Ingenieria. Revista de la Universidad de Costa Rica

. -,
Ingenieria
g ISSN: 2215-2652
Rarvrsia o s Unievgrmueladd do Costa Kica
revista.inii@ucr.ac.cr
Universidad de Costa Rica

Costa Rica

Pérez Molina, Eduardo; Vargas Aguilar, Dario

UNCERTAINTY IN LAND VALUE MODELING OF THE
SAN JOSE METROPOLITAN REGION, COSTA RICA

Ingenieria. Revista de la Universidad de Costa Rica, vol. 34, num. 1, 2023
Universidad de Costa Rica
Ciudad Universitaria Rodrigo Facio, Costa Rica

DOI: https://doi.org/10.5517/ri.v34i1.56618

Disponible en: https://www.redalyc.org/articulo.oa?id=44176067005

Como citar el articulo @98\3@@@
Numero completo Sistema de Informacion Cientifica Redalyc
Mas informacion del articulo Red de Revistas Cientificas de América Latina y el Caribe, Espafia y Portugal
Pagina de la revista en redalyc.org Proyecto académico sin fines de lucro, desarrollado bajo la iniciativa de acceso

abierto


https://www.redalyc.org/comocitar.oa?id=44176067005
https://www.redalyc.org/fasciculo.oa?id=441&numero=76067
https://www.redalyc.org/articulo.oa?id=44176067005
https://www.redalyc.org/revista.oa?id=441
https://www.redalyc.org
https://www.redalyc.org/revista.oa?id=441
https://www.redalyc.org/articulo.oa?id=44176067005




Ingenieria. Revista de la Universidad de Costa Rica

Vol. 34, No. 1: 43-50, Enero-Junio, 2024. ISSN: 2215-2652. San José, Costa Rica

Uncertainty in Land Value Modeling of the San José

Metropolitan Region, Costa Rica

La incertidumbre en la modelacion de valores del suelo de la Gran Area Metropolitana, Costa Rica

Eduardo Pérez Molina '™, Dario Vargas Aguilar?
I Universidad de Costa Rica, San José, Costa Rica
correo: eduardo.perezmolina@ucr.ac.cr

2 Universidad de Costa Rica, San José, Costa Rica
correo: dario.vargasaguilar@ucr.ac.cr

Keywords:

Extrapolation, land values,
sequential Gaussian
simulation, spatial factors,
uncertainty.

Recibido: 12/09/2023
Aceptado: 30/11/2023

Abstract

Land value patterns show very distinct spatial associations with accessibility to urban centralities
and physical factors in a territory. However, predictions based on models of this structure can be highly
uncertain, as the underlying data also may show clustering (thus allowing for better predictions in more
densely sampled areas). An assessment of this uncertainty for land value extrapolations in the San José
Metropolitan Region of Costa Rica is presented, via conditional Gaussian simulation, and the determinants
of this uncertainty were explored, to find spatial strengths and weaknesses in the modeling efforts. The
E-Type prediction from the conditional Gaussian simulation was found to marginally improve on ordinary
kriging methods and it also provided explicit uncertainty patterns, which are the inverse of the land value
prediction. The estimated uncertainty was found to decrease with characteristics that identify suitability
for urban land use (and thus higher land values).
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Resumen

Los patrones de valor del suelo muestran asociaciones espaciales claras con accesibilidad a
centralidades urbanas y a factores fisicos de un territorio. Sin embargo, las predicciones basadas en esta
estructura pueden ser altamente inciertas, dado que los datos mismos también exhiben aglomeracion (y,
por tanto, permiten mejores predicciones en las zonas mas densamente muestreadas). Se presenta una
evaluacion de esta incertidumbre para extrapolaciones de valor del suelo en la Gran Area Metropolitana
de Costa Rica mediante simulaciones gaussianas condicionales y una exploracion de los determinantes de
esta incertidumbre, como forma de reconocer fortalezas y debilidades de esta prediccion. La prediccion
E-Type simulada resulté marginalmente mejor que extrapolaciones mediante kriging ordinario y produjo
una cuantificacion espacialmente explicita de la incertidumbre. El patron de incertidumbre resulto ser un
espejo de los valores del suelo. Se encontrd que la incertidumbre se reduce con caracteristicas asociadas
a mayor aptitud del suelo para usos urbanos y, por tanto, de mayor precio.
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1. INTRODUCTION

The analysis of uncertainty of land value models is a critical
issue for policy formulation [ 1]. However, while the use of Gaussian
simulation to understand uncertainty has long been applied to
physical land variables (e.g., [2]) and despite kriging having been
applied to land rents for at least 20 years [ 1], no previous cases of
conditional Gaussian simulation applied to land value modeling
were found .

In general, the analysis of land value in the San José
metropolitan region (GAM) has been fragmentary [1]. Recent
efforts from extension and research projects at the University of
Costa Rica, however, have yielded a data set of real estate listings
that provided the first synoptic view of real estate prices in the
region [3]. Based on this data, hedonic price models of housing
have been produced [3,4] and the first efforts at extrapolation of
land values for the entire region (based on kriging and co-kriging)
were developed [1]. To isolate land values, [1] consider in their
analysis only lots —i.e., properties offered in the land market with
no buildings on them and, therefore, with prices only reflecting the
attributes of land—; these initial efforts yielded estimates of mean
values and of variance, but they were limited to the kriging and
co-kriging models.

Given the current state of the question, two objectives are
proposed for this paper: first, to extend previous work on land value
extrapolation (by [1]) to include conditional Gaussian simulation
and, specifically, to include uncertainty estimates for the predicted
land value that can be derived with this method; second, to explore
whether the uncertainty of these estimates can be explained by
spatial structure (indeed, by the same spatial structure related to
the point pattern of real estate listings and to the land value pattern
itself).

2. METHODOLOGY

2.1 Land values in the GAM

Data were compiled by [1] from real estate listings published
on the web during 2020-2023. From an original data set of 3670
records with known location and price, extreme values (for the
variables price, lot area, and price per square meter) were filtered
out, resulting in a final data set of 3196 records. This data set was, in
turn, divided by randomly selecting approximately 10 % of records:
a calibration data set of 2878 records and a validation data set of
318 records result from this data wrangling process.

The final data sets (of calibration and validation) are shown
in Fig. 1. Locations in panel (a) coincide mainly with the urban
fabric of the GAM. It is worth noting that the calibration data seem
to include a greater proportion of locations in the more central
locations (or, conversely, the calibration data are distributed in a
way that should better represent the peripheral land values). The
land value per square meter was transformed into logarithms (as
in [1], [3], [4] and, more generally, following a standard practice
in the analysis of land values). The logarithmic transformation of
both the calibration and validation data sets (panel (b) of Fig. 1

presents the histogram with a logarithmic scale on the horizontal
axis) show a normal distribution, as should be expected, although
with some degree of skew towards the left (this may be explained
because the filtering process of extreme values is more efficient
in excluding excessively large values of price, area, and price per
unit of area).

(a) Lot Data Locations
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(b) Lot Price Histogram
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30 100 300 1000
Lot price (USD per square meter)

Calibration Validation

Fig. 1. (a) Lot data locations and (b) histogram of price (log. of USD per
square meter) in the GAM (in red, calibration data; in green, validation data).

2.2 Geostatistical analysis and conditional Gaussian simulation

As the final objective of the modeling efforts is to produce a
spatially explicit prediction of land values per square meter, which
is essentially an extrapolation, ordinary kriging was selected to
generate a linear weighted estimation for land values at unknown
locations from the data set [5], [6], [7].

In kriging, the spatial dependence structure is modeled through
a semivariogram, a function that relates the mean semivariance
(the squared differences in the Z value for pairs of locations xi, for
locations with known Z values) for all N pairs of locations within
a range of distances 4 [1],[6],[7]:

The empirical semivariogram is fitted by a function with a

specified form; for the GAM, [1] proposed a spheric adjustment;
the gstat package can determine the optimal parameters for this
function, based on the data [8].
y(W) = s BEVIZ (e + ) = Z()]? (1)
Under the kriging method, the predicted Z values for x; locations with
unknown land values result from a weighted average of locations
(with weights w;) with known land value, Z(x;):
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D = sup,|Ep(x) — G, (x)| 2)

Ordinary kriging chooses the optimal weights by minimizing
kriging variance, which can be determined from the semivariogram
model [5],[6].

The uncertainty estimate for the extrapolation was
determined using sequential Gaussian simulation, which is a
technique to systematically simulate realizations of a random field.
Given a semivariogram from the data and a random path through
all locations with no known values (such that each location is
only visited once), the sequential Gaussian simulation algorithm
proceeds as follows: (1) it searches for all sampled data and
for all previously simulated locations, (2) it applies kriging to
neighboring points and determines from it the linear estimate
and its variance, (3) sample the value from a normal distribution
with mean and variance from the kriging of the previous step, (4)
assign the sampled value to the location and proceed along the
random path to the next location [5]. The simulation is termed
conditional because it is conditioned on the data, via the kriging.

One hundred instances of land value patterns were simulated
using conditional Gaussian simulation; at each instance, only the
closest 320 points to the location being extrapolated (approximately
10 % of the calibration data) were considered in the kriging. Data
on each simulated instance were back-transformed into their
original units. Based on these simulations, the following metrics
were reported: (1) the E-Type prediction, which is the per location
(i.e., ensemble) mean of the land value [5], (2) the per location
standard deviation and coefficient of variation (the coefficient of
variation is the ratio of standard deviation to mean), and (3) the
per location 95t and 5th percentiles, as plausible bounds within
which the actual land value should be found. Calculations were
performed using the gstat package [8] of statistical software R [9].

2.3 The determinants of uncertainty: an exploration of social
and physical factors

The pattern of the simulated standard deviations was
analyzed to explore its association with other possible spatial
factors, in line with the objectives proposed. The variance follows
a y2 distribution. Therefore, to find the statistical significance of
the variation in the standard deviation associated to any given
factor, the following approach was employed: for all locations
in the prediction space, (1) histograms were computed for each
spatial factor and the locations were classified into three separate
groups based on limits defined by changes in the histograms of
the spatial factor; (2) a Kolmogorov-Smirnov non-parametric test
was conducted to determine whether the statistical distribution of

the standard deviation of any group was different from each of
the other groups (for each factor separately); (3) smooth kernel
densities were estimated for each group (using the geom_density()
function of the package ggplot [10] from R [9]); these densities
were compared. The relative positioning of the different kernel
densities (determined by the group) was interpreted to understand
how the factor affected the standard deviation. The general
expectation was that factors associated with greater suitability
for urban land use such as flatter terrain and greater accessibility
would present less uncertainty, as they should also be correlated
with greater density of locations with known land values [11].

Following [12], the Kolmogorov-Smirnov test is the most
common instrument to explore the hypothesis of whether two
samples are taken from the same statistical distribution. Taking
two samples, xy, ..., x,, and y;, ..., y, from two distribution
functions, F and G, one may form the empirical distribution
functions F,,: =| {xi: xi <x} |/m and G,: =| {yi: yi <y} |/n. The test
statistic for the null hypothesis that = G is given by:

7=3¥", wZ(x) 3)

which should be contrasted using probabilities from the cumulative
Kolmogorov distribution [12].

3. RESULTS

As was described, 100 instances of the logarithm of land
values in the GAM were simulated (their back-transformed mean,
95th and 5th percentiles are reported in Fig. 2).

Two important findings can be seen in Fig. 2, perhaps the
most important is reported in panels.

(d), (e), and (f): these summarize the uncertainty of the
E-Type estimates. The pattern of the coefficient of variation is,
approximately, the reverse of the land value predictions (most
clearly seen when compared with the E-Type prediction of panel
(a)). When contrasted with the density of points (Fig. 1, panel
(a)), there is also a clear association. However, the effect of the
algorithm can be seen in that the yellow area of low coefficient
of variation extends beyond the more urbanized area predicted
by large land values (the darker blue and purple intervals of Fig.
2, panel (a), which are also the areas with most sale listings in
Fig. 1, panel (a)). The coefficient of variation mostly predicts
standard deviations varying between 36 % and 65 % of the mean,
suggesting adequately precise measurements (relatively low
dispersion in the simulated instances); their distribution tends
to be right skewed within this range (shown in the histogram of
Fig. 2, panel (d)).
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Fig. 2. Conditional Gaussian Simulation of land value in the GAM (USD per square meter). (a) E-Type predic-
tion (cell-wise mean of simulated instances), (b) 95 percentile of simulated instances, (c) 5t percentile of
simulated instances, (d) location-wise coefficient of variation histogram, (e) descriptive statistics of simulated

predictions and data, (f) coefficient of variation map.

The second relevant finding of Fig. 2 corresponds to the
interpretation of panels (a), (b), and (c): in effect, the E-Type
prediction (of panel (a)) is the best estimate of land value; panels
(b) and (c) represent higher and lower bound values for this
prediction: the land value for 90 % of simulated instances was
estimated to lie within the range for each location. An examination
of this more detailed set of maps suggests uncertainties may be
larger than what the overall measures (of validation, discussed
and reported in TABLE I, and of the coefficient of variation)
had suggested. By comparing location-wise, for most locations,
the upper (95th percentile) or lower bound (5t percentile) shift
one category. Given the values involved, this represents around
double the back-transformed mean value.

It is also important to understand the quality of the
predictions. TABLE I summarizes the validation exercise results.
Following the methodological approach, 10 % of the lots data

were reserved for validation. For these locations, predictions of
land value were generated using (a) the E-Type prediction of
the conditional Gaussian simulation (the location-wise mean
of all instances) and (b) an ordinary kriging extrapolation, as
benchmark. The error was calculated by subtracting the land
value per square meter (of the data set) from the back-transformed
predicted value. Examining their absolute values, in general, the
error terms showed both models underestimated the actual land
value.

As can be seen in TABLE I, the E-Type land value prediction
is slightly worse than the ordinary kriging: all estimates of
error of the E-Type prediction are somewhat larger than the
corresponding value for ordinary kriging, as is the range is also
smaller. The differences are very small, in general (at least an
order of magnitude smaller than the error estimate). It is also
worth pointing out that both models have produced very accurate
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predictions: all mean and median error and RMSE estimates are
all less than half of the variable mean (for the land value per
square meter of the validation data set, which is reported in Fig. 2).

The predicted pattern of land values per square meter is
shown in Fig. 2. The pattern coincides with theoretical expectations
and indeed with previous, kriging-based analysis of land values
in the GAM from [1]: land values are larger (shown in dark
blue color) for the centers of San José and Heredia, and the
centers of Alajuela and Cartago are also relatively larger than
their surroundings. Furthermore, lower values are concentrated
on the periphery of the region (rural areas) and the northern zones
of Alajuela and Heredia tend to exhibit larger values than those
of Cartago and San José.

The second objective of this paper, following the estimation
of uncertainties, is to explore if these uncertainties respond
to regularities in space. To do so, five factors that determine
suitability for urban development (and, in consequence, are related
to land price formation in urban markets) were considered: slope
and elevation, and (Euclidean) distance to the CBD, to the nearest
municipal center and to the nearest main road. For each factor,
three groups of locations were created (except for elevation, for
which only two groups were defined) based on the factor value;
group intervals were generally defined based on the variable
histograms, although for slope, the group limits are related to
statutory building requirements.

TABLE I
VALIDATION OF PREDICTION MODELS OF LAND
PRICE (USD per square meter)

Prediction model

Error measure Conditional Gaussian Ordinary
Simulation (E-Type) Kriging
Root Mean Square Error 149.4 127.7
Mean Absolute Error 110.7 84.3
Median Absolute Error 82.5 56.8
Range of Error -569.2 - 677.0 -437.3-765.1
TABLE II

KOLMOGOROV-SMIRNOV STATISTICS FOR
DISTRIBUTION OF STANDARD DEVIATION
FOR DEVELOPED PREDICTIONS GROUPED BY

DETERMINANTS

Comparison D Statistic ~ Prob.
Slope
GI1:<30 % vs. G2:>30 % & <50 % 0.110 <0.01
G1: <30 % vs. G3:>50 % 0.137 <0.01
G2:>30 % & <50 % vs. G3:>50 % 0.117 <0.01
Elevation
G1: <1500 masl G2: >1500 masl 0.193 <0.01

Comparison D Statistic  Prob.

Distance to CBD

GI: <10 kmvs. G2: >10 km & <25 km 0.412 <0.01
G1:<10km vs. G3:> 25 km 0.583 <0.01
G2:>10km & <25 km vs. G3: > 25 km 0.178 <0.01
Distance to nearest municipal center

Gl: <2.5kmvs. G2:>2.5km & <7.5 km 0.364 <0.01
GI: <2.5kmvs. G3:>7.5 km 0.362 <0.01
G2:>2.5km & <7.5kmvs. G3: > 7.5 km 0.120 <0.01
Distance to nearest main road

GIl:<lkmvs. G2:>1 km & <7.5 km 0.268 <0.01
GI:<1kmvs. G3:>7.5km 0.409 <0.01
G2:>1km & <7.5kmvs. G3:>7.5km 0.160 <0.01

The Kolmogorov-Smirnov test was used to explore whether
the statistical distribution of standard deviation for each group was
different from other groups for the same factor. These results are
shown in TABLE II and, as should have been expected, all test
statistics confirmed the distribution of data of one group is distinct
from other groups. On the one hand, there are sufficient simulated
locations (over 28000) for even small differences to be significant.
On the other, the larger probability of urbanization associated
with flatter zones with greater accessibility to urban centralities
is also associated with both the point pattern of real estate sales
listings [11] —i.e., the sampling density, a key determinant of
uncertainty—and the land value itself.

(a) Slope categories
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(c) Distance to nearest main road
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Fig. 3. Empirical cumulative distribution functions for standard deviation
of simulated predictions (square of the log. of USD per square meter). Loca-
tions grouped by (a) slope, (b) Euclidean distance to CBD, (c) Euclidean
distance to main roads, (d) elevation, and (e¢) Euclidean distance to nearest
municipal center.

How each factor affects uncertainty (measured by the
standard deviation of land value of the simulated instances)
suggests urban areas have more diverse land values than zones less
suitable for urban uses. Fig. 3 shows kernel smoothed empirical
distribution densities for the location-wise standard deviation of
simulated instances, grouped by the categories that were used
in constructing TABLE II. The steeper locations (slopes greater
than 50 %) have distinctly larger uncertainty (a sharper peak at
higher value of the distribution) than other groups. This same
pattern is repeated for all variables: greater accessibilities to urban
centralities (the CBD, the nearest municipal center) or the regional
transportation network (main roads), represented by the pink
density function estimate, have all lower peaks at the lower end of
the standard deviation values, suggesting more dispersed values.
In general, the intermediate group of factor values (shown in light
green, Fig. 3) presents intermediate levels of uncertainty and the
group of larger factor values (light blue, Fig. 3), lower levels of

uncertainty (the density functions for intermediate groups are less
right skewed than those for the larger groups of factor values).

(b) Distance to CBD
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Fig. 4. Spatial patterns of determinants of uncertainty. (a) Slope, (b) Euclid-
ean distance to CBD, (c) Euclidean distance to main roads, (d) elevation,
and (e) Euclidean distance to nearest municipal center.

4. SYNTHESIS AND DISCUSSION

The analysis of land value patterns extended previous results
and it has provided further insights, which have contributed
to identify both needs for further study and opportunities for
applications to public policy.

The E-Type prediction from the conditional Gaussian
simulation was found to marginally improve on ordinary kriging
methods. The conditional Gaussian simulation produced, for
validation data, slightly better error measures (RMSE, mean,
median, and range of error) than ordinary kriging (in the analysis
of variations in kriging methods conducted by [1], the different
methods tested also resulted in very similar error levels for
validation). This result is indeed not surprising, as the simulations
are conditional on the variogram, and should more iterations had
been simulated, the difference would have likely been smaller.
On the other hand, in so far as improvements were generated by
the simulations, they were likely related to the improvement of
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over-smoothing limitations in the kriging predictions [5]; but
even this feature could have likely been incorporated into the
kriging by a careful consideration on the number of neighboring
points determining a prediction. Previous exercises of kriging
models did find limitations due to this over-smoothing problem
that seem to have been improved on by the sequential Gaussian
simulation method (in particular, by better modeling the local
changes at the peri-urban interface of the region); further work
on this issue seems promising.

A distinct advantage of conditional Gaussian simulation is
the spatially explicit measures of uncertainty that can be used
to explore the limitations of the prediction and to more easily
estimate exceedance probabilities [13]; this feature is especially
useful for land value maps in applied scenarios (for example, when
the map predicts land values claimed to be too large by a land
owner, this claim can be easily tested). Further work is required
on this issue (previous comparisons of models estimated from this
data and other data sources suggest systematic underestimation of
land values, particularly for taxation purposes [3]; while outdated
assessments are the simplest explanation, it is also possible that
data sources for the models reported in this paper may be also
partially skewing the results).

It is further worth noting that the literature has detected over-
smoothing problems associated with deterministic methods such as
ordinary kriging that can be overcome with simulation. The current
focus of this study was not the comparison of conditional Gaussian
simulation with other extrapolation predictions; however, this is
regarded as a potential area for further investigation.

The estimated uncertainty patterns are inversely related
to the predicted land value. A very clear and negative spatial
association was identified between the E-Type prediction of
land values per square meter and its standard deviation: in the
urban central area of the GAM, the highest land values (which
coincides both with previous analysis [1] and with theoretical
expectations from urban economics) and lowest uncertainties
were observed. This finding coincides with previous analysis
of the point pattern of real estate listings and its relation to the
determinants of suitability for urban land uses [11].

Indeed, the estimated uncertainty was found to decrease with
characteristics that identify suitability for urban land use (and thus
higher land values). The flatter areas of the GAM, which are also
closer to urban centralities (the CBD, main municipal centers),
showed much less uncertainty (smaller location-wise standard
deviation) than zones further away and at higher elevations and
steeper slopes. Therefore, the data set and modeling efforts appear
to demonstrate efficiency when predicting urban land values but
also present clear limitations if applied to rural land uses of the
urban periphery.

Despite its importance, hardly any previous case study
reports the use of simulation to understand uncertainty introduced
by interpolation into land or property value predictions (unlike
physical properties of soils, which are derived from similar point
data and for which such analysis seems common). Uncertainty has
been reported as variance of kriging estimates [ 1] or verification

through out-of-sample prediction [14], in relation to the mean
estimate from this indicator. While theoretical recognition of the
possibility to estimate errors and uncertainty in the context of
land valuation has been acknowledged [15], actual practice has
centered on the accuracy of the mean prediction rather than on
explaining its variance. Uncertainty is important for valuation,
especially when practical applications are performed (such as tax
assessments and potential challenges to these).

In conclusion, the analysis of uncertainties may be critical
for improving urban and regional studies (e.g., the impact of
new infrastructure or of land use regulations) and land value
assessments for tax policy. In this regard, the methods presented
have increased robustness (relative to very local estimates)
because predictions relatively far away from locations with known
values may still benefit from their price information via the spatial
dependence encoded in the semivariogram. More importantly, the
estimates of uncertainty permit the assessment of the prediction
for properties that have not been recently sold in the market (and
thus include an inherent check of the prediction which is absent
in isolated tax assessment exercises).
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knitr: :opts_chunk$set ( TRUE)
suppressMessages (library(sf))
suppressMessages(library(gstat))
suppressMessages (library(dplyr))
suppressMessages (library(tidyverse))
suppressMessages (library(sp))
suppressMessages (1library(ggplot2))
suppressMessages (library(ggspatial))
suppressMessages(library(stars))
suppressMessages (library(grid))
suppressMessages (library(gtable))
suppressMessages (library(gridExtra))

This document documents an exploration of uncertainty’s determinants when modeling land values. We begin
by loading the final data from our extrapolation paper (which include land value records to date for 2020,
2021, 2022, and 2023, already having filtered out the extreme values).

load("G:/20230815/16_ValorSueloIncertidumbre/01_Datos/MarkDown_all_20230722_papergraphs.RData")
#Data set available upon request from corresponding author

rm(

setdiff (1s(), c("GAM","lcu_pol","lots","lotsl","lots2","st_grid")))

We will now proceed as follows: (1) we generate 100 simulations of the land value pattern using sequential
Gaussian simulation and we use these to estimate the uncertainty in the data and (2) we then test whether
the uncertainty estimates vary systematically for a group physical factores (slope, elevation, distance to
CBD).

Sequential Gaussian Simulation

We begin by fitting the semivariogram to the lots data (we use the full dataset lots). Recall we have a good
approximation to starting values from the kriging paper we had previously written:

v.lots <- variogram(log(unitprice) ~ 1, lotsl)

##
##
##
##
##
##
##
##
##
##
##

Please note that rgdal will be retired during October 2023,

plan transition to sf/stars/terra functions using GDAL and PROJ

at your earliest convenience.

See https://r-spatial.org/r/2023/05/15/evolution4.html and https://github.com/r-spatial/evolution

rgdal: version: 1.6-7, (SVN revision 1203)

Geospatial Data Abstraction Library extensions to R successfully loaded

Loaded GDAL runtime: GDAL 3.6.2, released 2023/01/02

Path to GDAL shared files: C:/Users/Eduardo/AppData/Local/R/win-library/4.3/rgdal/gdal
GDAL does not use iconv for recoding strings.

GDAL binary built with GEOS: TRUE

Loaded PROJ runtime: Rel. 9.2.0, March 1st, 2023, [PJ_VERSION: 920]



## Path to PROJ shared files: C:/Users/Eduardo/AppData/Local/R/win-library/4.3/rgdal/proj

## PROJ CDN enabled: FALSE
## Linking to sp version:2.0-0

## To mute warnings of possible GDAL/OSR exportToProj4() degradation,
## use options("rgdal_show_exportToProj4_warnings"="none") before loading sp or rgdal.

m.lots <- vgm(0.4, "Sph", 10000, 0.2)#Starting model

(m.lots <- fit.variogram(v.lots, m.lots))

##  model psill range
## 1 Nug 0.1912351 0.00
## 2  Sph 0.3437995 10605.57
plot(v.lots, F, m.lots)
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Before coding the simulation, we create descriptives for the input data:

temp <- rbind(cbind(lotsi@datal,1:19],
cbind(lots2@datal,1:19],

#colnames (temp@data) [20] <- "Submuestra'

temp$Submuestra <- as.factor(temp$Submuestra)

plotl <- ggplot() +

layer_spatial (GAM, "black", NA)+
layer_spatial(lotsl, "red4", 0.8)+
layer_spatial(lots2, "forestgreen",
labs( "(a) Lot Data Locations") +

geom_sf() +

rep(1,length(lots1$X))),
rep(2,length(lots2$X))))

0.8)+



scale_y_continuous(breaks = c(10)) +
scale_x_continuous(breaks = c(-84.2)) +
theme_bw() + theme(legend.position="bottom",
legend.text=element_text(size=8),
legend.title:element_text(size=8),
text = element_text(size = 8)) +
annotation_north_arrow(location="t1", width = unit(.7, "cm"),
height = unit(.7, "cm")) +
annotation_scale(location="br")
plot2 <- ggplot(data=as.data.frame(temp),aes(x=log(unitprice))) +
geom_histogram(aes(fill=Submuestra)) +
scale_fill _manual(values = c("lightsalmonl","darkolivegreen2"),labels=c("Calibration","Validation")) -
geom_vline(xintercept = mean(log(temp$unitprice))) +
geom_text (aes(x=mean(log(temp$unitprice)), y=200,
label=paste("Mean:",round(mean(log(temp$unitprice)),3),"\nStd. dev.:",round(sd(log(temp
hjust=0, size=3.2) +
ggtitle("(b) Lot Price Histogram") +
xlab("Log. of lot price (USD per square meter)") + ylab("Count") + labs(fill="") +
theme_bw() + theme(legend.position="bottom",
legend.text=element_text(size=8),
legend.title:element_text(size=8),
axis.title=element_text(size=8),
plot.title = element_text(size=9.5))

And the figure for the text:

#jpeg (filename="F:/20230815/16_ValorSueloIncertidumbre/03_Reporte/Figuras/Fig901_location. jpg",
# width=6.5,height=2.2,untts="in",res=600)
grid.arrange(plotl,plot2,ncol=2)

## “stat_bin() using “bins = 30°. Pick better value with “binwidth”.
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Calibration Validation
#dev.off ()
rm(temp)
We now test for 5 simulations (following Pebesma’s example):
set.seed(131)
sim <- krige( log(unitprice)~1, lotsl, st_grid, m.lots,

290, 5)
## drawing 5 GLS realisations of beta...
## [using conditional Gaussian simulation]

We now look at the five simulations:

plot(sim)



siml sim2

sim3 sim4

sim5

Further explorations: the residuals.

# calculate generalised least squares restduals w.r.t. constant trend:

g <- gstat(NULL, "log.unitprice", log(unitprice)~1, lotsl, model = m.lots)
blue0 <- predict(g, newdata = lotsl, BLUE = TRUE)

## [generalized least squares trend estimation]

#> [generalized least squares trend estimation]
blueO$blue.res <- log(lotsi$unitprice) - blueO$log.unitprice.pred
bubble (blue0, zcol = "blue.res", main = "GLS residuals w.r.t. constant")



GLS residuals w.r.t. constant

o?

®
o

-1.449
0.304
0.825
1.135
2.633

And we are now ready to estimate 100 instances:

set.seed(1012)
sim.full <- krige(formula = log(unitprice)~1, lotsl, st_grid, model = m.lots,
nmax = 290, nsim = 100)

## drawing 100 GLS realisations of beta...
## [using conditional Gaussian simulation]

Compute uncertainty measures

We now estimate mean, standard deviation, and variation coefficient of the simulations. To do so, we convert
the simulation into a data frame (with the coordinates as variables), we estimate mean, standard deviation,
and coeflicient of variation, and we transform back into an sf object.

separated_coord <- sim.full %>%
mutate(long = unlist(map(sim.full$geometry,1)),
lat = unlist(map(sim.full$geometry,2)))
sim.full <- as.data.frame(sim.full)

The estimates for mean, standard deviation, coefficient of variation:

for(i in 1:length(sim.full[,1])){
sim.full$mean[i] <- mean(as.numeric(sim.full[i,1:100]),na.rm=TRUE)
sim.full$sd[i] <- sd(as.numeric(sim.full[i,1:100]) ,na.rm=TRUE)
sim.full$cv[i] <- sim.full$sd[i]/sim.full$mean[i]
#print (sim. ful l$mean[i])



rm(i)

And now we re-cast the result into an sf object:

sim.full <- st_as_sf(sim.full, 5367)

Describe uncertainty patterns and validate model
Validation with lots2 dataset

For every data point in lots2, we assign to it the value of the nearest point in the simulation grid (and
therefore all values from the simulation):

lots2 <- st_join(st_as_sf(lots2),st_as_sf(sim.full), st_nearest_feature)
lots2 <- as.data.frame(lots2)
for(i in 1:length(lots2[,1]1)){
lots2$mean[i] <- mean(as.numeric(lots2[i,25:124]), TRUE)
lots2$sd[i] <- sd(as.numeric(lots2[i,25:124]), TRUE)
lots2$cv[i] <- lots2$sd[i]/lots2$mean[i]
#print (sim. ful l$mean[i])
}

rm(i)
We then use the E-type estimate as the predicted value and then calculate estimates of error to validate the
simulation model:

error.val <- log(lots2$unitprice)-lots2$mean
mean(abs (error.val)) #mean error

## [1] 0.3792764

median(abs(error.val)) #median error

## [1] 0.2601104
sqrt (sum(error.val~2)/length(error.val) ) #RMSE (precision)

## [1] 0.5275186

range (error.val) #Range of estimated error

## [1] -2.779020 1.841764

We note the errors (of the logged unit price) are small: the mean of the logged unit price in lots2 is 5.349; by
comparison, mean and median errors are less than a 10th of it and the RMSE is of similar order of magnitude
(despite being expressed as the square of errors). So the model is quite good. (In the paper: compare to the
O.K. from the extrapolation piece.)

We further estimate the error measures for an ordinary kriging model, as benchmark:

ok.err <- krige(log(unitprice) ~ 1,
lotsi,
st_as_sf(lots2, 5367) ,
m.lots)

## [using ordinary kriging]

error.val.ok <- log(lots2$unitprice)-ok.err$varl.pred
mean (abs (error.val.ok)) #mean error

## [1] 0.3722722



median(abs(error.val.ok)) #median error

## [1] 0.2474721
sqrt (sum(error.val.ok"2)/length(error.val.ok)) #RMSE (precision)

## [1] 0.5221011

range (error.val.ok) #Range of estimated error

## [1] -2.708782 1.805745

Uncertainty simulation results
We now examine: (1) the maps of E-type, C.V., plus the 5th and 95th percentiles, (2) the histogram of C.V.
We begin by estimating the 5th and 95th percentiles:

sim.full <- as.data.frame(sim.full)
for(i in 1:length(sim.full[,1])){

sim.full$q05[i] <- quantile(as.numeric(sim.full[i,1:100]), 0.05)
sim.full$q95[i] <- quantile(as.numeric(sim.full[i,1:100]), 0.95)
}
rm(i)

We now determine the categories for the map colors and create categorical variables for mapping:

#For predictions:

quantile(as.matrix(sim.full[,1:100]), c(0,0.25,0.5,0.75,0.9,0.95,1))

## 0% 25% 50% 75% 90% 95% 100%

## 1.212987 4.218608 4.748454 5.312895 5.813971 6.097342 8.299906

#For C.V.

quantile(sim.full$cv, c(0,0.25,0.5,0.75,0.9,0.95,1))

#it 0% 25% 50% 75% 90% 95% 100%

## 0.05791793 0.09663170 0.11754878 0.13754983 0.15184679 0.15883800 0.19216319
#Categories for E-type

sim.full$CatMean <- 1

sim.full$CatMean[sim.full$mean>4.220160] <-
sim.full$CatMean[sim.full$mean>4.753129] <-
sim.full$CatMean[sim.full$mean>5.315921]
sim.full$CatMean[sim.full$mean>5.813729] <-
sim.full$CatMean[sim.full$mean>6.095221] <-
#Categories for 5th

sim.full$Catq05 <- 1
sim.full$Catq05[sim.full$q05>4.220160] <-
sim.full$Catq05 [sim.full$q05>4.753129] <-
sim.full$CatqO05[sim.full$q05>5.315921] <-
sim.full$Catq05 [sim.full$q05>5.813729] <-
sim.full$Catq05[sim.full$q05>6.095221] <-
#Categories for 95th

sim.full$Catq9b <- 1

sim.full$Catq95 [sim.full$q95>4.220160] <-
sim.full$Catq95[sim.full$q95>4.753129] <-
sim.full$Catq95[sim.full$q95>5.315921] <-
sim.full$Catq95[sim.full$q95>5.813729] <-

A
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sim.full$Catq95[sim.full$q95>6.095221] <- 6
#Categories for CV
sim.full$Catcv <- 1

sim.full$Catcv[sim.full$cv>0.09628661] <- 2
sim.full$Catcv[sim.full$cv>0.11665832] <- 3
sim.full$Catcv[sim.full$cv>0.13671871] <- 4
sim.full$Catcv[sim.full$cv>0.15141502] <- 5
sim.full$Catcv[sim.full$cv>0.15875727] <- 6
#Check

table(sim.full$CatMean)

##

## 1 2 3 4 5 6

## 4120 12350 6171 4308 1011 397
table(sim.full$Catq05)

##

## 1 2 3 4 5

## 20185 4575 3138 446 13
table(sim.full$Catq95)

#it

#i 2 3 4 5 6

## 5566 7738 10293 3738 6032
table(sim.full$Catcv)

##

## 1 2 3 4 5 6

## 6959 6883 7122 4452 1505 1436

sim.full <- st_as_sf(sim.full, 5367)

And the summary statistics table:

tab.var <- rbind(c(round(mean(log(lotsi$unitprice)),3),round(sd(log(lotsi$unitprice)),3),
round (min(log(lotsi$unitprice)),3) ,round (max(log(lotsi$unitprice)),3)),
c(round(mean(log(lots2$unitprice)),3) ,round(sd(log(lots2$unitprice)),3),
round (min(log(lots2$unitprice)),3) ,round(max(log(lots2$unitprice)),3)),
c(round(mean(sim.full$mean),3) ,round(sd(sim.full$mean),b3),
round (min(sim.full$mean),3) ,round (max(sim.full$mean),3)),
c(round(mean(sim.full$q95),3) ,round(sd(sim.full$q95),3),
round (min(sim.full$q95),3) ,round(max(sim.full$q95),3)),
c(round (mean(sim.full$q05),3) ,round(sd(sim.full$q05),3) ,round (min(sim.full$q05),3) ,rouw
tab.var <- as.data.frame(tab.var)
colnames(tab.var) <- c("Media","Desv. est.","Min.","Max.")
rownames (tab.var) <- c("Lots calibration data","Lots validation data","E-Type pred.",
"95th perc. pred.","5th perc. pred.")

To show it in the figure, we must convert it to a grob object:

panel6 <- tableGrob(tab.var, ttheme_minimal ( list( list( 0.7)), list
title <- textGrob("(e) Descriptive Statistics\n",gp=gpar( 9))

panel6 <- gtable_add_rows(panel6, grobHeight (title), 0)

panel6 <- gtable_add_grob(panel6,title,1, 1, 1, ncol(panel6))

rm(title)



The five panels and table are defined in the following chunk:

sim.full <- sim.full %>%
mutate(long = unlist(map(sim.full$geometry,1)),
lat = unlist(map(sim.full$geometry,2)))
# The E-type prediction
panell <- ggplot() +
geom_raster(data = sim.full , aes(x=long/1000,y=1at/1000,fill = as.factor(CatMean)))+
scale_fill_manual(values=c("khakil","lightsalmon","maroonl",
”mediumorchid3”,”mediumpurp1e4",”#003366”),
labels=c("1.13-4.22","4.22-4.75","4.75-5.32",
"5.32-5.81","5.81-6.10","6.10-8.31")) +
labs(title="(a) E-Type",x="",y="") +
scale_y_continuous(breaks = c¢(1100)) +
scale_x_continuous(breaks = c(475)) +
theme_bw() +
theme (legend.position = "none",text = element_text(size = 8),
axis.text.y = element_text(angle = 90))
# The 95th percentile
panel2 <- ggplot() +
geom_raster(data = sim.full , aes(x=long/1000,y=1at/1000,fill = as.factor(Catq95)))+
scale_fill_manual(values=c("khakil","lightsalmon","maroonl",
"mediumorchid3", "mediumpurple4", "#003366"),
labels=c("1.13-4.22","4.22-4.75","4.75-5.32",
"5.32-5.81","5.81-6.10","6.10-8.31")) +
labs(title="(b) 95th percentile",x="",y="") +
scale_y_continuous(breaks = c(1100)) +
scale_x_continuous(breaks = c(475)) +
theme_bw() +
theme (legend.position = "none",text = element_text(size = 8),
axis.text.y = element_text(angle = 90))
# The 5th percentile
panel3 <- ggplot() +
geom_raster(data = sim.full , aes(x=long/1000,y=1at/1000,fill = as.factor(Catq05)))+
scale_fill_manual(values=c("khakil","lightsalmon","maroonl",
"mediumorchid3", "mediumpurple4", "#003366"),
labels=c("1.13-4.22","4.22-4.75","4.75-5.32",
"5.32-5.81","5.81-6.10","6.10-8.31")) +
labs(title="(c) 5th percentile",x="",y="",6fill="Log. of price") +
scale_y_continuous(breaks = c¢(1100)) +
scale_x_continuous(breaks = c(475)) +
theme_bw() +
theme (legend.position = "bottom",text = element_text(size = 8),
axis.text.y = element_text(angle = 90)) +
guides(fill = guide_legend(nrow = 2))

# CV map
panel4d <- ggplot() +
geom_raster(data = sim.full , aes(x=long/1000,y=1at/1000,fill = as.factor(Catcv)))+
scale_fill_manual(values=c("khakil","orange","red","darkolivegreen3",
"forestgreen","#003366"),
labels=c("0.05-0.10", "0.10-0.12", "0.12-0.14",
"0.14-0.15", "0.15-0.16","0.16-0.20")) +
labs(title="(f) Coeff. of variation",fill="Fraction",x="",y="") +

10



c(1100)) +
c(475)) +

scale_y_continuous (breaks

scale_x_continuous(breaks
theme_bw() +
theme (legend.position = "bottom",text = element_text(size = 8),
axis.text.y = element_text(angle = 90)) +
guides(fill = guide_legend(nrow = 2))
# CV histogram
panels <- ggplot() +
geom_histogram(data=as.data.frame(sim.full),
aes(x=cv),fill="darkolivegreen3") +
ggtitle("(d) Coeff. of variation \n Histogram") +
labs(y="Count",x="") + theme_bw() +
theme(plot.title = element_text(size=9))

And we now plot the result:

m <- matrix(c(1,2,1,2,1,2,1,2,1,2,
3,4,3,4,3,4,3,4,3,4,
5,6,5,6,5,6,5,6,5,6,5,6,5,6), ncol=2, byrow=TRUE)

#ipeg (filename="G:/20230815/16_ValorSueloIncertidumbre/03_Reporte/Figuras/Fi902_maps. jpg",

# width=6.6,height=7,units="in", res=600)

#jpeg (filename="D:/TEMPforCALC/16_ValorSueloIncertidumbre/03_Reporte/Figuras/Fig02_maps. jpg",

# width=6.6,height=7,units="in", res=600)

grid.arrange(panell,panel5b,

panel2,panel6,
panel3,panel4d,layout matrix = m)

## “stat_bin()" using “bins = 30°. Pick better value with “binwidth".

11
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1500 -
1000 1
500 ~
0 -

1100

Count

0.10 0.15 0.20
(e) Descriptive Statistics

Media  Desv. est. Min. Max.

Lots calibration data  5.359 0.723 3.239 7.321
Lots validation data  5.349 0.709 3.261 7.131

1100

E-Type pred. 4.771 0.558 3.659 6.622

95th perc. pred. 5.653 0.524 4.279 7.483

(f) Coeff. of variation

1100
1100

1.13-4.22 4.75-5.32 . 5.81-6.10

0.05-0.10 . 0.12-0.14 0.15-0.16

4.22-4.75 5.32-5.81 0.10-0.12 0.14-0.15 0.16-0.20

Log. of price Fraction

#dev.off()

Explain uncertainty patterns

We will now explore the impact of determinants on the location-wise estimated variance. To do so, we will
subdivided the locations according to a given determinant and we will compare the statistical distribution
among these groups. Should statistically significant differences be found, we will then compare the ecdf’s of
the groups in order to determine the relative magnitude and direction of the influence of the factor.

First, we create a data set with the variance estimate and the corresponding determinants (slope, distance to
CBD, distance to municipal centers, elevation, distance to main roads):

det.analysis <- as.data.frame(sim.full)

det.analysis <- det.analysis %>J, select(sd,geometry)

det.temp <- as.data.frame(st_grid)

sum((det.analysis$geometry==det.temp$geometry)) #i/e check they perfectly coincide; they do because the s

## [1] 28357

det.analysis <- cbind(det.analysis,det.temp)
det.analysis <- as.data.frame(det.analysis)
rm(det.temp)

det.analysis <- det.analysis %>/, select(-geometry)

We examine the histograms of the determinants and create groupings:

ggplot() + geom_histogram(data=det.analysis,aes(x=slope))#We use 30 and 50 from law

## “stat_bin() using “bins = 30°. Pick better value with “binwidth”.

12
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ggplot() + geom_histogram(data=det.analysis,aes(x=elev))

## “stat_bin()" using “bins = 30°. Pick better value with “binwidth".

13
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#Nothing especially salient, 1500 is the peak
ggplot() + geom_histogram(data=det.analysis,aes(x=distSJ))

## “stat_bin()" using “bins = 30°. Pick better value with ~binwidth~.
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#less than 10k, more than 25k are the tails

ggplot() + geom_histogram(data=det.analysis,aes(x=distMun))

## “stat_bin()" using “bins = 30°. Pick better value with ~binwidth~.
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#something around 2500; 7500 as a second (to divide somehow)
ggplot() + geom_histogram(data=det.analysis,aes(x=distRd))

## “stat_bin()” using “bins = 307 . Pick better value with “binwidth”.
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#something around a 1000m; rest is smooth: we choose 7500
#(roughly half the remaining range)

#Slope:

det.analysis$CatSlope <- 1
det.analysis$CatSlope[det.analysis$slope>30] <- 2
det.analysis$CatSlope[det.analysis$slope>50] <- 3
#Elevation

det.analysis$CatElev <- 1
det.analysis$CatElev[det.analysis$elev>1500] <- 2
#Dist SJ

det.analysis$CatDSJ <- 1
det.analysis$CatDSJ[det.analysis$distSI>10000] <- 2
det.analysis$CatDSJI[det.analysis$distSI>25000] <- 3
#Dist Mun

det.analysis$CatDmun <- 1
det.analysis$CatDmun[det.analysis$distMun>2500] <- 2
det.analysis$CatDmun[det.analysis$distMun>7500] <- 3
#Dist Road

det.analysis$CatDrd <- 1
det.analysis$CatDrd[det.analysis$distRd>1000] <- 2
det.analysis$CatDrd[det.analysis$distRd>7500] <- 3

We then apply the Kolmogorov-Smirnov test

#Slope tests:
ks.test(det.analysis$sd[det.analysis$CatSlope==1] ,det.analysis$sd[det.analysis$CatSlope==2])
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##
##
##
##
##
##

ks

##
##
##
##
##
##

ks

##
##
##
##
##
##

Asymptotic two-sample Kolmogorov-Smirnov test

data: det.analysis$sd[det.analysis$CatSlope == 1] and det.analysis$sd[det.analysis$CatSlope == 2]

D = 0.34743, p-value < 2.2e-16
alternative hypothesis: two-sided

Asymptotic two-sample Kolmogorov-Smirnov test

.test(det.analysis$sd[det.analysis$CatSlope==1] ,det.analysis$sd[det.analysis$CatSlope==3])

data: det.analysis$sd[det.analysis$CatSlope == 1] and det.analysis$sd[det.analysis$CatSlope == 3]

D = 0.47409, p-value < 2.2e-16
alternative hypothesis: two-sided

Asymptotic two-sample Kolmogorov-Smirnov test

.test(det.analysis$sd[det.analysis$CatSlope==2] ,det.analysis$sd[det.analysis$CatSlope==3])

data: det.analysis$sd[det.analysis$CatSlope == 2] and det.analysis$sd[det.analysis$CatSlope == 3]

D = 0.1405, p-value < 2.2e-16
alternative hypothesis: two-sided

#Elevation test:
ks.test(det.analysis$sd[det.analysis$CatElev==1] ,det.analysis$sd[det.analysis$CatElev==2])

##
##
##
##
##
##

Asymptotic two-sample Kolmogorov-Smirnov test

data: det.analysis$sd[det.analysis$CatElev == 1]
D = 0.43611, p-value < 2.2e-16
alternative hypothesis: two-sided

#Distance to SJ test:

ks.

##
##
##
##
##
##

ks

##
##
##
##
##
##

ks

##
##

test(det.analysis$sd[det.analysis$CatDSJ==1] ,det.

Asymptotic two-sample Kolmogorov-Smirnov test

data: det.analysis$sd[det.analysis$CatDSJ == 1]
D = 0.34869, p-value < 2.2e-16
alternative hypothesis: two-sided

.test(det.analysis$sd[det.analysis$CatDSJ==1] ,det.

Asymptotic two-sample Kolmogorov-Smirnov test

data: det.analysis$sd[det.analysis$CatDSJ == 1]
D = 0.60063, p-value < 2.2e-16
alternative hypothesis: two-sided

.test(det.analysis$sd[det.analysis$CatDSI==2] ,det.

Asymptotic two-sample Kolmogorov-Smirnov test
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and det.analysis$sd[det.analysis$CatElev == 2]

analysis$sd[det.analysis$CatDSJ==2])

and det.analysis$sd[det.analysis$CatDSJ == 2]

analysis$sd[det.analysis$CatDSJ==3])

and det.analysis$sd[det.analysis$CatDSJ == 3]

analysis$sd[det.analysis$CatDSI==3])



##
##
##
##

data: det.analysis$sd[det.analysis$CatDSJ == 2]
D = 0.30724, p-value < 2.2e-16
alternative hypothesis: two-sided

#Distance to Mun test:

ks.

##
##
##
##
##
##

ks

##
##
##
##
##
##

ks

##
##
##
##
##
##

test(det.analysis$sd[det.analysis$CatDmun==1] ,det

Asymptotic two-sample Kolmogorov-Smirnov test

data: det.analysis$sd[det.analysis$CatDmun == 1]
D = 0.37775, p-value < 2.2e-16
alternative hypothesis: two-sided

.test(det.analysis$sd[det.analysis$CatDmun==1],det

Asymptotic two-sample Kolmogorov-Smirnov test

data: det.analysis$sd[det.analysis$CatDmun == 1]
D = 0.70641, p-value < 2.2e-16
alternative hypothesis: two-sided

.test(det.analysis$sd[det.analysis$CatDmun==2] ,det

Asymptotic two-sample Kolmogorov-Smirnov test
data: det.analysis$sd[det.analysis$CatDmun == 2]
D = 0.4013, p-value < 2.2e-16

alternative hypothesis: two-sided

#Distance to Rd test:

ks.

##
##
##
##
##
##

ks

##
##
##
##
##
##

ks

##
##
##
##

.test(det.analysis$sd[det.analysis$CatDrd==1],det

.test(det.analysis$sd[det.analysis$CatDrd==2],det

test(det.analysis$sd[det.analysis$CatDrd==1],det

Asymptotic two-sample Kolmogorov-Smirnov test
data: det.analysis$sd[det.analysis$CatDrd == 1]

D = 0.26871, p-value < 2.2e-16
alternative hypothesis: two-sided

Asymptotic two-sample Kolmogorov-Smirnov test
data: det.analysis$sd[det.analysis$CatDrd == 1]

D = 0.62426, p-value < 2.2e-16
alternative hypothesis: two-sided

Asymptotic two-sample Kolmogorov-Smirnov test

data: det.analysis$sd[det.analysis$CatDrd == 2]
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and det.analysis$sd[det.analysis$CatDSJ == 3]

.analysis$sd[det.analysis$CatDmun==2])

and det.analysis$sd[det.analysis$CatDmun == 2]

.analysis$sd[det.analysis$CatDmun==3])

and det.analysis$sd[det.analysis$CatDmun == 3]

.analysis$sd[det.analysis$CatDmun==3])

and det.analysis$sd[det.analysis$CatDmun == 3]

.analysis$sd[det.analysis$CatDrd==2])

and det.analysis$sd[det.analysis$CatDrd == 2]

.analysis$sd[det.analysis$CatDrd==3])

and det.analysis$sd[det.analysis$CatDrd == 3]

.analysis$sd[det.analysis$CatDrd==3])

and det.analysis$sd[det.analysis$CatDrd == 3]



## D = 0.36695, p-value < 2.2e-16
## alternative hypothesis: two-sided

We create the panels with the ecdfs for the determinants with expected difference:

# Density plots with semi-transparent fill
panel7 <- ggplot(det.analysis, aes(x=sd, fill=as.factor(CatSlope))) +
geom_density(alpha=.3) +
scale_fill_manual (values=c("red","forestgreen", "#003366"),
labels=c("<30%",">30 & <50%",">50%")) +
ggtitle("(a) Slope categories") +
labs(y="Density",x="",£i11="") + theme_bw() +
theme (legend.position="right",
legend.text=element_text(size=8),
legend.title=element_text(size=8),
axis.title=element_text(size=8),
plot.title = element_text(size=9.5))
panel8 <- ggplot(det.analysis, aes(x=sd, fill=as.factor(CatElev))) +
geom_density(alpha=.3) +
scale_fill_manual (values=c("red","forestgreen"),
labels=c("<1500 masl",">1500 masl")) +
ggtitle("(d) Elevation categories") +
labs(y="Density",x="",£i11="") + theme_bw() +
theme (legend.position="right",
legend.text=element_text(size=8),
legend.title=element_text(size=8),
axis.title=element_text(size=8),
plot.title = element_text(size=9.5))
panel9 <- ggplot(det.analysis, aes(x=sd, fill=as.factor(CatDSJ))) +
geom_density(alpha=.3) +
scale_fill_manual (values=c("red","forestgreen", "#003366"),
labels=c("<10 km",">10 & <25 km%",">25 km")) +
ggtitle("(b) Distance to CBD") +
labs(y="Density",x="",fi11="") + theme_bw() +
theme (legend.position="right",
legend.text=element_text(size=8),
legend.title=element_text(size=8),
axis.title=element_text(size=8),
plot.title = element_text(size=9.5))
panell0 <- ggplot(det.analysis, aes(x=sd, fill=as.factor(CatDmun))) +
geom_density(alpha=.3) +
scale_fill_manual (values=c("red","forestgreen", "#003366"),
labels=c("<2.5 km",">2.5 & <7.5 km",">7.5 km")) +
ggtitle("(e) Distance to nearest municipal center") +
labs(y="Density",x="",fi11="") + theme_bw() +
theme (legend.position="right",
legend.text=element_text(size=8),
legend.title=element_text(size=8),
axis.title=element_text(size=8),
plot.title = element_text(size=9.5))
panelll <- ggplot(det.analysis, aes(x=sd, fill=as.factor(CatDrd))) +
geom_density(alpha=.3) +
scale_fill_manual (values=c("red","forestgreen", "#003366"),
labels=c("<1.0 km",">1.0 & <7.5 km",">7.5 km")) +
ggtitle("(c) Distance to nearest main road") +
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labs(y="Density",x="",fi11="") + theme_bw() +

theme (legend.position="right",
legend.text=element_text(size=8),
legend.title=element_text(size=8),
axis.title=element_text(size=8),
plot.title = element_text(size=9.5))

And finally we plot the result for reporting;:

#ipeg (ftlename="F:/20230815/16_ValorSueloIncertidumbre/03_Reporte/Figuras/Fig03_ecdfs. jpg",
# width=6.6,height=6,units="in", res=600)
grid.arrange (panel7,panel8,

panel9,panelll,

panelll, ,ncol=2)

(a) Slope categories (d) Elevation categories
D <30%
[::] <1500 mas
|:| >30 & <50%
[::] >1500 mas
O - T T T T T D >50% O - T T T T T
04 05 06 0.7 08 04 05 06 07 0.8
(b) Distance to CBD (e) Distance to nearest municipal center
10.04
2 |:| <10 km 2 |:| <2.5km
2 2
3 |:| >10 & <25 km% g |:| >2.5 & <7.5 km
OO B T T T T T D >25 km OO - T T T T T D >75 km
0.4 0506 0.7 0.8 0.4 0.5 0.6 0.7 0.8
(c) Distance to nearest main road
= |:| <1.0 km
2
8 |:| >1.0 & <7.5 km
0.0- [:] >7.5 km
0.4 05 0.6 0.7 0.8
#dev.off()
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