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Review Article

Wound Chronicity, Impaired Immunity and Infection in

Diabetic Patients

Nadia Rodriguez-Rodriguez, Indira Martinez-Jiménez, Ariana Garcia-Ojalvo PhD, Yssel Mendoza-Mari PhD,
Gerardo Guillén-Nieto PhD, David G. Armstrong MD PhD, Jorge Berlanga-Acosta DVM MS PhD

ABSTRACT

BACKGROUND Diabetic foot ulcers are a common diabetic compli-
cation leading to alarming figures of amputation, disability, and early
mortality. The diabetic glucooxidative environment impairs the healing
response, promoting the onset of a ‘wound chronicity phenotype’. In
50% of ulcers, these non-healing wounds act as an open door for
developing infections, a process facilitated by diabetic patients’ dysim-
munity. Infection can elicit biofilm formation that worsens wound prog-
nosis. How this microorganism community is able to take advantage
of underlying diabetic conditions and thrive both within the wound and
the diabetic host is an expanding research field.

OBJECTIVES 1) Offer an overview of the major cellular and molecu-
lar derangements of the diabetic healing process versus physiological
cascades in a non-diabetic host. 2) Describe the main immunopatho-
logical aspects of diabetics’ immune response and explore how these
contribute to wound infection susceptibility. 3) Conceptualize infection
and biofilim in diabetic foot ulcers and analyze their dynamic interac-
tions with wound bed cells and matrices, and their systemic effects at
the organism level. 4) Offer an integrative conceptual framework of
wound—dysimmunity—infection—organism damage.

EVIDENCE AQUISITION We retrieved 683 articles indexed in Med-
line/PubMed, SciELO, Bioline International and Google Scholar. 280
articles were selected for discussion under four major subheadings: 1)
normal healing processes, 2) impaired healing processes in the dia-

INTRODUCTION

Diabetes mellitus (DM) is characterized by the onset and
progression of a constellation of multi-organ complications
resulting from multifactorial interactions—including biochemical
derangements and epigenetic factors—which ultimately translates
to irreversible tissue changes as a response to glucooxidative
processes.[1] Of all diabetic complications, the development
of diabetic foot ulcers (DFUs) is among the most common and
debilitating.[2,3] Classic concepts define DFU as deep tissue
damage of the lower limb, frequently preconditioned by, and
associated with, neuropathy or peripheral arterial disease.[4]
It is recognized as a major and growing public health problem,
a scientific challenge and a socioeconomic burden;[5] and
remains the main causal factor of lower extremity amputations,
disability and early mortality.[6] Armstrong introduced the ‘cancer
analogy’ concept to highlight the fact that five-year mortality rates
associated with foot ulceration and amputation surpass those
registered for common cancers.[7—10]

IMPORTANCE This article contrasts wound healing pro-
cesses in healthy individuals and diabetics, establishing
and conceptualizing the reciprocal links between diabetic
dysimmunity, susceptibility to infection, diabetic foot ulcer
chronicity and insulin resistance amplification.

betic population, 3) diabetic dysimmunity and 4) diabetic foot infection
and its interaction with the host.

DEVELOPMENT The diabetic healing response is heterogeneous,
torpid and asynchronous, leading to wound chronicity. The accumu-
lation of senescent cells and a protracted inflammatory profile with
a pro-catabolic balance hinder the proliferative response and delay
re-epithelialization. Diabetes reduces the immune system’s abilities
to orchestrate an appropriate antimicrobial response and offers ideal
conditions for microbiota establishment and biofilm formation. Bio-
film—microbial entrenchment hinders antimicrobial therapy effective-
ness, amplifies the host's pre-existing immunodepression, arrests the
wound’s proliferative phase, increases localized catabolism, prolongs
pathogenic inflammation and perpetuates wound chronicity. In such
circumstances the infected wound may act as a proinflammatory
and pro-oxidant organ superimposed onto the host, which eventually
intensifies peripheral insulin resistance and disrupts homeostasis.

CONCLUSIONS The number of lower-limb amputations remains high
worldwide despite continued research efforts on diabetic foot ulcers.
Identifying and manipulating the molecular drivers underlying diabetic
wound healing failure, and dysimmunity-driven susceptibility to infec-
tion will offer more effective therapeutic tools for the diabetic population.

KEYWORDS Diabetic foot, amputation, infections, biofilms, micro-
biota

Diabetic glucooxidative stress impairs the healing response
and disrupts the flow of overlapping healing phases, ultimately
promoting the onset of a ‘wound chronicity phenotype’.[11-13]
Aside from healing impairment, a common occurrence in diabetic
patients is ulcer recurrence after primary closure.[6] These non-
healing wounds are a major predisposing factor or entry point for
wound infection[11] and accordingly, more than 50% of DFUs
become infected.[14] Infection acts as a primary deterrent to
physiological healing responses[15] and a risk factor for lower-
limb amputation,[16—18] especially when deep tissues and bones
are compromised.[19,20] Although diabetics are particularly
vulnerable to bacterial infections,[21-23] DFUs have a complex
and highly organized polymicrobial community that frequently
contributes to undesirable outcomes in DFU-affected individuals.
[22] This microbiota—biofilm comprises symbiotic bacteria, yeast
and fungal loads and can silently spread, amplify the underlying
healing deficit, increase antibiotic resistance, disrupt host
metabolism and further dampen immune response.[24-27]

Globally speaking, DM and infection increasingly go together.
[28,29] Diabetic individuals are prone to peripheral-tissue
infections; given dysregulations in primary surveillance,
recognition, activation and neutralization mechanisms within
the innate immunity repertoire.[21,30,31] Furthermore, diabetic
individuals exhibit antigen presentation failure, contraction
of T-cell-mediated immune function[32] and a particular
predisposition to bacterial adhesion to epithelial linings.[33,34]
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DFU is a unique battlefield where host—-microorganism interac-
tions shape ulcer progression. Consequently, numerous studies
have addressed the role of biofilm on DFU and its impact within
the ulcer bed and the host itself.[35-38] We reviewed this criti-
cal issue, given its etiopathogenic relevance to basic aspects of
DFU pathology: 1) Why are diabetic persons more susceptible
to wound infections? 2) How is DFU biofilm organized? 3) How
does a microorganism’s pathogenic potential and concentration
impact DFU outcomes? and 4) How does biofilm impair the heal-
ing response?

EVIDENCE ACQUISITION

We retrieved articles indexed in Medline/PubMed, SciELO, Bioline
International, and Google Scholar using the following keywords/
phrases: DFU, limb AND amputation, DFU AND infection, DFU
AND biofilm, immune system AND diabetic patient, microorgan-
ism AND immune system. A total of 683 articles were retrieved and
exported a reference manager. Duplicate articles were removed
(Figure 1). Our final selection included 280 research and review
articles. Titles, objectives and abstracts were carefully screened
and reviewed. The search was limited to the English language
without date restrictions. All compiled information was structured
under four principal headings: 1) a general overview of the normal
healing response in a healthy organism; 2) an overview of the
cellular and molecular foundations of the impaired healing pro-
cess in the diabetic population; 3) diabetic dysimmunity; and 4)
conceptual definition and pathogenic implications of diabetic foot
infection (DFI) in its interaction with the host.

Figure 1. Literature review process
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DEVELOPMENT

Brief overview of normal healing response Wound healing is a
dynamic and complex process that ultimately results in restoration
of anatomic integrity with analogous function.[39—41] Of note, how-
ever, skin wound healing represents an evolutionary advantage for
organism survival, given its role in restoring barrier function, as well
as preventing internal tissue damage and infection dissemination.
[42] This evolutionary advantage involves a complex and intricate,
but finely regulated, crosstalk between cells and soluble media-
tors.[43] A normal healing process is made up by four overlapping
phases: 1) coagulative, 2) inflammatory, 3) proliferative, and 4)
remodeling (Figure 2). Each phase takes place during a temporary
window involving a certain cell population, a specific set of cyto-
kines and a particular chemical composition within the extracellular
matrix (ECM).[44,45] The coagulation process, aside from ensur-
ing hemostasis, has two other relevant functions: 1) the fibrin clot
and fibrinogen byproducts act as a scaffold and chemoattractant
for the recruitment and anchorage of inflammatory cells, fibroblasts
and other mesenchymal-derived cells that will participate in tissue
granulation formation; and 2) platelet degranulation promotes pri-
mary growth factors. Platelets represent the first group of resident
cells with fibroangiogenic soluble messengers, including platelet-
derived growth factor (PDGF), transforming growth factor beta
(TGF-B), epidermal growth factor (EGF) and insulin-like growth
factor-1 (IGF-1).[46,47]

Of particular relevance for healing trajectory and for the ultimate
scar phenotype are the infiltrating inflammatory cells and their
biochemical signalers, as they exist in interaction with granulation
tissue-resident cells as fibroblasts, myofibroblasts and endothelial
cells.[44] Since cutaneous injury is linked to the release of
‘danger and pathogen signals’, innate immune receptors become
activated and eventually trigger an inflammatory phase.[48]

The influx of polymorphonuclear neutrophils (PMNs) is ensured
mainly by a complex cascade of vasoactive signalers and
chemoattractants, so that these cells invade and are anchored
within the wound matrix, initiating the wound’s acute phase
that may last up to four days.[49] PMNs pattern recognition
receptors are activated by local damage-associated molecular
patterns (DAMP) released during cell injury and necrosis, and by
bacterial pathogens’ associated molecular pattern (PAMP). Upon
activation, these cells release pro-inflammatory cytokines such as
tumor necrosis factor alpha (TNF-a), interleukin 1 beta (IL-18) and
IL-6, which amplify the inflammatory response and pave the way
for macrophage infiltration and activation.[50] Activated PMNs
‘clean’ the wound bed of tissue debris via an armamentarium of
degradative and antimicrobial proteases (cathepsins, defensins,
lactoferrin and lysosomes) stored in cytoplasmic granules. This
sanitizing process is largely dependent on the formation of
neutrophil extracellular traps (NETs), web-like structures that
capture and eliminate exogenous bacteria, fungi and viruses.[51]
This process of NET release is termed NETosis and has broad
implications for different forms of inflammation.[52] Recent studies
show that circulating PMNs from diabetic subjects are biased
toward excessive release of NETs,[53] and that uncontrolled
NETosis impairs the healing process in diabetic mice and
humans.[54] These cells also generate reactive oxygen species
(ROS) that help eliminate invading pathogens.[55] Altogether, the
role of PMNs in wound healing is undoubtedly important, but an
extension of their local residence time and their functional profile
may lead to wound chronicity (Figure 2).
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Figure 2. Normal vs. diabetic healing
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A second generation of inflammatory infiltrating cells comes from
local resident macrophages that are differentiated from infiltrating
monocytes, which are activated via DAMP, PAMP and a cytokine
surge.[56] Anti-macrophage depletion studies have revealed the
physiological significance of these cells for the late stage of the
inflammatory phase and for initiation of the proliferative one.[41,57,58]
This late stage of the inflammatory phase is mostly characterized by
the M1 subset of macrophages, which themselves are characterized
by phagocytic and pro-inflammatory activities. Later, macrophages
polarize to an M2 subpopulation with anti-inflammatory activity by
expressing interleukin-receptor antagonists and a collection of
fibroangiogenic growth factors that enhance fibroblast proliferation,
extracellular matrix synthesis, angiogenesis,[59,60] ultimately
reducing inflammation.[47] Macrophage subclass shift from M1 to M2
subsets is a meaningful event, givenits role in turning off inflammation,
clearing the wound bed of apoptotic PMNs (efferocytosis), ensuring
proliferative phase progression, and preventing autoreactivity to
released self-antigens.[15,57,61] Conclusively, inflammation is a
time-restricted, finely controlled sequential event, whose expansion
is paradigmatically associated with a torpid healing phenotype,
or to wound chronification and senescence of granulation tissue
productive cells.[16,17,62]

Granulation tissue is subsequently organized and populated by
a broad spectrum of extracellular matrices, secreting cells that
are in active and dynamic engagement with the substrate, and
progressively modulating the structure and composition of the
wound’s extracellular matrix.[63] Although granulation tissue is
a temporary organ, it is important as a ‘welding material’ filling
wound gaps, preventing environmental threats, and providing
support for cell adhesion, migration, growth and differentiation
during wound repair.[63,64]

The proliferative phase also embraces three important process-
es: angiogenesis, wound contraction and re-epithelialization.

molecular forces underlying diabetic
microangiopathy has been extensively
examined.[68,69]

Wound contraction and epithelial resurfacing are two integrated
mechanisms that ensure complete wound closure in most
mammalian species. Contraction, a physiological and necessary
eventin wound closure, appears to be mediated by myofibroblasts,
specialized cells responsible for force generation, that are
differentiated from migrating fibroblasts during granulation tissue
formation.[70] Although current theories posit that alpha smooth
muscle actin-expressing myofibroblasts contribute to wound
contraction,[71] others attest that contraction progresses through
fibroblast-derived traction forces via thick collagen fiber secretion.
[72] Irrespective of the contraction-responsible cell and the
molecular drivers behind them, limited contraction is associated
with torpid healing in diabetic wounds.[12]

Instrumental for complete and successful wound closure is
re-epithelialization. This event demands integration of leading-
edge keratinocyte proliferation, migration and differentiation in
order to re-establish epidermal integrity.[73] This is perhaps one
of the most complex and unexplored processes in wound healing.
[74-76] Simplistically described, keratinocytes at the wound
edge and epithelial cells from hair follicles in the vicinity migrate
and proliferate. Signals that promote keratinocyte proliferation
include heparin-binding EGF-like growth factor (HB-EGF), EGF,
transforming growth factor alpha (TGF-a), and FGF secreted
from platelets, macrophages and dermal fibroblasts.[77] For
migration to progress, there is a reduction of desmosomes and
hemidesmosome connection, cytoskeleton reorganization,
morphological reprograming and changes in the pattern of keratin
expression.[78] In general, there is a loss of physical tension at
points of cell attachment to the basal lamina.

Re-epithelialization progresses when the basement membrane
is reconstituted by upper dermal fibroblasts and keratinocytes in
a cooperative effort.[79] In this context, the interaction between
integrin receptors and the neomatrix determines the speed of
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migrating keratinocytes, a process that in turn is regulated by
growth factor gradients.[80] Also important are plasmin and other
plasmin-related degradative enzymes that degrade fibrin and
other matrix glycoproteins, facilitating keratinocyte migration.
Other collagenases and gelatinases are expressed by migrating
keratinocytes.[77] Once keratinocytes attach to the basement
membrane, they initiate a process of upward migration and
differentiation to create a mature stratified, squamous epithelium
that covers the wound.[81] Failed or delayed re-epithelialization
is an obvious sign of wound stagnancy.[82] Compelling evidence
documents the deleterious role of hyperglycemia and other
downstream biochemical signalers on fibroblast and keratinocyte
proliferation and migration.[83—85]

The ultimate phase—remodeling—begins approximately 14-21
days post-injury and may continue for years.[86—88] Its main
function is the formation of normal epithelia and maturation
of scar tissue;[89] excessive matrix is eliminated by a set of
metalloproteinases, while new type-1 collagen fibers are produced
and horizontally aligned in a more organized and esthetic manner.
Inflammatory infiltration has ceased and different cell populations
gradually enter into apoptosis.[90] The initial granulation tissue
progressively collapses and is replaced by a new wound chemical
milieu, so that the scar ECM architecture increasingly approaches
original tissue morphology. The complexity involved in wound
tissue remodeling has led us to hypothesize the existence of
structural, positional and organizational memory in late wound
cells, enforced by topographic ‘home address signals’. At this
point, wound tensile strength is restored, and antiangiogenic
mediators are locally released to turn off angiogenic sprouting
and ensure excessive vessel regression. In
parallel, other anatomical structures including
the epidermis, nerves and myofibers are
synchronously remodeled forming a functional
unit.[78,86,91]

The diabetic foot ulcer: overview of the
molecular bases of the torpid healing pro-
cess Although it is generally accepted that
time-to-heal determines a wound’s clinical
classification as acute or chronic, the con-
ceptual definition of wound chronicity has
remained controversial.[92] Nevertheless, it +
is generally accepted that a wound is consid-
ered chronic when it fails to proceed in “an
orderly and timely reparative process that
results in sustained restoration of anatomic
and functional integrity”.[92] DFU is arche-
typical of chronic wounds.[93-95] It is gen-
erally accepted that a primary hallmark of
diabetic wounds is their persistent arrest in an
unproductive inflammatory phase, associated
with impaired formation and consolidation of
mature granulation tissue.[96,97]

damage

Cytotoxicity

Apoptosis

The arrest in this inflammatory phase is not
associated with successful control of local
infection, and thus it has been proposed that
diabetic individuals are more vulnerable to
wound infection[98,99] due to the existence
of a primary deficit in innate immune response
mechanisms.[100,101]

Mitochondrial

Oxidative stress

Hyperglycemia, again, seems to act as the proximal trigger for
an exaggerated inflammatory reaction (Figure 3). Hyperglycemia
and its distal operators—advanced glycation end products (AGE),
TNF-a and other pro-inflammatory signalers—exert profound
cytotoxic effects in fundamental ‘building-block’ cells of describes
tissue.[11,102] Compelling evidence describes an inflammation-
prone, pro-oxidative and pro-degradative environment in the core
of diabetic wounds.[103—-106]

Uncontrolled pro-inflammatory cytokine secretion imposes a
pro-catabolic balance in the wound bed that both increases
peripheral insulin resistance and reduces injured tissue’s
anabolic response.[107,108] TNF-a downregulates fibroblast
collagen synthesis in diabetic skin and upregulates the synthesis
of metalloproteinases by amplifying the wound’s proteolytic and
pro-degradative profile.[109,110] Although some studies have
ruled out hyper- or hypoglycemia’s role in significantly disrupting
PMNs cells’ ability to enter into apoptosis,[111] others have
pointed to poorly controlled glycemia levels as a major factor
in the prolonged residence of apoptosis-resistant PMNs with
active secretory functions,[111] which ultimately translates into
an elevated proteolytic/degradative balance.[112,113] This pro-
degradative environment reduces local availability of growth
factors and their receptors, hindering the ability of fibroblasts
and endothelial cells to participate fully in the healing process.
[88,114] PMN are also considered a source of ROS and nitric
oxide species within the wound bed, with remarkable cytotoxic
and pro-degradative potential.[115,116] The increased rate of
ROS is an indirect consequence of poorly-controlled glucose
levels given that existing evidence provides a connection between

Figure 3. Simplified hyperglycemia-associated healing impairment
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the high-glucose—induced nicotinamide adenine dinucleotide
phosphate (NADPH) oxidase pathway and exaggerated
NETosis.[117] Hyperglycemia also induces myeloid progenitor
proliferation and expansion, as well as increased neutrophil
production of S100A8/S100A9, which ultimately binds to AGE
receptors (RAGE). This interaction translates to enhanced ROS
production and myelopoiesis[118] that reinforces the triad of
hyperglycemia, neutrophil infiltration and local ROS production.

Aside from PMN, M1 subclass macrophages predominate in
diabetic wounds.[119] Although the molecular drivers behind this
process are not yet fully understood, it has been demonstrated
that human monocytes and macrophages undergo M1-like
inflammatory polarization when exposed to high levels of glucose
in both culture conditions and in hyperglycemic subjects.[120]
This hyperpolarization to the pro-inflammatory arm represents
a flaw in the transition to the M2 subclass and, therefore, to an
anti-inflammatory and pro-healing profile. Additionally, diabetic
wound macrophages exhibit defective efferocytosis, a mechanism
for clearing apoptotic bodies in the wound bed.[121] This failure
increases the local surge of proinflammatory cytokines, which
perpetuates inflammation and increases the risk of it becoming
chronic.[121] Another study has documented that hyperglycemia
itself, without additional metabolic factors, induces a mixed
profile of M1/M2 cytokines that nurture diabetes-associated
inflammation and atherosclerosis.[122] The diabetic systemic
low-grade inflammatory phenotype is able to introduce monocyte
chromatin modification that, in turn, intensifies the persistent pro-
inflammatory state.[123]

The proliferative phase in diabetic foot ulcer healing is frequently
slow, torpid and asynchronous.[124] This may entail irregular and
abnormal fibroblast recruitment, scarce or abnormal extracellular
matrix protein secretion, limited cell-anchoring scaffold synthesis,
poor or abnormal angiogenesis—including pathologic vascular
remodeling, slow contraction of wound contours, torpid re-epithe-
lialization and the inability to remain in remission after epithelial
resurfacing.[11,125,126] From the molecular angle, compelling
evidence has identified high glucose burdens and accompanying
fluctuating glycemia spikes[127] as the proximal trigger of many
cellular impairments that generically transform into fibroblasts,
endothelial cells and keratinocytes in mitogenic and motogenic
arrest; premature apoptosis and the onset of a senescent phe-
notype.[128—130] Multiple de novo circuitries, metabolic shunts,
inflammatory-prone reactants and abnormal pathways in diabet-
ics impact the wound-healing response and perpetuate the ulcer.
[131,132]

Glycoxidation derivatives are intrinsically cytotoxic to productive
cells in granulation tissue, and further amplify pro-inflammatory and
pro-oxidative circuitry by binding to RAGE.[133,134] Glycoxidative
products accumulate in non-labile dermal collagen[132,134] leading
to cutaneous cell toxicity and premature senescence, impairing
fibroblast and endothelial cell physiology,[99] and consequently
delaying granulation tissue formation and maturation.[11,133]
Conclusively, within the wound, the triad of TNF-a, ROS and AGE
can initiate apoptosis of fibroblasts and vascular cells, thereby
prolonging inflammation, reducing growth factor availability and
opening the gate for the onset of the so-called ‘wound senescent
cell society’.[130,135—-137] It is not surprising therefore, that repair-
committed cells in diabetics move through proliferative arrest,
senescence, and apoptosis (Figure 3).[136]

Re-epithelialization failure in diabetics and the tendency toward
local recidivism are significant challenges for clinicians, wound
care providers, and basic scientists. It has been suggested
that an incomplete program of keratinocyte activation and
differentiation[138] is fundamental for the presence of mitotically
active—but not migrating—epithelial cells along the wound’s
leading edge.[73,76] High glucose has shown to exhibit a toxic
effect on keratinocytes, reducing proliferation, replicative life
span,[139] and migratory responses.[140] The fact is that, as
long as the wound is not resurfaced, the threat of infection and
amputation remains.

Diabetes and infection susceptibility The relationship between
DM type 2 (DMT2) and immunity is an expanding research field
in which new puzzle pieces are continuously discovered, often
increasing in complexity and stimulating controversy within the
field. This research incentive is fueled by the understanding that
diabetes increases the risk of certain infections[141] and infection-
related mortality.[142]

DMT2 is currently considered an immunometabolic disease,
given the role of T-lymphocyte activation in inflammation and in
the onset of insulin resistance.[143] The robust pathogenic loops
linking insulin secretion, peripheral insulin resistance, immuno-
inflammation and DMT2 are beyond the scope of this analysis,
and have already been thoroughly reviewed.[144—-146] The
links are well defined: inflammation leads to peripheral insulin
resistance and, in turn, insulin resistance leads to inflammation.
[147] However, it is important to note that inflammation does
not necessarily represent immunocompetence. On the contrary,
some experimental data suggest that diabetes-associated
hyperinflammation amplifies damage from bacterial infections
and leads to increased susceptibility to Gram-negative bacteria.
[148] Since the actual cause of death of the mice in one study
was hyperinflammation, the authors suggest that this rather
counterintuitive finding may respond to diabetes-associated RAGE
overexpression, which preconditions a chronic inflammatory
scenario that ultimately may be lethal when presented with the
additional challenge of a bacterial infection.[138] Cumulative
evidence documents a significant correlation between infection
and rate of glycemic control.[21,149,150] It follows that heightened
susceptibility to infections would be associated with insufficient
glycemic control.[151,152] This observation is particularly relevant
in the scope of our review to cellulitis, DFU, the devastating
conditions of necrotizing fasciitis, and Fournier’s gangrene.[22]

Hyperglycemia and insulin deficiency are considered the two
major etiopathogenic pillars of diabetes-associated immuno-
deficiency (Figure 4) and susceptibility to infections.[153—155]
Hyperglycemia as a primary trigger of pro-inflammatory cytokine
spillover[145] results in local and systemic inflammation, and
peripheral insulin resistance.[156,157] Increased levels of various
inflammatory markers and mediators—including white blood cell
count, C-reactive protein, pro-inflammatory cytokines and plas-
minogen activator inhibitor-1—are elevated in insulin resistant
subjects and DMT2-affected patients.[158,159] Although it may
appear contradictory, evidence suggests that peripheral blood
mononuclear cells (PBMC) from DMT1 and DMT2 patients secrete
lower constitutive-[160] and lipopolysaccharide (LPS)-stimulat-
ed[161] levels of TNF-a, IL-1 (a and ) and IL-6, as compared with
matched controls. The same cytokine secretion impairment was
confirmed for in vitro models where PBMCs from healthy donors
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were exposed to high glucose levels[162] or dextrose octreotide.
[163] This study demonstrates that glucose exposure dampened
IL-2, IL-6 and IL-10 levels in a concentration-dependent manner
while conversely inducing the expression of TGF-81 which may
explain immune failure.[162]

Increased glycation leads to a reduction of IL-10 secretion by
myeloid cells.[32] A recent study demonstrated that PBMC
steady-state expression of IL-1(3 appeared significantly increased
while IL-6 expression reduced 3.45-fold in a cohort of DMT2
patients, compared with healthy control subjects.[164] This is
a counterintuitive observation considering the canonic links
between IL-6, glucose metabolism, DMT2 and their complications.
[165-168]

Aside from these findings, a wealth of classic studies associated
elevated endovascular levels of pro-inflammatory cytokines with
insulin resistance and DMT2.[169,170] Subclinical blood elevation of
some of these markers anticipates the onset of DMT2,[171,172] and
the progression of multi-organ complications.[173,174] More recent
studies[175] have identified and expanded epigenetic explanations
as to why hyperglycemia induces long-lasting inflammatory
upheaval, even days after glucose normalization. The fact is that
hyperglycemia-associated chronic inflammation is epigenetically
sculpted and is one of the biochemical insignias of metabolic
memory.[176] Therefore, unraveling the roots of this plethora of
conceptual controversies requires additional studies.[177-179]

Incorporation of AGEs to non-diabetic—derived cells has
conclusively shown elevations in cytokine secretion,[100]

Figure 4. Diabetes impairs immune response and predisposes
patients to wound infection
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which led to the hypothesis that AGE is somehow involved in
diabetics’ increased basal cytokine secretion.[100] Glycation
also reduces expression of class-l major histocompatibility
complex on the surface of myeloid cells, which accounts for
impaired cellular immunity.[32] The presence of high glucose
concentrations leads to elevated constitutive (steady state)
cytokine production in resting cells, which becomes insufficient
upon PBMC stimulation. Cell stimulation provoked by cytokine
insufficiency is thought to be a critical factor in impaired immunity
and vulnerability to invading pathogens among diabetics.
[32,162,163,180] However, an alternative line of thought has
suggested that stimulating the immune system will imperil—
rather than protect—diabetics from acute Gram-negative
bacterial infections, and that dampening hyperinflammation
(with dexamethasone, for example) may restore the innate
immune response to such infections.[148]

Other studies have addressed leukocyte recruitment and
pathogen recognition abilities. Animal models demonstrate
that diabetes impairs CD45+ leukocyte and CD8+ T cell
recruitment, and reduces adhesion molecule expression and
cytokine production upon microbial invasion of different organs.
[181,182] More conflicting evidence exists, however, regarding
pathogen recognition via toll-like receptors (TLR). One line
indicates that TLR expression is reduced in diabetic mice.
[182,183] In contrast, studies in human samples attest that
TLR expression is low in diabetic subjects with complications
and deficient glycemic control, whereas it is high in patients
with well-controlled glycemia without complications.[184]
Overall it has been concluded that TLR pathway impairments
lead to diminished recognition of bacteria and may be one of
the mechanisms implicated in diabetic susceptibility to wound
infection.[183]

More coincidental revelations stem from the characterization
of neutrophil dysfunction documented in diabetic individuals
or in healthy donors exposed to high glucose burdens. The
so-called ‘oxidative burst’ plays a critical role in neutrophils’
antimicrobial defense and is reduced upon high glucose
concentration due to poor ROS and superoxide anion
productions.[185,186] Other studies have documented that
sustained hyperglycemia leads to neutrophils’ functional
decline and that the mechanisms behind this decline
include increased adhesive capacity, as well as diminished
chemotaxis, phagocytic activity and bactericidal capacity.
[102,187,188] This is a conflicting observation given the solid
evidence supporting the concept that hyperglycemia is a
major trigger of inflammation and hyper-oxidation in diabetes.
[189-191]

Other studies show lower neutrophil degranulation,[192]
decreased phagocytic capabilities,[193] immunoglobulin-
mediated opsonization inhibition[194] and limited NET
response ability.[195] These conflicts could be due to the type
and origin of the experimental designs of, and samples used
in, the studies; however, the overall interpretation of these
data has led to the conclusion that hyperglycemia damp-
ens PMN chemotaxis and phagocytic activities.[21] Diabe-
tes impairs the physiology of macrophages and other innate
immune cells. As stated above, diabetic patients are highly
susceptible to bacterial infections, and often have impaired
wound healing. However, despite years of research, the
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molecular mechanism underlying macrophage dysfunction in
diabetes is not fully understood .[196]

Under high glucose conditions, in vitro and in vivo models have
shown reduced complement receptors, adhesion capacity, phago-
cytosis and antibacterial activity.[197] Diabetic hyperlipidemia
and hyperglycemia introduce epigenetic modifications to mac-
rophages that promote the onset of an inflammatory phenotype.
[198] Thus, high glucose levels induce inflammatory polarization
of human macrophages in vitro whereas AGEs significantly prime
and promote M1 macrophage markers expression and IL-6 and
TNF-a secretion.[199] Accordingly, M1 macrophages have strong
microbicidal and antigen-presenting capacities, produce pro-
inflammatory cytokines (TNF-q, IL-6, IL-18), and ROS; whereas
M2 macrophages are considered pro-resolution response cells,
producing anti-inflammatory mediators (IL-10 and TGF-) and
consequently resolving inflammation.[200] In light of these obser-
vations, it is controversial to posit M2 macrophage polarization in
diabetic mice (db/db) as an explanation for their susceptibility to
bacterial infection.[196] As a matter of fact, M2 cells are scarce
within the wound environment where they are obviously neces-
sary.[201] Irrespective of the controversial issue of in-wound
recruited macrophage polarization, a recent study confirms that in
diabetic mice, macrophage phagocytosis and bactericidal activi-
ties are reduced upon long-term exposure to high glucose bur-
dens.[196] For these authors, long-term high-glucose treatment
reduced macrophage glycolytic capacity and glycolytic reserve, in
turn, impairing phagocytic capability.

NK' (natural killer) cells derived from diabetic individuals also
demonstrate defects in activating NKG2D and NKp46 receptors
related to NK degranulation failure.[196] Hyperglycemia is also
associated with a reduction in C4-fragment opsonization, which
inhibits classical or lectin pathways of complement activation,[202]
in impaired neutrophils’ bacterial killing capacity.[100,203] By
using peripheral blood lymphocytes from diabetic animal models
and human samples, studies have concluded that uncontrolled
diabetes increases chromatin condensation, DNA fragmentation
and lymphocyte death.[204]

Unlike the effect of hyperglycemia on immune cell activity in DMT2,
the impact of insulin deficiency in DMT2 immunoresponsive cells
against pathogens has not been widely studied.[170] Given that
these cell functions are energy-dependent processes, proper
insulin-regulated glucose metabolism is necessary. Insulin-driven
metabolic processes are not merely associated with immune-cell
ATP generation and utilization. Glucose and lipid metabolism
influences cellular phenotype, potential cellular reprograming
during patterns of recognition, and ultimately activation status.[205]
In activated T-lymphocytes, insulin stimulates glucose uptake,
oxidation, pyruvate flux and pyruvate dehydrogenase activity,
amino acid transport, lipid metabolism and protein synthesis.[206]
Recent findings implicate insulin in shaping the immune response
by modulating cell differentiation and polarization.[207,208] Thus,
in addition to its role in substrate metabolism, insulin is also an
anti-inflammatory and immunomodulatory hormone[209,210] via
immune cells’ metabolic regulation.[211]

Recent studies substantiate the importance of insulin in normal
innate immune response. An insulin deficit is associated with
alveolar macrophages’ phagocytic impairment as well as poor
cytokine secretion in alloxan-treated rats, reverted after insulin

intervention.[212] Insulin treatment of diabetic mice bone
marrow-derived macrophages restored production of critical pro-
inflammatory cytokines upon LPS exposure.[213]

Conclusively, the apparently ‘trivial’ blood glucose derangements
in diabetes reduce bactericidal and wound healing capacities in
innate immune operators, a phenomenon that, according to latest
evidence, is related to transcriptional aberrations in gene coding
for macrophage differentiation and lymphocyte migration and
proliferation at the hematopoietic stem/progenitor cell level.[214]
Thus, therapeutic manipulation of immune-metabolomic loops is
a promising therapeutic road.

Infection of diabetic foot ulcers: biofilm and its interaction
with the wound matrix Typically, once an ulcer develops, it is
colonized with microorganisms that may lead to a state of clinical
infection.[113] About 15%—25% of DM patients develop foot
ulcers during their lifetime and half of these become infected,
a recurrent complication in diabetics.[215,216] Infection can
spread to soft tissues and bone making it the main causal factor
of lower extremity amputation in most countries.[217] Thus, the
management of DFI represents a high cost for the health system,
a decrease in the quality of life of diabetic population, and a great
research incentive.[217]

DFl is defined as the presence of an inflammatory response and
tissue damage that can drive the clinical spectrum from superficial
cellulitis (mild infection) to chronic osteomyelitis (severe infection),
with host—microorganism interaction being crucial in determining
progression.[218,219] This interaction is defined by Casadevall
and Pirofsk as the “damage response framework model”,[220]
and proposes that infection outcomes are dependent on
mutual contributions of both the microbe and the host.[220] In
comparative terms, infection occurs when invading organisms
overwhelm the host's defenses.[221] In contrast, colonization
is defined as the presence of proliferating bacteria without an
overt host immunological reaction.[26] The reported critical limit
is 10% colony-forming units per gram of tissue,[222] indicating
the presence of a ‘critical’ degree of colonization marking the
point at which host defenses are no longer able to contain the
infection.[223] Nevertheless, preexisting diabetic neuropathy,
peripheral vascular disease, impaired leukocyte function[224]
and a deteriorated innate immune system make DFI clinical
diagnosis difficult while simultaneously worsening its prognosis.
[225,226] Under these circumstances, onset of classic signs of
infection may not occur,[227] even when there is a high bacterial
load.[226] Thus, the invading pathogen may progress and infect
with no clinical translation.

Staphylococcus aureus is a major pathogen of human skin.
This is also the most common pathogen identified in patients
with acute superficial DFU.[23,228,229] This pathogen, in its
interaction with the host’s diabetic wound environment, is able to
amplify certain glucose-regulated genes that ultimately increase
its virulence, indicating that hyperglycemic conditions facilitate
pathogen adaptation and survival, ultimately worsening patient
prognosis.[230]

Chronic ulcers usually exhibit polymicrobial infections including
a mixture of aerobic/anaerobic and Gram positive/negative
bacteria.[227,231] Some of the heterogeneous groups of
bacterial species identified in DFU patients have been compiled
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in Table 1.[26,232-234] Bacterial predominance differs
between studies. Nevertheless, recent literature point to Gram-
negative bacteria as the predominant group.[23,229,235,236]
The reported prevalence included Pseudomonas aeruginosa,
Klebsiella pneumoniae, and Escherichia coli.[237,238] Usually,
these results are influenced by several factors including infection
severity, demographic characteristics, glycemic control, and
ongoing or previous antibiotic treatments, as well as bacterial
identification method.[26]

Table 1: Bacterial species identified in diabetic foot ulcers

Aerobuc. I anae'roblc Anaerobic bacteria
facultative bacteria

Staphylococcus epidermidis
Staphylococcus saprophyticus
Pseudomonas aeruginosa

Clostridium species
Peptostreptococcus species
Dialister pneumosintes

Klebsiella pneumoniae
Escherichia coli
Streptococcus mutans
Streptococcus pyogenes
Bacillus subtilis

Proteus species

*Adapted from [26] and [234]

Bacteriodes fragilis
Anaerococcus prevotii
Anaerococcus tetradius
Eggerthella lenta
Fusobacterium mortiferum
Veillonella dispar

A ftraditional debate in this field is the relationship between
pathogenic potential and microbial bioburden, and how it
impacts the host. Here, it is important to highlight the diversity
of the microorganism population and its potential interactions, as
these may turn into cooperative pathogenic loops that enhance
antimicrobial resistance and imprint a particular signature on
each individual ulcer.[239] The symbiotic microbial interaction
within the ulcer’s ecosystem confers a virulence profile that is
far more important than the microorganism concentration in and
of itself.[222,240] Long-standing ulcers are more predisposed
to infection which, in addition to impairing the healing response,
may reduce peripheral insulin sensitivity.[21,241,242] Thus, the
longer the wound is maintained, the greater the risk for infection.
Another contribution of infected ulcers is their pathogenic effect at
the organism level. These ulcers act as pro-inflammatory organs
superimposed onto a host, pouring pro-inflammatory reactants,
oxygen free radicals and bacterial toxins into central circulation,
amplifying tissue injury and general homeostasis (Figure 5).[243]

Finally, it is noteworthy that DFI is frequently associated with
existing biofilm in the context of ulcers. Biofilm is a niche for
symbiotic microorganism interactions that essentially act as a
protector shield for bacterial populations.[244—246] How biofilm-
making microorganisms interact with immunocompromised
diabetics and their subsequent pathophysiological consequences
are relevant research topics.

The term biofilm was coined by the scientific community at the end
of the 20th century, which indicates that this is an emerging and
expanding research area.[247-250] DFU pathogens can exist as
planktonic form (free-living) or as a biofilm (sessile-living).[246] Both
phenotypic states may play important roles in impairing healing and
causing infection of both acute and chronic wounds.[251] Biofilm
acts as a collective entity endowed with superior antimicrobial
resistance when compared with its individual constituents. Several
in vitro experiments indicate that antibiotic resistance in biofilm
bacteria is up to 1000 times higher than in planktonic bacteria.[252]

Figure 5. Wound-infection feedback loop
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The ability of a microorganism to build up biofilms is an important
virulence factor and an advantageous organizational step. As
stated above, biofilm offers a protective environment or physical
barrier to biological and antimicrobial substances, facilitating
microorganism attachment to surfaces or to each other, ultimately
enabling survival and antibiotic resistance.[236,245] ‘Inoffensive’
non-pathogenic bacteria, incapable of promoting chronic wound
infection, may symbiotically interlink with pathogenic biofilm and
act synergistically to cause a chronic infection.[24] This structured
community of microorganisms can be classified as mono- or
polymicrobial, encased in extracellular polymeric substances
(EPS) or exo-polymeric substances.[253]

The community is a mixture not only of bacterial cells, but also
of fungi, viruses, proteins, extracellular DNA and other biogenic
factors that increase virulence and reduce treatment success.
[246] This and other virulence factors are possible through cell-
to-cell communication via quorum sensing (QS).[246,254] QS is
a form of cellular communication mediated by small molecules
that depend on cell density. The species of bacteria that reaches
critical-mass concentration produces large amounts of small
signaling molecules that modify gene expression. Indeed, bacterial
exchange coordination activities are based on this mechanism,
according to population size.[246] QS, together with the exchange
of genetic material by bacteria in the biofilm, give rise to different
microorganism phenotypes that ultimately affect ulcers as can be
seen in anti-microbial treatment results.[23] The fact that bacteria
are not motile in the biofilm context and have lower metabolic
and proliferative activities than their planktonic counterparts,[255]
makes appropriate antibiotic selection difficult. Many antibiotics
used for DFI treatment are only effective against actively dividing
cells.[256]
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Over the last few years, the concept of biofilm in dynamic
reciprocity between wound-bed cells and the host has attracted
increasing interest. Correspondingly, it has been proposed that
biofilms are responsible for over 90% of all chronic wounds. An
electron microscopy study assessing wound tissue biopsies
suggested that about 60% of chronic wounds have a biofilm
compared to 6% of acute wounds.[249] It is likely that at least
half of all chronic wounds develop a biofilm.[248,249] This result
indicates the contribution of biofilm to impaired wound healing
even when molecular mechanisms underlying biofilm-induced
chronification remain poorly understood.[257,258]

The various mechanisms by which biofilm obstructs the healing
response include failures in granulative tissue formation and
the re-epithelialization trajectory.[259] Accordingly, it is likely
that these events are consequences of anti-proliferative
signals derived from pathogens and a persistent inflammatory
environment[257] that aborts fibroblasts and keratinocyte
mitogenic, motogenic and secretory functions.[260] In line with
this notion, Trgstrup demonstrated that P. aeruginosa induces a
state of cellular quiescence reminiscent of premature senescence.
[62] P. aeruginosa also secretes a plethora of proteases resulting
in collagen, fibrinogen and elastin degradation, inhibition of
PMNs and complement systems, and basement membrane
degradation.[261,262] Similarly, proteases secreted by S. aureus
also degrade collagen and elastin. The ability to degrade surface-
associated adhesins enables bacterial phenotype transition from
adhesive to invasive.[263] Inhibition of neutrophil phagocytosis
and chemotactic activity is also associated with bacterial wound
infection.[264] In this steady inflammatory milieu, PMN-derived
elastase and other degradative enzymes increase wound tissue
damage, expand wound size and perpetuate chronicity.[62]
In-depth studies examining P. aeruginosa and host interaction
showed that TLR activation is inhibited by pathogen-derived
elastase, which allows evasion of host immunosurveillance.
[265] P. aeruginosa-derived rhamnolipids inhibit human beta-
defensin secretion by challenged keratinocytes, which contributes
to pathogen survival and colonization in compromised epithelia.
[266] Furthermore, it has been proposed that biofilm and
lipopolysaccharide EPS of Gram-negative bacteria inhibit
complement activation, further contributing to evasion of the host’s
innate defense system.[267,268] Microorganism-derived PAMP,
together with platelet-derived factors stimulate the influx of PMNs
and other immune cells, spreading the wound’s pro-inflammatory
reactants, increasing the level of ECM-degradative proteases,
and consequently curtailing the proliferative phase.[112,269,270]
Additionally, infiltrated inflammatory cells in response to bacterial
invasion via proinflammatory cytokines and AGE/RAGE axis
activation produce large amounts of ROS that act as local causal
factors for premature cell senescence.[271,272] In other words,
the pathogen manages to prevent otherwise normal PAMP-
induced innate immunity activation; and graphically speaking, the
DFU turns into a battlefield in which the pre-debilitated diabetic
host’s immune system is overwhelmed by biofilm-entrenched
microorganisms, thus perpetuating wound arrest.[62,273]

Biofilm identification is complex and dependent on more than
simple wound cultures obtained and evaluated using traditional
microbiological techniques. More sophisticated and expensive
techniques such as light and scanning electron microscopy
are required to evaluate biofilm in a wound. Therefore, biofilm
presence is often overlooked.[274,275] New molecular techniques

including DNA micro-arrays, multiplex real-time polymerase chain
reaction and functional metagenomics offer a unique opportunity
to characterize biofilm microbiome.[218] These technologies
facilitate analysis of a microorganism’s resistance potential and
virulence factors.[26]

Conclusively, underlying diabetic complications predispose
increased risk of developing DFI and other peripheral tissue
infections as compared to the risk in healthy populations. Biofilm-
forming microorganisms counteract the host’s defenses, prolong
DFU inflammation, deteriorate host anabolism and ultimately
increase the risk of amputation (Figure 5).[24,258,276]

CONCLUDING REMARKS

Wound healing is a complex biological process consisting of
precisely-predetermined overlapping phases integrated in a
sequential cascade aimed at morpho-functional restoration in a
physiological time window. Successful reparative response requires
concerted and cooperative integration of both systemic and local
signaling networks and driving forces. DM is an archetypal disease
in which a variety of both local and systemic factors combine to
disturb most healing phases. Thus, DFUs serve as a model for
chronic wounds, an often-devastating diabetic complication, and
the first cause of lower-limb amputations worldwide.

Underlying the ulcer’s onset and expansion is a complex interplay
of pathogenic vicious circles that turn DFUs into a pro-inflammatory,
pro-oxidant, pro-apoptogenic and pro-senescence-inducing
organ, superimposed onto a host with an already-debilitated
immune response. The failure of diabetic patients’ peripheral
immunosurveillance, as in the subsequent elicitation of effector
mechanisms, is the foremost contributing factor to DFU infections.

Diabetic dysimmunity is likely a major determining factor on
patient outcomes. It seems there is still a long way ahead before
we achieve a uniform, comprehensive understanding of the
actual immune profile of diabetic individuals. Further studies are
needed to disentangle critical contradictions and contemporary
conceptual paradoxes. Some of the current critical controversies
are highlighted in this paper. Of note, however, is the divergent
experimental data on whether hyperglycemia reduces pro-
inflammatory cytokines and whether this cytokine dampening
accounts for immune failure, as compared with other major
ongoing questions in DMT2.

We still do not know how to manipulate hyperinflammation or
how to reinstate leukocyte physiology once it is disrupted. At the
moment, infection remains a dismal complication of these wounds,
protracting pre-existing inflammation, dismantling local immune
response, amplifying fibroblast and keratinocyte arrest and further
disrupting the host’s internal homeostasis. Given that DFUs are
recurrently seeded by biofilm, eliminating infection is a challenging
task. This review confirms that, despite the efforts to understand
DFU pathophysiology, infection pathology and its interaction with
the host, DFU prevalence is rising while any reduction in amputation
rates remains modest. Therapeutically promising targets include:
1) Identification and pharmacological manipulation of epigenetic
drivers in wound-prolonged inflammation and chronification, even
in the ideal scenario of a non-infected ulcer; 2) Ablation of the
wound cell-senescent drivers, which could contribute to restoring
an acute wound-like closure trajectory; and 3) Characterization of
actors and pathways underlying hyperglycemia and insulinopenia-
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induced diabetic immune failure, and subsequent pharmacological
interventions to rebuild the immune system. These academic
imperatives must go hand-in-hand with diabetic self-care
educational programs, as well as systematic foot and neurological

examination by qualified specialists.
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