/bpi/eias/v2/5978A
- Chandini, R. K., Kumar, R., & Prakash, O. (2019). The impact of chemical fertilizers on our environment and ecosystem. In P. Sharma (Ed.), *Research trends in environmental sciences* (2nd ed., Chapter 5, pp. 71–86). De Randeep Kumar.
- Chandra, D., & Sharma, A. K. (2021). Field evaluation of consortium of bacterial inoculants producing ACC deaminase on growth, nutrients and yield components of rice and wheat. *Journal of Crop Science and Biotechnology*, 24(3), 293–305. https://doi.org/10.1007/s12892-020-00077-y
- Chávez Arteaga, K. T., Guato Molina, J. J., Rodríguez Acosta, J. L., Cedeño Moreira, Á. V., Romero Meza, R. F., & Canchignia Martínez, H. F. (2020). Rizobacterias con potencial antagonista *in vitro* a *Mycosphaerella fijiensis* Morelet. *Ciencia y Tecnología*, 13(2), 9–16. https://doi.org/10.18779/cyt.v13i2.387
- Christensen, W. B. (1946). Urea decomposition as a means of differentiating Proteus and paracolon cultures from each other and from salmonella and Shigella types. *Journal of Bacteriology*, 52(4), 461–466. https://doi.org/10.1128/jb.52.4.461-466.1946
- Cucu, M. A., Gilardi, G., Pugliese, M., Matić, S., Gisi, U., Gullino, M. L., & Garibaldi, A. (2019). Influence of different biological control agents and compost on total and nitrification-driven microbial communities at rhizosphere and soil level in a lettuce *Fusarium oxysporum* f. sp. *lactucae* pathosystem. *Journal of Applied Microbiology*, 126(3), 905–918. https://doi.org/10.1111/jam.14153
- Devi, R., Kaur, T., Kour, D., Yadav, A. N., & Suman, A. (2022). Potential applications of mineral solubilizing rhizospheric and nitrogen fixing endophytic bacteria as microbial consortium for the growth promotion of chilli (*Capsicum annum* L.). *Biologia*, 77(10), 2933–2943. https://doi.org/10.1007/s11756-022-01127-2
- Di Rienzo, J. A., Casanoves, F., Balzarini, M. G., Gonzalez, L., Tablada, M., & Robledo, C. W. (2020). *Infostat* (*Versión 2020*). Centro de Transferencia InfoStat. https://www.infostat.com.ar/index.php? mod=page&id=15
- Dickson, A. G. (1993). The measurement of sea water pH. *Marine Chemistry*, 44(2-4), 131–142. https://doi.org/10.1016/0304-4203(93)90198-w
- García-Cruzatty, L. C., Vera-Pinargote, L., Zambrano-Gavilanes, F., Zamora-Macías, A., & Cedeño-Ortega, J. (2020). Pollen production in *Theobroma cacao* L. genotypes national type and CCN-51 and its

- relationship with climatic factors on the Ecuadorian coast. *Acta Agrobotanica*, 73(2), Article 7323. https://doi.org/10.5586/aa.7323
- Guerra Lopez, M., & Zúñiga Dávila, D. (2018). Producción de *Pseudomonas* sp. LMTK32 en medio modificado para peletizar semillas de maca (*Lepidium meyenii* Walp.). *Revista Peruana de Biología*, 25(2), 161–168. https://doi.org/10.15381/rpb.v25i1.14034
- Gutiérrez, O. A., Campbell, A. S., & Phillips-Mora, W. (2016). Breeding for disease resistance in cacao. In B. A. Bailey, & L. W. Meinhardt (Eds.), *Cacao diseases* (pp. 567–609). Springer International Publishing.
- Hakim, S., Naqqash, T., Nawaz, M. S., Laraib, I., Siddique, M. J., Zia, R., Mirza, M. S., & Imran, A. (2021). Rhizosphere engineering with plant growth-promoting microorganisms for agriculture and ecological sustainability. *Frontiers in Sustainable Food Systems*, 5, Article 617157. https://doi.org/10.3389/fsufs.2021.617157
- Haque, M. M., Khatun, M., Mosharaf, M. K., Rahman, A., Haque, M. A., & Nahar, K. (2023). Biofilm producing probiotic bacteria enhance productivity and bioactive compounds in tomato. *Biocatalysis and Agricultural Biotechnology*, 50, Article 102673. https://doi.org/10.1016/j.bcab.2023.102673
- Hipólito-Romero, E., Carcaño-Montiel, M. G., Ramos-Prado, J. M., Vázquez-Cabañas, E. A., López-Reyes, L., & Ricaño-Rodríguez, J. (2017). Efecto de inoculantes bacterianos edáficos mixtos en el desarrollo temprano de cultivares mejorados de cacao (*Theobroma cacao* L.) en un sistema agroforestal tradicional del norte de Oaxaca, México. *Revista Argentina de Microbiología*, 49(4), 356–365. https://doi.org/10.1016/j.ram.2017.04.003
- Holt, J. G., Krieg, N. R., Sneath, P. H., Staley, J. T., & Williams, S. T. (Eds.) (1994). Bergey's manual of determinative bacteriology (9th ed.). The Williams & Wilkin.
- Hu, X., Chen, J., & Guo, J. (2006). Two phosphate- and potassium-solubilizing bacteria isolated from Tianmu Mountain, Zhejiang, China. *World Journal of Microbiology and Biotechnology*, 22(9), 983–990. https://doi.org/10.1007/s11274-006-9144-2
- Jha, Y., & Subramanian, R. B. (2018). From interaction to gene induction: an eco-friendly mechanism of PGPR-mediated stress management in the plant. In D. Egamberdieva, & P. Ahmad (Eds.), *Plant microbiome: Stress response* (pp. 217–232). Springer Singapore.
- King, E. O., Ward, M. K., & Raney, D. E. (1954). Two simple media for the demonstration of pyocyanin and fluorescin. *The Journal of Laboratory and Clinical Medicine*, 44(2), 301–307.
- Lee, S.-K., Lur, H.-S., Lo, K.-J., Cheng, K.-C., Chuang, C.-C., Tang, S.-J., Yang, Z.-W., & Liu, C.-T. (2016). Evaluation of the effects of different liquid inoculant formulations on the survival and plant-growth-promoting efficiency of *Rhodopseudomonas palustris* strain PS3. *Applied Microbiology and Biotechnology*, 100(18), 7977–7987. https://doi.org/10.1007/s00253-016-7582-9
- Lobo, C. B., Juárez Tomás, M. S., Viruel, E., Ferrero, M. A., & Lucca, M. E. (2019). Development of low-cost formulations of plant growth-promoting bacteria to be used as inoculants in beneficial agricultural technologies. *Microbiological Research*, 219, 12–25. https://doi.org/10.1016/j.micres.2018.10.012
- Loguercio, L. L., Silva, A. C. M., Ribeiro, D. H., de Lima Cruz, J. M. F., Soares, A. C. F., Marbach, P. A. S., Cruz-Magalhães, V., & De Souza, J. T. (2023). Assessing the functional diversity of rhizobacteria from cacao by partitioning root and shoot biomasses. *Applied Microbiology and Biotechnology*, 107(14), 4647–4663. https://doi.org/10.1007/s00253-023-12603-3
- Ma, Y., Wang, Y., Chen, Q., Li, Y., Guo, D., Nie, X., & Peng, X. (2020). Assessment of heavy metal pollution and the effect on bacterial community in acidic and neutral soils. *Ecological Indicators*, 117, Article 106626. https://doi.org/10.1016/j.ecolind.2020.106626

- Medina-de la Rosa, G., López-Reyes, L., Carcaño-Montiel, M. G., López-Olguín, J. F., Hernández-Espinosa, M. Á., & Rivera-Tapia, J. A. (2016). Rhizosphere bacteria of maize with chitinolytic activity and its potential in the control of phytopathogenic fungi. *Archives of Phytopathology and Plant Protection*, 49(11-12), 310–321. https://doi.org/10.1080/03235408.2016.1201345
- Meena, M., Swapnil, P., Divyanshu, K., Kumar, S., Harish, Tripathi, Y. N., Zehra, A., Marwal, A., & Upadhyay, R. S. (2020). PGPR-mediated induction of systemic resistance and physiochemical alterations in plants against the pathogens: current perspectives. *Journal of Basic Microbiology*, 60(10), 828–861. https://doi.org/10.1002/jobm.202000370
- Minitab. (2021). Guía del usuario: Software estadístico (Versión 19). Minitab Inc.
- Mishra, I., Fatima, T., Egamberdieva, D., & Arora, N. K. (2020). Novel bioformulations developed from *Pseudomonas putida* BSP9 and its biosurfactant for growth promotion of *Brassica juncea* (L.). *Plants*, 9(10), Article 1349. https://doi.org/10.3390/plants9101349
- Montes, C., Altimira, F., Canchignia, H., Castro, Á., Sánchez, E., Miccono, M., Tapia, E., Sequeida, Á., Valdés, J., Tapia, P., González, C., & Prieto, H. (2016). A draft genome sequence of *Pseudomonas veronii* R4: a grapevine (*Vitis vinifera* L.) root-associated strain with high biocontrol potential. *Standards in Genomic Sciences*, 11(1), Article 76. https://doi.org/10.1186/s40793-016-0198-y
- Moon, C., Seo, D. J., Song, Y. S., Hong, S. H., Choi, S.-H., & Jung, W. J. (2017). Antifungal activity and patterns of N-acetyl-chitooligosaccharide degradation via chitinase produced from *Serratia marcescens* PRNK-1. *Microbial Pathogenesis*, 113, 218–224. https://doi.org/10.1016/j.micpath.2017.10.039
- Morales-Ruiz, E., Priego-Rivera, R., Figueroa-López, A. M., Cazares-Álvarez, J. E., & Maldonado-Mendoza, I. E. (2021). Biochemical characterization of two chitinases from Bacillus cereus sensu lato B25 with antifungal activity against *Fusarium verticillioides* P03. *FEMS Microbiology Letters*, 368(2), 1–8. https://doi.org/10.1093/femsle/fnaa218
- Mustapha, Z., Zakaria, A. J., Othman, R., Mohd, K. S., & Zawawi, D. D. (2022). Effects of growth medium, pH, temperature and salinity on BRIS soil plant growth promoting rhizobacteria (PGPR) growth. *International Journal of Agriculture & Biology*, 28, 149–155.
- Nagrale, D. T., Chaurasia, A., Kumar, S., Gawande, S. P., Hiremani, N. S., Shankar, R., Gokte-Narkhedkar, N., Renu, & Prasad, Y. G. (2023). PGPR: the treasure of multifarious beneficial microorganisms for nutrient mobilization, pest biocontrol and plant growth promotion in field crops. *World Journal of Microbiology and Biotechnology*, 39(4), Article 100. https://doi.org/10.1007/s11274-023-03536-0
- Okay, S., & Alshehri, W. A. (2020). Overexpression of chitinase A gene from Serratia marcescens in *Bacillus subtilis* and characterization of enhanced chitinolytic activity. *Brazilian Archives of Biology and Technology*, 63, Article e2020200061. https://doi.org/10.1590/1678-4324-2020200061
- Pathma, J., Kennedy, R. K., Bhushan, L. S., Shankar, B. K., & Thakur, K. (2021). Microbial biofertilizers and biopesticides: Nature's assets fostering sustainable agriculture. In R. Prasad, V. Kumar, J. Singh, & C. P. Upadhyaya (Eds.), *Recent developments in microbial technologies* (pp. 39–69). Springer Nature Singapore.
- Peeran, M. F., Nagendran, K., Gandhi, K., Raguchander, T., & Prabakar, K. (2014). Water in oil based PGPR formulation of *Pseudomonas fluorescens* (FP7) showed enhanced resistance against *Colletotrichum musae*. *Crop Protection*, 65, 186–193. https://doi.org/10.1016/j.cropro.2014.07.010
- Peñafiel Jaramillo, M., Barrera Álvarez, A. E., Torres Navarrete, E. D., Canchignia Martínez, H. F., Prieto-Encalada, H., & Morante Carriel, J. (2016). Producción de ácido indol-3-acético por *Pseudomonas veronii* R4 y formación de raíces en hojas de vid "Thompson seedless" *in vitro. Ciencia y Tecnología*, 9(1), 31–36. https://revistas.uteq.edu.ec/index.php/cyt/article/view/158

- Pérez-Rodriguez, M. M., Pontin, M., Lipinski, V., Bottini, R., Piccoli, P., & Cohen, A. C. (2020). *Pseudomonas fluorescens* and *Azospirillum brasilense* increase yield and fruit quality of tomato under field conditions. *Journal of Soil Science and Plant Nutrition*, 20(4), 1614–1624. https://doi.org/10.1007/s42729-020-00233-x
- Pikovskaya, R. (1948). Mobilization of phosphorus in soil in connection with vital activity of some microbial species. Microbiology, 17, 362–370.
- Ramaiah, N., Hill, R. T., Chun, J., Ravel, J., Matte, M. H., Straube, W. L., & Colwell, R. R. (2000). Use of a *chiA* probe for detection of chitinase genes in bacteria from the Chesapeake Bay1. *FEMS Microbiology Ecology*, 34(1), 63–71. https://doi.org/10.1111/j.1574-6941.2000.tb00755.x
- Roman, D. L., Voiculescu, D. I., Filip, M., Ostafe, V., & Isvoran, A. (2021). Effects of triazole fungicides on soil microbiota and on the activities of enzymes found in soil: a review. *Agriculture, 11*(9), Article 893. https://doi.org/10.3390/agriculture11090893
- Ruales, J., Orjuela, H., & Ballesteros, W. (2011). Efecto de la fertilización con diversas fuentes sobre el rendimiento de cacao (*Theobroma cacao* L.). *Revista de Ciencias Agrícolas*, 28(2), 81–94.https://sired.udenar.edu.co/840/
- Saravanan, V. S., Subramoniam, S. R., & Raj, S. A. (2004). Assessing in vitro solubilization potential of different zinc solubilizing bacterial (zsb) isolates. *Brazilian journal of microbiology*, 35(1–2), 121–125. https://doi.org/10.1590/s1517-83822004000100020
- Sarmiento-López, L. G., López-Meyer, M., Maldonado-Mendoza, I. E., Quiroz-Figueroa, F. R., Sepúlveda-Jiménez, G., & Rodríguez-Monroy, M. (2022). Production of indole-3-acetic acid by *Bacillus circulans* E9 in a low-cost medium in a bioreactor. *Journal of bioscience and bioengineering, 134*(1), 21–28. https://doi.org/10.1016/j.jbiosc.2022.03.007
- Sharma, R., & Sharma, S. (2022). Development of native *Pseudomonas aeruginosa* bioformulations with plant growth promoting potential for apple crop in Himachal Pradesh. *Journal of Plant Nutrition*, 45(7), 1041–1052. https://doi.org/10.1080/01904167.2021.2003399
- Sharpe, A. N., & Kilsby, D. C. (1971). A rapid, inexpensive bacterial count technique using agar droplets. *The Journal of Applied Bacteriology*, 34(2), 435–440. https://doi.org/10.1111/j.1365-2672.1971.tb02303.x
- Sriwati, R., Chamzurn, T., Soesanto, L., & Munazhirah, M. (2019). Field application of *Trichoderma* suspension to control cacao pod rot (*Phytophthora palmivora*). *AGRIVITA Journal of Agricultural Science*, 41(1), 175–182. https://doi.org/10.17503/agrivita.v41i1.2146
- Thomas, L., Gupta, A., Gopal, M., George, P., & Thomas, G. V. (2011). Efficacy of rhizosphere *Bacillus* spp. for growth promotion in *Theobroma cacao* L. seedlings. *Journal of Plantation Crops*, 39(1), 19–25.
- Tirado-Gallego, P. A., Lopera-Álvarez, A., & Ríos-Osorio, L. A. (2016). Estrategias de control de *Moniliophthora roreri* y *Moniliophthora perniciosa* en *Theobroma cacao* L.: revisión sistemática. *Corpoica ciencia y tecnología agropecuaria, 17*(3), 417–430. https://doi.org/10.21930/rcta.vol17_num3_art:517
- Tyśkiewicz, R., Nowak, A., Ozimek, E., & Jaroszuk-Ściseł, J. (2022). Trichoderma: the current status of its application in agriculture for the biocontrol of fungal phytopathogens and stimulation of plant growth. *International Journal of Molecular Sciences*, 23(4), Article 2329. https://doi.org/10.3390/ijms23042329
- Verma, A., Verma, S., Singh, M., Mudila, H., & Saini, J. K. (2023). Ecology and mechanisms of plant growth promoting rhizobacteria. *Sustainable Agriculture Reviews*, 60, 69–93.
- Villamizar-Gallardo, R., Osma, J., & Ortíz-Rodriguez, O. (2019). Regional evaluation of fungal pathogen incidence in Colombian cocoa crops. *Agriculture*, 9(3), Article 44. https://doi.org/10.3390/agriculture9030044

- Waisen, P., Cheng, Z., & Criley, R. (2023). Effects of *Pseudomonas chlororaphis* strain AFS009 and *Beauveria bassiana* strain GHA against plumeria rust in Hawaii. *Plant Protection Science*, 59(2), 202–207. https://doi.org/10.17221/86/2022-PPS
- Wang, D., Poinsot, V., Li, W., Lu, Y., Liu, C., Li, Y., ... & Gu, W. (2023). Genomic insights and functional analysis reveal plant growth promotion traits of *Paenibacillus mucilaginosus* G78. *Genes*, 14(2), Article 392. https://doi.org/10.3390/genes14020392
- Yaseen, M., Ahmad, A., Naveed, M., Ali, M. A., Shah, S. S. H., Hasnain, M., Ali, H. M., Siddiqui, M. H., Salem, M. Z. M., & Mustafa, A. (2021). Subsurface-applied coated nitrogen fertilizer enhanced wheat production by improving nutrientuse efficiency with less ammonia volatilization. *Agronomy*, 11(12), Article 2396. https://doi.org/10.3390/agronomy11122396

Notas

Este trabajo formó parte de una investigación de la carrera de Ingeniería Agronómica de la Universidad Técnica Estatal de Quevedo (UTEQ) y de una línea de investigación del Laboratorio de Microbiología Molecular del Departamento de Biotecnología de dicha institución.

Enlace alternativo

https://revistas.ucr.ac.cr/index.php/agromeso/index (html)

Disponible en:

https://www.redalyc.org/articulo.oa?id=43776424044

Cómo citar el artículo

Número completo

Más información del artículo

Página de la revista en redalyc.org

Sistema de Información Científica Redalyc Red de revistas científicas de Acceso Abierto diamante Infraestructura abierta no comercial propiedad de la academia Hayron Fabricio Canchignia Martínez,
Dayanara Nicolle Tapia Quintana,
Javier Andrés Auhing Arcos, Cristhian John Macías Holguín,
Ángel Virgilio Cedeño Moreira, Luis Fernando Vera Benites
Bioformulados para mantener la viabilidad de rizobacterias y su
aplicación en *Theobroma cacao* L. CCN-51*
Bioformulated to maintain the viability of rhizobacteria and
their application in *Theobroma cacao* L. CCN-51

Agronomía Mesoamericana vol. 35, 56868, 2024 Universidad de Costa Rica, Costa Rica pccmca@ucr.ac.cr

ISSN-E: 2215-3608

DOI: https://doi.org/10.15517/am.2024.56868

CC BY-NC-ND 4.0 LEGAL CODE

Licencia Creative Commons Atribución-NoComercial-SinDerivar 4.0 Internacional.