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INTRODUCTION
Diabetes mellitus (DM) is characterized by the onset and 
progression of a constellation of multi-organ complications 
resulting from multifactorial interactions—including biochemical 
derangements and epigenetic factors—which ultimately translates 
to irreversible tissue changes as a response to glucooxidative 
processes.[1] Of all diabetic complications, the development 
of diabetic foot ulcers (DFUs) is among the most common and 
debilitating.[2,3] Classic concepts defi ne DFU as deep tissue 
damage of the lower limb, frequently preconditioned by, and 
associated with, neuropathy or peripheral arterial disease.[4] 
It is recognized as a major and growing public health problem, 
a scientifi c challenge and a socioeconomic burden;[5] and 
remains the main causal factor of lower extremity amputations, 
disability and early mortality.[6] Armstrong introduced the ‘cancer 
analogy’ concept to highlight the fact that fi ve-year mortality rates 
associated with foot ulceration and amputation surpass those 
registered for common cancers.[7–10]

Diabetic glucooxidative stress impairs the healing response 
and disrupts the fl ow of overlapping healing phases, ultimately 
promoting the onset of a ‘wound chronicity phenotype’.[11–13] 
Aside from healing impairment, a common occurrence in diabetic 
patients is ulcer recurrence after primary closure.[6] These non-
healing wounds are a major predisposing factor or entry point for 
wound infection[11] and accordingly, more than 50% of DFUs 
become infected.[14] Infection acts as a primary deterrent to 
physiological healing responses[15] and a risk factor for lower-
limb amputation,[16–18] especially when deep tissues and bones 
are compromised.[19,20] Although diabetics are particularly 
vulnerable to bacterial infections,[21–23] DFUs have a complex 
and highly organized polymicrobial community that frequently 
contributes to undesirable outcomes in DFU-aff ected individuals.
[22] This microbiota–biofi lm comprises symbiotic bacteria, yeast 
and fungal loads and can silently spread, amplify the underlying 
healing defi cit, increase antibiotic resistance, disrupt host 
metabolism and further dampen immune response.[24–27]

Globally speaking, DM and infection increasingly go together.
[28,29] Diabetic individuals are prone to peripheral-tissue 
infections; given dysregulations in primary surveillance, 
recognition, activation and neutralization mechanisms within 
the innate immunity repertoire.[21,30,31] Furthermore, diabetic 
individuals exhibit antigen presentation failure, contraction 
of T-cell–mediated immune function[32] and a particular 
predisposition to bacterial adhesion to epithelial linings.[33,34]
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ABSTRACT
BACKGROUND Diabetic foot ulcers are a common diabetic compli-
cation leading to alarming fi gures of amputation, disability, and early 
mortality. The diabetic glucooxidative environment impairs the healing 
response, promoting the onset of a ‘wound chronicity phenotype’. In 
50% of ulcers, these non-healing wounds act as an open door for 
developing infections, a process facilitated by diabetic patients’ dysim-
munity. Infection can elicit biofi lm formation that worsens wound prog-
nosis. How this microorganism community is able to take advantage 
of underlying diabetic conditions and thrive both within the wound and 
the diabetic host is an expanding research fi eld. 

OBJECTIVES 1) Off er an overview of the major cellular and molecu-
lar derangements of the diabetic healing process versus physiological 
cascades in a non-diabetic host. 2) Describe the main immunopatho-
logical aspects of diabetics’ immune response and explore how these 
contribute to wound infection susceptibility. 3) Conceptualize infection 
and biofi lim in diabetic foot ulcers and analyze their dynamic interac-
tions with wound bed cells and matrices, and their systemic eff ects at 
the organism level. 4) Off er an integrative conceptual framework of 
wound–dysimmunity–infection–organism damage. 

EVIDENCE AQUISITION We retrieved 683 articles indexed in Med-
line/PubMed, SciELO, Bioline International and Google Scholar. 280 
articles were selected for discussion under four major subheadings: 1) 
normal healing processes, 2) impaired healing processes in the dia-

betic population, 3) diabetic dysimmunity and 4) diabetic foot infection 
and its interaction with the host. 

DEVELOPMENT The diabetic healing response is heterogeneous, 
torpid and asynchronous, leading to wound chronicity. The accumu-
lation of senescent cells and a protracted infl ammatory profi le with 
a pro-catabolic balance hinder the proliferative response and delay 
re-epithelialization. Diabetes reduces the immune system’s abilities 
to orchestrate an appropriate antimicrobial response and off ers ideal 
conditions for microbiota establishment and biofi lm formation. Bio-
fi lm–microbial entrenchment hinders antimicrobial therapy eff ective-
ness, amplifi es the host's pre-existing immunodepression, arrests the 
wound’s proliferative phase, increases localized catabolism, prolongs 
pathogenic infl ammation and perpetuates wound chronicity. In such 
circumstances the infected wound may act as a proinfl ammatory 
and pro-oxidant organ superimposed onto the host, which eventually 
intensifi es peripheral insulin resistance and disrupts homeostasis. 

CONCLUSIONS The number of lower-limb amputations remains high 
worldwide despite continued research eff orts on diabetic foot ulcers. 
Identifying and manipulating the molecular drivers underlying diabetic 
wound healing failure, and dysimmunity-driven susceptibility to infec-
tion will off er more eff ective therapeutic tools for the diabetic population.

KEYWORDS Diabetic foot, amputation, infections, biofi lms, micro-
biota

IMPORTANCE This article contrasts wound healing pro-
cesses in healthy individuals and diabetics, establishing 
and conceptualizing the reciprocal links between diabetic 
dysimmunity, susceptibility to infection, diabetic foot ulcer 
chronicity and insulin resistance amplifi cation. 
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DFU is a unique battlefi eld where host–microorganism interac-
tions shape ulcer progression. Consequently, numerous studies 
have addressed the role of biofi lm on DFU and its impact within 
the ulcer bed and the host itself.[35–38] We reviewed this criti-
cal issue, given its etiopathogenic relevance to basic aspects of 
DFU pathology: 1) Why are diabetic persons more susceptible 
to wound infections? 2) How is DFU biofi lm organized? 3) How 
does a microorganism’s pathogenic potential and concentration 
impact DFU outcomes? and 4) How does biofi lm impair the heal-
ing response? 

EVIDENCE ACQUISITION 
We retrieved articles indexed in Medline/PubMed, SciELO, Bioline 
International, and Google Scholar using the following keywords/
phrases: DFU, limb AND amputation, DFU AND infection, DFU 
AND biofi lm, immune system AND diabetic patient, microorgan-
ism AND immune system. A total of 683 articles were retrieved and 
exported a reference manager. Duplicate articles were removed 
(Figure 1). Our fi nal selection included 280 research and review 
articles. Titles, objectives and abstracts were carefully screened 
and reviewed. The search was limited to the English language 
without date restrictions. All compiled information was structured 
under four principal headings: 1) a general overview of the normal 
healing response in a healthy organism; 2) an overview of the 
cellular and molecular foundations of the impaired healing pro-
cess in the diabetic population; 3) diabetic dysimmunity; and 4) 
conceptual defi nition and pathogenic implications of diabetic foot 
infection (DFI) in its interaction with the host. 

DEVELOPMENT
Brief overview of normal healing response Wound healing is a 
dynamic and complex process that ultimately results in restoration 
of anatomic integrity with analogous function.[39–41] Of note, how-
ever, skin wound healing represents an evolutionary advantage for 
organism survival, given its role in restoring barrier function, as well 
as preventing internal tissue damage and infection dissemination.
[42] This evolutionary advantage involves a complex and intricate, 
but fi nely regulated, crosstalk between cells and soluble media-
tors.[43] A normal healing process is made up by four overlapping 
phases: 1) coagulative, 2) infl ammatory, 3) proliferative, and 4) 
remodeling (Figure 2). Each phase takes place during a temporary 
window involving a certain cell population, a specifi c set of cyto-
kines and a particular chemical composition within the extracellular 
matrix (ECM).[44,45] The coagulation process, aside from ensur-
ing hemostasis, has two other relevant functions: 1) the fi brin clot 
and fi brinogen byproducts act as a scaff old and chemoattractant 
for the recruitment and anchorage of infl ammatory cells, fi broblasts 
and other mesenchymal-derived cells that will participate in tissue 
granulation formation; and 2) platelet degranulation promotes pri-
mary growth factors. Platelets represent the fi rst group of resident 
cells with fi broangiogenic soluble messengers, including platelet-
derived growth factor (PDGF), transforming growth factor beta 
(TGF-β), epidermal growth factor (EGF) and insulin-like growth 
factor-1 (IGF-1).[46,47] 

Of particular relevance for healing trajectory and for the ultimate 
scar phenotype are the infi ltrating infl ammatory cells and their 
biochemical signalers, as they exist in interaction with granulation 
tissue-resident cells as fi broblasts, myofi broblasts and endothelial 
cells.[44] Since cutaneous injury is linked to the release of 
‘danger and pathogen signals’, innate immune receptors become 
activated and eventually trigger an infl ammatory phase.[48] 

The infl ux of polymorphonuclear neutrophils (PMNs) is ensured 
mainly by a complex cascade of vasoactive signalers and 
chemoattractants, so that these cells invade and are anchored 
within the wound matrix, initiating the wound’s acute phase 
that may last up to four days.[49] PMNs pattern recognition 
receptors are activated by local damage-associated molecular 
patterns (DAMP) released during cell injury and necrosis, and by 
bacterial pathogens’ associated molecular pattern (PAMP). Upon 
activation, these cells release pro-infl ammatory cytokines such as 
tumor necrosis factor alpha (TNF-α), interleukin 1 beta (IL-1β) and 
IL-6, which amplify the infl ammatory response and pave the way 
for macrophage infi ltration and activation.[50] Activated PMNs 
‘clean’ the wound bed of tissue debris via an armamentarium of 
degradative and antimicrobial proteases (cathepsins, defensins, 
lactoferrin and lysosomes) stored in cytoplasmic granules. This 
sanitizing process is largely dependent on the formation of 
neutrophil extracellular traps (NETs), web-like structures that 
capture and eliminate exogenous bacteria, fungi and viruses.[51] 
This process of NET release is termed NETosis and has broad 
implications for diff erent forms of infl ammation.[52] Recent studies 
show that circulating PMNs from diabetic subjects are biased 
toward excessive release of NETs,[53] and that uncontrolled 
NETosis impairs the healing process in diabetic mice and 
humans.[54] These cells also generate reactive oxygen species 
(ROS) that help eliminate invading pathogens.[55] Altogether, the 
role of PMNs in wound healing is undoubtedly important, but an 
extension of their local residence time and their functional profi le 
may lead to wound chronicity (Figure 2).

Figure 1. Literature review process
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A second generation of infl ammatory infi ltrating cells comes from 
local resident macrophages that are diff erentiated from infi ltrating 
monocytes, which are activated via DAMP, PAMP and a cytokine 
surge.[56] Anti-macrophage depletion studies have revealed the 
physiological signifi cance of these cells for the late stage of the 
infl ammatory phase and for initiation of the proliferative one.[41,57,58] 
This late stage of the infl ammatory phase is mostly characterized by 
the M1 subset of macrophages, which themselves are characterized 
by phagocytic and pro-infl ammatory activities. Later, macrophages 
polarize to an M2 subpopulation with anti-infl ammatory activity by 
expressing interleukin-receptor antagonists and a collection of 
fi broangiogenic growth factors that enhance fi broblast proliferation, 
extracellular matrix synthesis, angiogenesis,[59,60] ultimately 
reducing infl ammation.[47] Macrophage subclass shift from M1 to M2 
subsets is a meaningful event, given its role in turning off  infl ammation, 
clearing the wound bed of apoptotic PMNs (eff erocytosis), ensuring 
proliferative phase progression, and preventing autoreactivity to 
released self-antigens.[15,57,61] Conclusively, infl ammation is a 
time-restricted, fi nely controlled sequential event, whose expansion 
is paradigmatically associated with a torpid healing phenotype, 
or to wound chronifi cation and senescence of granulation tissue 
productive cells.[16,17,62]

Granulation tissue is subsequently organized and populated by 
a broad spectrum of extracellular matrices, secreting cells that 
are in active and dynamic engagement with the substrate, and 
progressively modulating the structure and composition of the 
wound’s extracellular matrix.[63] Although granulation tissue is 
a temporary organ, it is important as a ‘welding material’ fi lling 
wound gaps, preventing environmental threats, and providing 
support for cell adhesion, migration, growth and diff erentiation 
during wound repair.[63,64] 

The proliferative phase also embraces three important process-
es: angiogenesis, wound contraction and re-epithelialization. 

Angiogenesis is an exciting bio-
logical process actively regulated by 
pro-angiogenic growth factors, che-
mokines, integrin receptors, bone 
marrow-derived progenitor cells, and 
transcriptional and post-transcriptional 
epigenetic regulators; it restores blood 
infl ow and outfl ow, and therefore 
oxygen delivery and CO2 extraction. 
Its role in a normal healing trajectory 
is essential.[65] In response to pro-
angiogenic signals like vascular endo-
thelial growth factor (VEGF), fi broblast 
growth factor (FGF), PDGF-B, TGF-β, 
and angiopoietins, endothelial cells ini-
tiate angiogenesis by sprouting, prolif-
eration and migration.[66] At the same 
time, locally secreted antiangiogenic 
factors are able to counterbalance 
and limit excessive angiogenesis.[67] 
The lack of an appropriate angiogenic 
response is a representative hall-
mark of DFUs, and identifi cation of 
molecular forces underlying diabetic 
microangiopathy has been extensively 
examined.[68,69]

Wound contraction and epithelial resurfacing are two integrated 
mechanisms that ensure complete wound closure in most 
mammalian species. Contraction, a physiological and necessary 
event in wound closure, appears to be mediated by myofi broblasts, 
specialized cells responsible for force generation, that are 
diff erentiated from migrating fi broblasts during granulation tissue 
formation.[70] Although current theories posit that alpha smooth 
muscle actin-expressing myofi broblasts contribute to wound 
contraction,[71] others attest that contraction progresses through 
fi broblast-derived traction forces via thick collagen fi ber secretion.
[72] Irrespective of the contraction-responsible cell and the 
molecular drivers behind them, limited contraction is associated 
with torpid healing in diabetic wounds.[12]

Instrumental for complete and successful wound closure is 
re-epithelialization. This event demands integration of leading-
edge keratinocyte proliferation, migration and diff erentiation in 
order to re-establish epidermal integrity.[73] This is perhaps one 
of the most complex and unexplored processes in wound healing.
[74–76] Simplistically described, keratinocytes at the wound 
edge and epithelial cells from hair follicles in the vicinity migrate 
and proliferate. Signals that promote keratinocyte proliferation 
include heparin-binding EGF-like growth factor (HB-EGF), EGF, 
transforming growth factor alpha (TGF-α), and FGF secreted 
from platelets, macrophages and dermal fi broblasts.[77] For 
migration to progress, there is a reduction of desmosomes and 
hemidesmosome connection, cytoskeleton reorganization, 
morphological reprograming and changes in the pattern of keratin 
expression.[78] In general, there is a loss of physical tension at 
points of cell attachment to the basal lamina. 

Re-epithelialization progresses when the basement membrane 
is reconstituted by upper dermal fi broblasts and keratinocytes in 
a cooperative eff ort.[79] In this context, the interaction between 
integrin receptors and the neomatrix determines the speed of 

Figure 2. Normal vs. diabetic healing
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migrating keratinocytes, a process that in turn is regulated by 
growth factor gradients.[80] Also important are plasmin and other 
plasmin-related degradative enzymes that degrade fi brin and 
other matrix glycoproteins, facilitating keratinocyte migration. 
Other collagenases and gelatinases are expressed by migrating 
keratinocytes.[77] Once keratinocytes attach to the basement 
membrane, they initiate a process of upward migration and 
diff erentiation to create a mature stratifi ed, squamous epithelium 
that covers the wound.[81] Failed or delayed re-epithelialization 
is an obvious sign of wound stagnancy.[82] Compelling evidence 
documents the deleterious role of hyperglycemia and other 
downstream biochemical signalers on fi broblast and keratinocyte 
proliferation and migration.[83–85]

The ultimate phase—remodeling—begins approximately 14–21 
days post-injury and may continue for years.[86–88] Its main 
function is the formation of normal epithelia and maturation 
of scar tissue;[89] excessive matrix is eliminated by a set of 
metalloproteinases, while new type-1 collagen fi bers are produced 
and horizontally aligned in a more organized and esthetic manner. 
Infl ammatory infi ltration has ceased and diff erent cell populations 
gradually enter into apoptosis.[90] The initial granulation tissue 
progressively collapses and is replaced by a new wound chemical 
milieu, so that the scar ECM architecture increasingly approaches 
original tissue morphology. The complexity involved in wound 
tissue remodeling has led us to hypothesize the existence of 
structural, positional and organizational memory in late wound 
cells, enforced by topographic ‘home address signals’. At this 
point, wound tensile strength is restored, and antiangiogenic 
mediators are locally released to turn off  angiogenic sprouting 
and ensure excessive vessel regression. In 
parallel, other anatomical structures including 
the epidermis, nerves and myofi bers are 
synchronously remodeled forming a functional 
unit.[78,86,91]  

The diabetic foot ulcer: overview of the 
molecular bases of the torpid healing pro-
cess Although it is generally accepted that 
time-to-heal determines a wound’s clinical 
classifi cation as acute or chronic, the con-
ceptual defi nition of wound chronicity has 
remained controversial.[92] Nevertheless, it 
is generally accepted that a wound is consid-
ered chronic when it fails to proceed in “an 
orderly and timely reparative process that 
results in sustained restoration of anatomic 
and functional integrity”.[92] DFU is arche-
typical of chronic wounds.[93–95] It is gen-
erally accepted that a primary hallmark of 
diabetic wounds is their persistent arrest in an 
unproductive infl ammatory phase, associated 
with impaired formation and consolidation of 
mature granulation tissue.[96,97] 

The arrest in this infl ammatory phase is not 
associated with successful control of local 
infection, and thus it has been proposed that 
diabetic individuals are more vulnerable to 
wound infection[98,99] due to the existence 
of a primary defi cit in innate immune response 
mechanisms.[100,101] 

Hyperglycemia, again, seems to act as the proximal trigger for 
an exaggerated infl ammatory reaction (Figure 3). Hyperglycemia 
and its distal operators—advanced glycation end products (AGE), 
TNF-α and other pro-infl ammatory signalers—exert profound 
cytotoxic eff ects in fundamental ‘building-block’ cells of describes 
tissue.[11,102] Compelling evidence describes an infl ammation-
prone, pro-oxidative and pro-degradative environment in the core 
of diabetic wounds.[103–106]

Uncontrolled pro-infl ammatory cytokine secretion imposes a 
pro-catabolic balance in the wound bed that both increases 
peripheral insulin resistance and reduces injured tissue’s 
anabolic response.[107,108] TNF-α downregulates fi broblast 
collagen synthesis in diabetic skin and upregulates the synthesis 
of metalloproteinases by amplifying the wound’s proteolytic and 
pro-degradative profi le.[109,110] Although some studies have 
ruled out hyper- or hypoglycemia’s role in signifi cantly disrupting 
PMNs cells’ ability to enter into apoptosis,[111] others have 
pointed to poorly controlled glycemia levels as a major factor 
in the prolonged residence of apoptosis-resistant PMNs with 
active secretory functions,[111] which ultimately translates into 
an elevated proteolytic/degradative balance.[112,113] This pro-
degradative environment reduces local availability of growth 
factors and their receptors, hindering the ability of fi broblasts 
and endothelial cells to participate fully in the healing process.
[88,114] PMN are also considered a source of ROS and nitric 
oxide species within the wound bed, with remarkable cytotoxic 
and pro-degradative potential.[115,116] The increased rate of 
ROS is an indirect consequence of poorly-controlled glucose 
levels given that existing evidence provides a connection between 

Figure 3. Simplifi ed hyperglycemia-associated healing impairment 

Diabetes Mellitus 

Mitochondrial 
damage AGE/RAGE Infl ammation

Oxidative stress 

Cytotoxicity 

Apoptosis

Cytotoxicity 

ERS

Autophagy  Apoptosis

Apoptosis
ECM degradation

Monocytes/macrophages and 
neutrophils dysfunction

Wound bed expansion

SENESCENT PHENOTYPE

Failures in wound cells
impair healing processes

Hyperglycemia 

High glucose burden and fl uctuating glucose spikes are toxic under acute and chronic conditions to a large 
constellation of cell populations. 
AGE: advanced glycation end products    ECM: extracellular matrix     ERS: endoplasmic reticulum stress
PMNs: polymorphonuclear neutrophils     RAGE: AGE receptor

Peer Reviewed



MEDICC Review, January 2022, Vol 24, No 148

Review Article

Peer Reviewed

the high-glucose–induced nicotinamide adenine dinucleotide 
phosphate (NADPH) oxidase pathway and exaggerated 
NETosis.[117] Hyperglycemia also induces myeloid progenitor 
proliferation and expansion, as well as increased neutrophil 
production of S100A8/S100A9, which ultimately binds to AGE 
receptors (RAGE). This interaction translates to enhanced ROS 
production and myelopoiesis[118] that reinforces the triad of 
hyperglycemia, neutrophil infi ltration and local ROS production.  

Aside from PMN, M1 subclass macrophages predominate in 
diabetic wounds.[119] Although the molecular drivers behind this 
process are not yet fully understood, it has been demonstrated 
that human monocytes and macrophages undergo M1-like 
infl ammatory polarization when exposed to high levels of glucose 
in both culture conditions and in hyperglycemic subjects.[120] 
This hyperpolarization to the pro-infl ammatory arm represents 
a fl aw in the transition to the M2 subclass and, therefore, to an 
anti-infl ammatory and pro-healing profi le. Additionally, diabetic 
wound macrophages exhibit defective eff erocytosis, a mechanism 
for clearing apoptotic bodies in the wound bed.[121] This failure 
increases the local surge of proinfl ammatory cytokines, which 
perpetuates infl ammation and increases the risk of it becoming 
chronic.[121] Another study has documented that hyperglycemia 
itself, without additional metabolic factors, induces a mixed 
profi le of M1/M2 cytokines that nurture diabetes-associated 
infl ammation and atherosclerosis.[122] The diabetic systemic 
low-grade infl ammatory phenotype is able to introduce monocyte 
chromatin modifi cation that, in turn, intensifi es the persistent pro-
infl ammatory state.[123]

The proliferative phase in diabetic foot ulcer healing is frequently 
slow, torpid and asynchronous.[124] This may entail irregular and 
abnormal fi broblast recruitment, scarce or abnormal extracellular 
matrix protein secretion, limited cell-anchoring scaff old synthesis, 
poor or abnormal angiogenesis—including pathologic vascular 
remodeling, slow contraction of wound contours, torpid re-epithe-
lialization and the inability to remain in remission after epithelial 
resurfacing.[11,125,126] From the molecular angle, compelling 
evidence has identifi ed high glucose burdens and accompanying 
fl uctuating glycemia spikes[127] as the proximal trigger of many 
cellular impairments that generically transform into fi broblasts, 
endothelial cells and keratinocytes in mitogenic and motogenic 
arrest; premature apoptosis and the onset of a senescent phe-
notype.[128–130] Multiple de novo circuitries, metabolic shunts, 
infl ammatory-prone reactants and abnormal pathways in diabet-
ics impact the wound-healing response and perpetuate the ulcer.
[131,132]

Glycoxidation derivatives are intrinsically cytotoxic to productive 
cells in granulation tissue, and further amplify pro-infl ammatory and 
pro-oxidative circuitry by binding to RAGE.[133,134] Glycoxidative 
products accumulate in non-labile dermal collagen[132,134] leading 
to cutaneous cell toxicity and premature senescence, impairing 
fi broblast and endothelial cell physiology,[99] and consequently 
delaying granulation tissue formation and maturation.[11,133] 
Conclusively, within the wound, the triad of TNF-α, ROS and AGE 
can initiate apoptosis of fi broblasts and vascular cells, thereby 
prolonging infl ammation, reducing growth factor availability and 
opening the gate for the onset of the so-called ‘wound senescent 
cell society’.[130,135–137] It is not surprising therefore, that repair-
committed cells in diabetics move through proliferative arrest, 
senescence, and apoptosis (Figure 3).[136]

Re-epithelialization failure in diabetics and the tendency toward 
local recidivism are signifi cant challenges for clinicians, wound 
care providers, and basic scientists. It has been suggested 
that an incomplete program of keratinocyte activation and 
diff erentiation[138] is fundamental for the presence of mitotically 
active—but not migrating—epithelial cells along the wound’s 
leading edge.[73,76] High glucose has shown to exhibit a toxic 
eff ect on keratinocytes, reducing proliferation, replicative life 
span,[139] and migratory responses.[140] The fact is that, as 
long as the wound is not resurfaced, the threat of infection and 
amputation remains. 

Diabetes and infection susceptibility The relationship between 
DM type 2 (DMT2) and immunity is an expanding research fi eld 
in which new puzzle pieces are continuously discovered, often 
increasing in complexity and stimulating controversy within the 
fi eld. This research incentive is fueled by the understanding that 
diabetes increases the risk of certain infections[141] and infection-
related mortality.[142] 

DMT2 is currently considered an immunometabolic disease, 
given the role of T-lymphocyte activation in infl ammation and in 
the onset of insulin resistance.[143] The robust pathogenic loops 
linking insulin secretion, peripheral insulin resistance, immuno-
infl ammation and DMT2 are beyond the scope of this analysis, 
and have already been thoroughly reviewed.[144–146] The 
links are well defi ned: infl ammation leads to peripheral insulin 
resistance and, in turn, insulin resistance leads to infl ammation.
[147] However, it is important to note that infl ammation does 
not necessarily represent immunocompetence. On the contrary, 
some experimental data suggest that diabetes-associated 
hyperinfl ammation amplifi es damage from bacterial infections 
and leads to increased susceptibility to Gram-negative bacteria.
[148] Since the actual cause of death of the mice in one study 
was hyperinfl ammation, the authors suggest that this rather 
counterintuitive fi nding may respond to diabetes-associated RAGE 
overexpression, which preconditions a chronic infl ammatory 
scenario that ultimately may be lethal when presented with the 
additional challenge of a bacterial infection.[138] Cumulative 
evidence documents a signifi cant correlation between infection 
and rate of glycemic control.[21,149,150] It follows that heightened 
susceptibility to infections would be associated with insuffi  cient 
glycemic control.[151,152] This observation is particularly relevant 
in the scope of our review to cellulitis, DFU, the devastating 
conditions of necrotizing fasciitis, and Fournier’s gangrene.[22]

Hyperglycemia and insulin defi ciency are considered the two 
major etiopathogenic pillars of diabetes-associated immuno-
defi ciency (Figure 4) and susceptibility to infections.[153–155] 
Hyperglycemia as a primary trigger of pro-infl ammatory cytokine 
spillover[145] results in local and systemic infl ammation, and 
peripheral insulin resistance.[156,157] Increased levels of various 
infl ammatory markers and mediators—including white blood cell 
count, C-reactive protein, pro-infl ammatory cytokines and plas-
minogen activator inhibitor-1—are elevated in insulin resistant 
subjects and DMT2-aff ected patients.[158,159] Although it may 
appear contradictory, evidence suggests that peripheral blood 
mononuclear cells (PBMC) from DMT1 and DMT2 patients secrete 
lower constitutive-[160] and lipopolysaccharide (LPS)-stimulat-
ed[161] levels of TNF-α, IL-1 (α and β) and IL-6, as compared with 
matched controls. The same cytokine secretion impairment was 
confi rmed for in vitro models where PBMCs from healthy donors 
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were exposed to high glucose levels[162] or dextrose octreotide.
[163] This study demonstrates that glucose exposure dampened 
IL-2, IL-6 and IL-10 levels in a concentration-dependent manner 
while conversely inducing the expression of TGF-β1 which may 
explain immune failure.[162]

Increased glycation leads to a reduction of IL-10 secretion by 
myeloid cells.[32] A recent study demonstrated that PBMC 
steady-state expression of IL-1β appeared signifi cantly increased 
while IL-6 expression reduced 3.45-fold in a cohort of DMT2 
patients, compared with healthy control subjects.[164] This is 
a counterintuitive observation considering the canonic links 
between IL-6, glucose metabolism, DMT2 and their complications.
[165–168]

Aside from these fi ndings, a wealth of classic studies associated 
elevated endovascular levels of pro-infl ammatory cytokines with 
insulin resistance and DMT2.[169,170] Subclinical blood elevation of 
some of these markers anticipates the onset of DMT2,[171,172] and 
the progression of multi-organ complications.[173,174] More recent 
studies[175] have identifi ed and expanded epigenetic explanations 
as to why hyperglycemia induces long-lasting infl ammatory 
upheaval, even days after glucose normalization. The fact is that 
hyperglycemia-associated chronic infl ammation is epigenetically 
sculpted and is one of the biochemical insignias of metabolic 
memory.[176] Therefore, unraveling the roots of this plethora of 
conceptual controversies requires additional studies.[177–179]

Incorporation of AGEs to non-diabetic–derived cells has 
conclusively shown elevations in cytokine secretion,[100] 

which led to the hypothesis that AGE is somehow involved in 
diabetics’ increased basal cytokine secretion.[100] Glycation 
also reduces expression of class-I major histocompatibility 
complex on the surface of myeloid cells, which accounts for 
impaired cellular immunity.[32] The presence of high glucose 
concentrations leads to elevated constitutive (steady state) 
cytokine production in resting cells, which becomes insuffi  cient 
upon PBMC stimulation. Cell stimulation provoked by cytokine 
insuffi  ciency is thought to be a critical factor in impaired immunity 
and vulnerability to invading pathogens among diabetics.
[32,162,163,180] However, an alternative line of thought has 
suggested that stimulating the immune system will imperil—
rather than protect—diabetics from acute Gram-negative 
bacterial infections, and that dampening hyperinfl ammation 
(with dexamethasone, for example) may restore the innate 
immune response to such infections.[148]

Other studies have addressed leukocyte recruitment and 
pathogen recognition abilities. Animal models demonstrate 
that diabetes impairs CD45+ leukocyte and CD8+ T cell 
recruitment, and reduces adhesion molecule expression and 
cytokine production upon microbial invasion of diff erent organs.
[181,182] More confl icting evidence exists, however, regarding 
pathogen recognition via toll-like receptors (TLR). One line 
indicates that TLR expression is reduced in diabetic mice.
[182,183] In contrast, studies in human samples attest that 
TLR expression is low in diabetic subjects with complications 
and defi cient glycemic control, whereas it is high in patients 
with well-controlled glycemia without complications.[184] 
Overall it has been concluded that TLR pathway impairments 
lead to diminished recognition of bacteria and may be one of 
the mechanisms implicated in diabetic susceptibility to wound 
infection.[183] 

More coincidental revelations stem from the characterization 
of neutrophil dysfunction documented in diabetic individuals 
or in healthy donors exposed to high glucose burdens. The 
so-called ‘oxidative burst’ plays a critical role in neutrophils’ 
antimicrobial defense and is reduced upon high glucose 
concentration due to poor ROS and superoxide anion 
productions.[185,186] Other studies have documented that 
sustained hyperglycemia leads to neutrophils’ functional 
decline and that the mechanisms behind this decline 
include increased adhesive capacity, as well as diminished 
chemotaxis, phagocytic activity and bactericidal capacity.
[102,187,188] This is a conflicting observation given the solid 
evidence supporting the concept that hyperglycemia is a 
major trigger of inflammation and hyper-oxidation in diabetes.
[189–191] 

Other studies show lower neutrophil degranulation,[192] 
decreased phagocytic capabilities,[193] immunoglobulin-
mediated opsonization inhibition[194] and limited NET 
response ability.[195] These conflicts could be due to the type 
and origin of the experimental designs of, and samples used 
in, the studies; however, the overall interpretation of these 
data has led to the conclusion that hyperglycemia damp-
ens PMN chemotaxis and phagocytic activities.[21] Diabe-
tes impairs the physiology of macrophages and other innate 
immune cells. As stated above, diabetic patients are highly 
susceptible to bacterial infections, and often have impaired 
wound healing. However, despite years of research, the 

Figure 4. Diabetes impairs immune response and predisposes 
patients to wound infection 
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molecular mechanism underlying macrophage dysfunction in 
diabetes is not fully understood .[196] 

Under high glucose conditions, in vitro and in vivo models have 
shown reduced complement receptors, adhesion capacity, phago-
cytosis and antibacterial activity.[197] Diabetic hyperlipidemia 
and hyperglycemia introduce epigenetic modifi cations to mac-
rophages that promote the onset of an infl ammatory phenotype.
[198] Thus, high glucose levels induce infl ammatory polarization 
of human macrophages in vitro whereas AGEs signifi cantly prime 
and promote M1 macrophage markers expression and IL-6 and 
TNF-α secretion.[199] Accordingly, M1 macrophages have strong 
microbicidal and antigen-presenting capacities, produce pro-
infl ammatory cytokines (TNF-α, IL-6, IL-1β), and ROS; whereas 
M2 macrophages are considered pro-resolution response cells, 
producing anti-infl ammatory mediators (IL-10 and TGF-β) and 
consequently resolving infl ammation.[200] In light of these obser-
vations, it is controversial to posit M2 macrophage polarization in 
diabetic mice (db/db) as an explanation for their susceptibility to 
bacterial infection.[196] As a matter of fact, M2 cells are scarce 
within the wound environment where they are obviously neces-
sary.[201] Irrespective of the controversial issue of in-wound 
recruited macrophage polarization, a recent study confi rms that in 
diabetic mice, macrophage phagocytosis and bactericidal activi-
ties are reduced upon long-term exposure to high glucose bur-
dens.[196] For these authors, long-term high-glucose treatment 
reduced macrophage glycolytic capacity and glycolytic reserve, in 
turn, impairing phagocytic capability. 

NK (natural killer) cells derived from diabetic individuals also 
demonstrate defects in activating NKG2D and NKp46 receptors 
related to NK degranulation failure.[196] Hyperglycemia is also 
associated with a reduction in C4-fragment opsonization, which 
inhibits classical or lectin pathways of complement activation,[202] 
in impaired neutrophils’ bacterial killing capacity.[100,203] By 
using peripheral blood lymphocytes from diabetic animal models 
and human samples, studies have concluded that uncontrolled 
diabetes increases chromatin condensation, DNA fragmentation 
and lymphocyte death.[204] 

Unlike the eff ect of hyperglycemia on immune cell activity in DMT2, 
the impact of insulin defi ciency in DMT2 immunoresponsive cells 
against pathogens has not been widely studied.[170] Given that 
these cell functions are energy-dependent processes, proper 
insulin-regulated glucose metabolism is necessary. Insulin-driven 
metabolic processes are not merely associated with immune-cell 
ATP generation and utilization. Glucose and lipid metabolism 
infl uences cellular phenotype, potential cellular reprograming 
during patterns of recognition, and ultimately activation status.[205] 
In activated T-lymphocytes, insulin stimulates glucose uptake, 
oxidation, pyruvate fl ux and pyruvate dehydrogenase activity, 
amino acid transport, lipid metabolism and protein synthesis.[206] 
Recent fi ndings implicate insulin in shaping the immune response 
by modulating cell diff erentiation and polarization.[207,208] Thus, 
in addition to its role in substrate metabolism, insulin is also an 
anti-infl ammatory and immunomodulatory hormone[209,210] via 
immune cells’ metabolic regulation.[211] 

Recent studies substantiate the importance of insulin in normal 
innate immune response. An insulin defi cit is associated with 
alveolar macrophages’ phagocytic impairment as well as poor 
cytokine secretion in alloxan-treated rats, reverted after insulin 

intervention.[212] Insulin treatment of diabetic mice bone 
marrow-derived macrophages restored production of critical pro-
infl ammatory cytokines upon LPS exposure.[213] 

Conclusively, the apparently ‘trivial’ blood glucose derangements 
in diabetes reduce bactericidal and wound healing capacities in 
innate immune operators, a phenomenon that, according to latest 
evidence, is related to transcriptional aberrations in gene coding 
for macrophage diff erentiation and lymphocyte migration and 
proliferation at the hematopoietic stem/progenitor cell level.[214] 
Thus, therapeutic manipulation of immune-metabolomic loops is 
a promising therapeutic road. 

Infection of diabetic foot ulcers: biofi lm and its interaction 
with the wound matrix Typically, once an ulcer develops, it is 
colonized with microorganisms that may lead to a state of clinical 
infection.[113] About 15%–25% of DM patients develop foot 
ulcers during their lifetime and half of these become infected, 
a recurrent complication in diabetics.[215,216] Infection can 
spread to soft tissues and bone making it the main causal factor 
of lower extremity amputation in most countries.[217] Thus, the 
management of DFI represents a high cost for the health system, 
a decrease in the quality of life of diabetic population, and a great 
research incentive.[217]  

DFI is defi ned as the presence of an inflammatory response and 
tissue damage that can drive the clinical spectrum from superficial 
cellulitis (mild infection) to chronic osteomyelitis (severe infection), 
with host–microorganism interaction being crucial in determining 
progression.[218,219] This interaction is defi ned by Casadevall 
and Pirofsk as the “damage response framework model”,[220] 
and proposes that infection outcomes are dependent on 
mutual contributions of both the microbe and the host.[220] In 
comparative terms, infection occurs when invading organisms 
overwhelm the host’s defenses.[221] In contrast, colonization 
is defi ned as the presence of proliferating bacteria without an 
overt host immunological reaction.[26] The reported critical limit 
is 105 colony-forming units per gram of tissue,[222] indicating 
the presence of a ‘critical’ degree of colonization marking the 
point at which host defenses are no longer able to contain the 
infection.[223] Nevertheless, preexisting diabetic neuropathy, 
peripheral vascular disease, impaired leukocyte function[224] 
and a deteriorated innate immune system make DFI clinical 
diagnosis diffi  cult while simultaneously worsening its prognosis.
[225,226] Under these circumstances, onset of classic signs of 
infection may not occur,[227] even when there is a high bacterial 
load.[226] Thus, the invading pathogen may progress and infect 
with no clinical translation. 

Staphylococcus aureus is a major pathogen of human skin. 
This is also the most common pathogen identifi ed in patients 
with acute superfi cial DFU.[23,228,229] This pathogen, in its 
interaction with the host’s diabetic wound environment, is able to 
amplify certain glucose-regulated genes that ultimately increase 
its virulence, indicating that hyperglycemic conditions facilitate 
pathogen adaptation and survival, ultimately worsening patient 
prognosis.[230] 

Chronic ulcers usually exhibit polymicrobial infections including 
a mixture of aerobic/anaerobic and Gram positive/negative 
bacteria.[227,231] Some of the heterogeneous groups of 
bacterial species identifi ed in DFU patients have been compiled 
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in Table 1.[26,232–234] Bacterial predominance diff ers 
between studies. Nevertheless, recent literature point to Gram-
negative bacteria as the predominant group.[23,229,235,236] 
The reported prevalence included Pseudomonas aeruginosa, 
Klebsiella pneumoniae, and Escherichia coli.[237,238] Usually, 
these results are influenced by several factors including infection 
severity, demographic characteristics, glycemic control, and 
ongoing or previous antibiotic treatments, as well as bacterial 
identification method.[26]

A traditional debate in this fi eld is the relationship between 
pathogenic potential and microbial bioburden, and how it 
impacts the host. Here, it is important to highlight the diversity 
of the microorganism population and its potential interactions, as 
these may turn into cooperative pathogenic loops that enhance 
antimicrobial resistance and imprint a particular signature on 
each individual ulcer.[239] The symbiotic microbial interaction 
within the ulcer’s ecosystem confers a virulence profi le that is 
far more important than the microorganism concentration in and 
of itself.[222,240] Long-standing ulcers are more predisposed 
to infection which, in addition to impairing the healing response, 
may reduce peripheral insulin sensitivity.[21,241,242] Thus, the 
longer the wound is maintained, the greater the risk for infection. 
Another contribution of infected ulcers is their pathogenic eff ect at 
the organism level. These ulcers act as pro-infl ammatory organs 
superimposed onto a host, pouring pro-infl ammatory reactants, 
oxygen free radicals and bacterial toxins into central circulation, 
amplifying tissue injury and general homeostasis (Figure 5).[243]

Finally, it is noteworthy that DFI is frequently associated with 
existing biofi lm in the context of ulcers. Biofi lm is a niche for 
symbiotic microorganism interactions that essentially act as a 
protector shield for bacterial populations.[244–246] How biofi lm-
making microorganisms interact with immunocompromised 
diabetics and their subsequent pathophysiological consequences 
are relevant research topics. 

The term biofi lm was coined by the scientifi c community at the end 
of the 20th century, which indicates that this is an emerging and 
expanding research area.[247–250] DFU pathogens can exist as 
planktonic form (free-living) or as a biofi lm (sessile-living).[246] Both 
phenotypic states may play important roles in impairing healing and 
causing infection of both acute and chronic wounds.[251] Biofi lm 
acts as a collective entity endowed with superior antimicrobial 
resistance when compared with its individual constituents. Several 
in vitro experiments indicate that antibiotic resistance in biofi lm 
bacteria is up to 1000 times higher than in planktonic bacteria.[252] 

The ability of a microorganism to build up biofi lms is an important 
virulence factor and an advantageous organizational step. As 
stated above, biofi lm off ers a protective environment or physical 
barrier to biological and antimicrobial substances, facilitating 
microorganism attachment to surfaces or to each other, ultimately 
enabling survival and antibiotic resistance.[236,245] ‘Inoff ensive’ 
non-pathogenic bacteria, incapable of promoting chronic wound 
infection, may symbiotically interlink with pathogenic biofi lm and 
act synergistically to cause a chronic infection.[24] This structured 
community of microorganisms can be classifi ed as mono- or 
polymicrobial, encased in extracellular polymeric substances 
(EPS) or exo-polymeric substances.[253] 

The community is a mixture not only of bacterial cells, but also 
of fungi, viruses, proteins, extracellular DNA and other biogenic 
factors that increase virulence and reduce treatment success.
[246] This and other virulence factors are possible through cell-
to-cell communication via quorum sensing (QS).[246,254] QS is 
a form of cellular communication mediated by small molecules 
that depend on cell density. The species of bacteria that reaches 
critical-mass concentration produces large amounts of small 
signaling molecules that modify gene expression. Indeed, bacterial 
exchange coordination activities are based on this mechanism, 
according to population size.[246] QS, together with the exchange 
of genetic material by bacteria in the biofi lm, give rise to diff erent 
microorganism phenotypes that ultimately aff ect ulcers as can be 
seen in anti-microbial treatment results.[23] The fact that bacteria 
are not motile in the biofi lm context and have lower metabolic 
and proliferative activities than their planktonic counterparts,[255] 
makes appropriate antibiotic selection diffi  cult. Many antibiotics 
used for DFI treatment are only eff ective against actively dividing 
cells.[256]

Table 1: Bacterial species identifi ed in diabetic foot ulcers
Aerobic and anaerobic 
facultative bacteria Anaerobic bacteria 

Staphylococcus epidermidis Clostridium species

Staphylococcus saprophyticus Peptostreptococcus species

Pseudomonas aeruginosa Dialister pneumosintes

Klebsiella pneumoniae Bacteriodes fragilis

Escherichia coli Anaerococcus prevotii

Streptococcus mutans Anaerococcus tetradius

Streptococcus pyogenes Eggerthella lenta

Bacillus subtilis Fusobacterium mortiferum

Proteus species Veillonella dispar

*Adapted from [26] and [234]

Figure 5. Wound–infection feedback loop
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Over the last few years, the concept of biofi lm in dynamic 
reciprocity between wound-bed cells and the host has attracted 
increasing interest. Correspondingly, it has been proposed that 
biofi lms are responsible for over 90% of all chronic wounds. An 
electron microscopy study assessing wound tissue biopsies 
suggested that about 60% of chronic wounds have a biofi lm 
compared to 6% of acute wounds.[249] It is likely that at least 
half of all chronic wounds develop a biofi lm.[248,249] This result 
indicates the contribution of biofi lm to impaired wound healing 
even when molecular mechanisms underlying biofi lm-induced 
chronifi cation remain poorly understood.[257,258]

The various mechanisms by which biofilm obstructs the healing 
response include failures in granulative tissue formation and 
the re-epithelialization trajectory.[259] Accordingly, it is likely 
that these events are consequences of anti-proliferative 
signals derived from pathogens and a persistent infl ammatory 
environment[257] that aborts fi broblasts and keratinocyte 
mitogenic, motogenic and secretory functions.[260] In line with 
this notion, Trøstrup demonstrated that P. aeruginosa induces a 
state of cellular quiescence reminiscent of premature senescence.
[62] P. aeruginosa also secretes a plethora of proteases resulting 
in collagen, fi brinogen and elastin degradation, inhibition of 
PMNs and complement systems, and basement membrane 
degradation.[261,262] Similarly, proteases secreted by S. aureus 
also degrade collagen and elastin. The ability to degrade surface-
associated adhesins enables bacterial phenotype transition from 
adhesive to invasive.[263] Inhibition of neutrophil phagocytosis 
and chemotactic activity is also associated with bacterial wound 
infection.[264] In this steady infl ammatory milieu, PMN-derived 
elastase and other degradative enzymes increase wound tissue 
damage, expand wound size and perpetuate chronicity.[62] 
In-depth studies examining P. aeruginosa and host interaction 
showed that TLR activation is inhibited by pathogen-derived 
elastase, which allows evasion of host immunosurveillance.
[265] P. aeruginosa-derived rhamnolipids inhibit human beta-
defensin secretion by challenged keratinocytes, which contributes 
to pathogen survival and colonization in compromised epithelia.
[266] Furthermore, it has been proposed that biofi lm and 
lipopolysaccharide EPS of Gram-negative bacteria inhibit 
complement activation, further contributing to evasion of the host’s 
innate defense system.[267,268] Microorganism-derived PAMP, 
together with platelet-derived factors stimulate the infl ux of PMNs 
and other immune cells, spreading the wound’s pro-infl ammatory 
reactants, increasing the level of ECM-degradative proteases, 
and consequently curtailing the proliferative phase.[112,269,270] 
Additionally, infi ltrated infl ammatory cells in response to bacterial 
invasion via proinfl ammatory cytokines and AGE/RAGE axis 
activation produce large amounts of ROS that act as local causal 
factors for premature cell senescence.[271,272] In other words, 
the pathogen manages to prevent otherwise normal PAMP-
induced innate immunity activation; and graphically speaking, the 
DFU turns into a battlefi eld in which the pre-debilitated diabetic 
host’s immune system is overwhelmed by biofi lm-entrenched 
microorganisms, thus perpetuating wound arrest.[62,273]

Biofi lm identifi cation is complex and dependent on more than 
simple wound cultures obtained and evaluated using traditional 
microbiological techniques. More sophisticated and expensive 
techniques such as light and scanning electron microscopy 
are required to evaluate biofi lm in a wound. Therefore, biofi lm 
presence is often overlooked.[274,275] New molecular techniques 

including DNA micro-arrays, multiplex real-time polymerase chain 
reaction and functional metagenomics off er a unique opportunity 
to characterize biofi lm microbiome.[218] These technologies 
facilitate analysis of a microorganism’s resistance potential and 
virulence factors.[26] 

Conclusively, underlying diabetic complications predispose 
increased risk of developing DFI and other peripheral tissue 
infections as compared to the risk in healthy populations. Biofi lm-
forming microorganisms counteract the host’s defenses, prolong 
DFU infl ammation, deteriorate host anabolism and ultimately 
increase the risk of amputation (Figure 5).[24,258,276]

CONCLUDING REMARKS
Wound healing is a complex biological process consisting of 
precisely-predetermined overlapping phases integrated in a 
sequential cascade aimed at morpho-functional restoration in a 
physiological time window. Successful reparative response requires 
concerted and cooperative integration of both systemic and local 
signaling networks and driving forces. DM is an archetypal disease 
in which a variety of both local and systemic factors combine to 
disturb most healing phases. Thus, DFUs serve as a model for 
chronic wounds, an often-devastating diabetic complication, and 
the fi rst cause of lower-limb amputations worldwide. 

Underlying the ulcer’s onset and expansion is a complex interplay 
of pathogenic vicious circles that turn DFUs into a pro-infl ammatory, 
pro-oxidant, pro-apoptogenic and pro-senescence-inducing 
organ, superimposed onto a host with an already-debilitated 
immune response. The failure of diabetic patients’ peripheral 
immunosurveillance, as in the subsequent elicitation of eff ector 
mechanisms, is the foremost contributing factor to DFU infections. 

Diabetic dysimmunity is likely a major determining factor on 
patient outcomes. It seems there is still a long way ahead before 
we achieve a uniform, comprehensive understanding of the 
actual immune profi le of diabetic individuals. Further studies are 
needed to disentangle critical contradictions and contemporary 
conceptual paradoxes. Some of the current critical controversies 
are highlighted in this paper. Of note, however, is the divergent 
experimental data on whether hyperglycemia reduces pro-
infl ammatory cytokines and whether this cytokine dampening 
accounts for immune failure, as compared with other major 
ongoing questions in DMT2. 

We still do not know how to manipulate hyperinfl ammation or 
how to reinstate leukocyte physiology once it is disrupted. At the 
moment, infection remains a dismal complication of these wounds, 
protracting pre-existing infl ammation, dismantling local immune 
response, amplifying fi broblast and keratinocyte arrest and further 
disrupting the host’s internal homeostasis. Given that DFUs are 
recurrently seeded by biofi lm, eliminating infection is a challenging 
task. This review confi rms that, despite the eff orts to understand 
DFU pathophysiology, infection pathology and its interaction with 
the host, DFU prevalence is rising while any reduction in amputation 
rates remains modest. Therapeutically promising targets include: 
1) Identifi cation and pharmacological manipulation of epigenetic 
drivers in wound-prolonged infl ammation and chronifi cation, even 
in the ideal scenario of a non-infected ulcer; 2) Ablation of the 
wound cell-senescent drivers, which could contribute to restoring 
an acute wound-like closure trajectory; and 3) Characterization of 
actors and pathways underlying hyperglycemia and insulinopenia-
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induced diabetic immune failure, and subsequent pharmacological 
interventions to rebuild the immune system. These academic 
imperatives must go hand-in-hand with diabetic self-care 
educational programs, as well as systematic foot and neurological 
examination by qualifi ed specialists. 
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