

CienciaUAT

ISSN: 2007-7521 ISSN: 2007-7858

Universidad Autónoma de Tamaulipas

Ramírez-Díaz, Roselia; Pinto-Ruiz, René; Medina-Jonapá, Francisco; Guevara-Hernández, Francisco Efecto de inoculantes y aditivos sobre fracciones de fermentación ruminal y degradación *in vitro* en ensilaje de sorgo (*Sorghum* sp) CienciaUAT, vol. 15, núm. 1, 2020, Julio-Diciembre, pp. 172-179 Universidad Autónoma de Tamaulipas

DOI: https://doi.org/10.29059/cienciauat.v15i1.1332

Disponible en: https://www.redalyc.org/articulo.oa?id=441970372012

- Número completo
- Más información del artículo
- Página de la revista en redalyc.org

Sistema de Información Científica Redalyc

Red de Revistas Científicas de América Latina y el Caribe, España y Portugal Proyecto académico sin fines de lucro, desarrollado bajo la iniciativa de acceso

abierto

Efecto de inoculantes y aditivos sobre fracciones de fermentación ruminal y degradación in vitro en ensilaje de sorgo (Sorghum sp) Effect of inoculants and additives on fractions of ruminal fermentation and *in vitro* degradation in sorghum silage (*Sorghum* sp) Roselia Ramírez-Díaz, René Pinto-Ruiz*, Francisco Medina-Jonapá, Francisco Guevara-Hernández

RESUMEN

La acción de inoculantes y aditivos sobre la composición química y degradación ruminal de la materia seca (MS) de ensilaje de sorgo ya ha sido reportada. Sin embargo, se desconoce el efecto que estos tienen sobre la actividad microbiana, y por lo tanto, sobre su po-tencial de asimilación a nivel ruminal. El objetivo de este estudio fue evaluar el efecto de la adición de inoculantes y aditivos en ensilaje de la planta completa de Sorghum sp. sobre las fracciones de fermentación ruminal y degradación in vitro. Se utilizó un diseño experimental completamente al azar, con 7 tratamientos (control, 3 inoculantes, 2 aditivos y una combinación de inoculante con aditivo) y 21 repeticiones por tratamiento. Se usaron diferentes tipos de inoculantes y aditivos en el proceso de ensilaje de sorgo: lactosuero, yogur, ácido fosfórico, Lactobacillus plantarum y mezcla mineral. Después de 60 d de fermentación, se cuantificaron MS, pH, proteína cruda (PC), degradación in vitro de la MS a 24 h (DIVMS), parámetros de la cinética de fermentación (Vmáx = volumen máximo, L = fase lag, S = tasa de fermentación) y volumen fraccional (fermentación rápida = 0 h a 8 h, media = 8 h a 24 h y lenta = 24 h a 72 h) por producción de gas in vitro. El análisis estadístico indicó que los inoculantes y aditivos modificaron la composición química, los parámetros L, Vmáx, DIVMS y las fracciones de fermentación rápida y media (P < 0.05). El uso de lactosuero y L. plantarum como inoculantes en ensilaje de sorgo redujo la pérdida de PC y, en general, los inoculantes y aditivos mejoraron el pH de los ensilajes; no obstante, disminuyeron el aprovechamiento de las fracciones de fermentación rápida y media, modificaron el potencial de fermentación y provocaron efecto negativo en la DIVMS.

PALABRAS CLAVE: inoculante, calidad nutritiva, cinética de producción de gas.

ABSTRACT

The action of inoculants and additives on the chemical composition and ruminal degradation of sorghum silage dry matter (DM) has already been reported. However, the effect that these have on the microbial activity and, therefore, on its potential for assimilation at the ruminal level is unknown. For that reason, the objective of this study was to evaluate the effect of the addition of inoculants and additisves in silage of the entire plant of *Sorghum* sp. on fractions of ruminal fermentation and in vitro degradation. The experimental design was completely random, with 7 treatments (3 inoculants, 2 additives and a combination of inoculate with additive) and 21 repetitions per treatment. Different types of inoculants and additives were used in the process of sorghum silage: cheese whey, yogurt, phosphoric acid, Lactobacillus plantarum and mineral mixture. After 60 d of fermentation, dry matter (DM), hydrogen potential (Hp), crude protein (CP), in vitro dry matter degradation to 24 h (IVDMD), parameters of fermentation kinetics (Vmax= maximum volume L = lag phase, S = fermentation rate) and fractional volume (rapid fermentation = 0 h to 8 h, intermediate = 8 h to 24 h and slow = 24 h to 72 h) were quantified through the in vitro gas production technique. The results indicated that the inoculants and additives modified the chemical composition, the L parameters, Vmax, IVDMD and the rapid and intermediate fermentation fractions (P < 0.05). The use of cheese whey and L. plantarum as inoculants in sorghum silage reduced the loss of CP. Overall, the use of inoculants and additives improved silage Hp; however, it decreased the use of rapid and intermediate fermentation fractions, modified the fermentation potential of the silage and provoked a negative effect on the IVDMD.

KEYWORDS: inoculant, nutritive quality, kinetics of gas production.

^{*}Correspondencia: pinto_ruiz@yahoo.com.mx/Fecha de recepción: 28 de julio de 2019/Fecha de aceptación: 12 de febrero de 2020/Fecha de publicación: 31 de julio de 2020.

Universidad Autónoma de Chiapas, Facultad de Ciencias Agronómicas, carretera Ocozocoautla-Villaflores km 84.5, Villaflores, Chiapas, México, C. P. 30470.

INTRODUCCIÓN

El sorgo (Sorghum sp) es un cultivo eficiente en el uso del agua y tiene un mayor rendimiento en biomasa en comparación con el cultivo de maíz, por lo que es una alternativa para ser utilizado en forma de ensilaje (Corral y col., 2011; Bande y col., 2015; Sánchez-Duarte y col., 2019).

El ensilaje es un método de conservación de forrajes con alto contenido de humedad que se fundamenta en la fermentación ácido láctica anaeróbica del forraje (Maza y col., 2011). Mediante este proceso, el ensilaje se conserva con un mínimo de pérdidas de materia seca (MS) y nutrientes, manteniendo una buena palatabilidad para el ganado (Reyes y col., 2018). Sin embargo, una inadecuada conservación del forraje conlleva pérdidas de MS del material vegetal, bajo consumo del ensilaje y pobre utilización de los nutrientes por parte de rumiantes (Rendón y col., 2013), por lo que la utilización de inoculantes, previo al ensilaje, es una estrategia para mejorar la estabilización del proceso fermentativo, ya que contienen bacterias productoras de ácido láctico que se agregan a la población bacteriana natural para ayudar a garantizar una fermentación rápida y eficiente en el silo (Antolín y col., 2012; Boschini y Pineda, 2016), mientras que los aditivos aceleran la disminución de pH (Reyes y col., 2018), optimizando con ello la conservación y calidad nutritiva del ensilaje. Si bien son diversos los estudios sobre el efecto de inoculantes y aditivos en el consumo y calidad nutritiva de los ensilajes (Guevara y col., 2016; Borreani y col., 2018), la información referida al ensilado con inoculantes y aditivos y su efecto sobre la asimilación a nivel ruminal es limitado (Muck v col., 2018), por lo que se requiere generar información detallada que especifique los efectos sobre el ensilaje de sorgo que se producen al utilizar determinado inoculante o aditivo. En este sentido, los parámetros y fracciones de fermentación permiten conocer el efecto de la actividad microbiana sobre el alimento, y por lo tanto, su potencial de asimilación a nivel ruminal (Aguirre y col., 2017).

El objetivo de esta investigación fue evaluar el efecto de inoculantes y aditivos en ensilajes de sorgo sobre los parámetros y fracciones de fermentación ruminal y degradación in vitro.

MATERIALES Y MÉTODOS

El sorgo fue establecido, cosechado y preservado en el Centro Universitario de Transferencia y Tecnología (CUTT) San Ramón, mientras que los análisis fueron realizados en el Laboratorio de Nutrición animal, ambos pertenecientes a la Facultad de Ciencias Agronómicas de la Universidad Autónoma de Chiapas, localizada en el municipio de Villaflores, en la región Frailesca, en Chiapas, México, el cual cuenta con un clima cálido subhúmedo, con lluvias en verano, una precipitación de 1 100 mm anuales, y una temperatura media anual de 25 °C.

La siembra del sorgo se realizó en agosto de 2018, a chorrillo, con una distancia entre surcos de 50 cm, y una densidad de siembra de 10 kg/ha, bajo condiciones de temporal. Las plantas de sorgo tenían una madurez fisiológica de 85 d y se cortaron con un tractor y una ensiladora mecánica de la marca John Deere[®], modelo 3 800, Illinois, Estados Unidos de Norte América, con cabezal de 1 surco y 12 cuchillas, calibrada para cosechar a 20 cm del suelo, con un tamaño de partícula aproximado de 1.5 a 2.5 cm. El sorgo (tallos, hojas y grano) se homogenizó manualmente antes de introducirlo en los microsilos, tal como señala Montenegro y col. (2018).

Los microsilos se elaboraron en bolsas de polietileno de color negro con una capacidad de 50 kg. Para la elaboración de los ensilajes (Tabla 1) se usó el método descrito por Pinto y col. (2010), y los inoculantes y aditivos fueron aplicados con atomizador de la marca SprayMaster®, modelo S-16187, Wisconsin, Estados Unidos de Norte América, con capacidad de un litro, con una presión de aspersión de 3 m². Se utilizaron 3 inoculantes (lactosuero, yogur natural y Lactobacillus plantarum), 2 aditivos (ácido fosfórico al 85 % con

Tabla 1. Tratamientos, tipos y cantidades adicionadas de inoculantes y aditivos en la elaboración de ensilajes de sorgo (Sorghum sp).

Table 1. Treatments, types and amounts of added inoculants and additives in the preparation of sorghum silages (*Sorghum* sp).

Número	Tratamiento	Cantidad inoculante/aditivo para 50 kg de <i>Sorghum</i> sp
T1	Control	0.0
T2	Lactosuero	250 mL
Т3	Yogur	2.5 g*
T4	Yogur + ácido fosfórico (AF)	$2.5\mathrm{g}$ +10.5 mL
T5	Ácido fosfórico	$10.5\mathrm{mL^*}$
Т6	Lactobacillus plantarum	0.2 g*
T7	Mezcla mineral	1.0 g

^{*}Los inoculantes y aditivos se disolvieron en 250 mL de agua.

61 % de pureza y mezcla mineral que contenía fósforo 12 %, calcio 11 %, magnesio 2.8 %, cloro 19.36 %, sodio 12.53 %, yodo 70 ppm, manganeso 5 600 ppm, zinc 5 600 ppm, cobre 1 400 ppm, selenio 14 ppm y cobalto 28 ppm libre de urea) y una mezcla entre un inoculante y un aditivo (yogur + ácido fosfórico). Los tratamientos se muestran en la Tabla 1. T1: ensilaje sin inoculante y sin aditivo (control); T2: lactosuero (con 60° Dornic y 0.98 % de PC); T3: yogur natural (Yoplait®, 5 x 10⁻⁴ UFC/g de Lactobacillus bulgaricus); T4: yogur + ácido fosfórico al 85 %; T5: ácido fosfórico al 85 %; T6: Lactobacillus plantarum (10 x 10 UFC/g) (Biosile®); T7: mezcla mineral (Tres Reyes®). Los microsilos fueron abiertos para su evaluación a los 60 d posteriores a su elaboración.

En cada tratamiento se determinó el contenido de MS (Harris, 1970), proteína cruda (PC) (Bateman, 1970) y se midió el pH (Shi y col., 2012) con un potenciómetro Orion Research SA 210[®] (Estados Unidos). La degradación, los parámetros de fermentación y las fracciones de fermentación se midieron por la técnica de producción de gas *in vitro* (Menke y Steingass, 1988); para ello, se colocaron 0.5 g de sustrato por tratamiento (ensilajes) en frascos de vidrio color ámbar de 125 mL de ca-

pacidad. Posteriormente, bajo flujo continuo de bióxido de carbono (CO₂), se les adicionó 90 mL de inóculo ruminal diluido (1:10), el cual se obtuvo de tres ovinos de la raza Pelibuey alimentados ad libitum con una dieta compuesta por Cynodon nlemfuensis (60 %) y concentrado (40 %) formulado para satisfacer sus necesidades nutricionales de acuerdo al Consejo Nacional de Investigación (NRC, por sus siglas en inglés: National Research Council) (NRC, 2007). El inóculo ruminal fue filtrado a través de 8 capas de tela de gasa, y se adicionó en una proporción de 1:10 a una solución mineral reducida compuesta de K₂HPO₄ (0.45 g/L), KH₂PO₄ (0.45 g/L), NaCO₃ (0.6 g/L), (NH4)₂SO₄ (0.45 g/L), NaCl (0.9 g/L), MnSO₄ (0.18 g/L), CaCl₂ (0.12 g/L), L-cisteína $(0.25 \text{ g/L}) \text{ y Na}_{2}\text{S} (0.25 \text{ g/L})$. Se incluyeron tres frascos blancos (sin sustrato) para cada tratamiento. Los frascos fueron cerrados herméticamente con un tapón de goma y aro metálico; con el uso del manómetro se extrajo el exceso de CO2 para igualar la presión a cero, y se colocaron en baño maría a 39 °C (Prendo[®], BM 36, México). La presión de gas de fermentación se midió con un manómetro marca Infra modelo 63100/1-4, Estado de México, México (0 kg/cm a 1 kg/cm) a 2 h, 4 h, 6 h, 8 h, 12 h, 17 h, 24 h, 34 h, 48 h, 55 h y 72 h de incubación. Los valores de presión (kg/cm) se transformaron a volumen de gas (mL/g sustrato) con la ecuación de regresión (volumen = presión/0.019 con R²= 0.98), y se estimaron los parámetros de la cinética de producción de gas: volumen máximo (Vmáx; mL/g), tasa (S; h) y fase lag (L; h), para el modelo logístico V = Vmáx/1+e (²-4*S (T-L)) (Schofield y Pell, 1995), utilizando el Sistema de Análisis Estadístico (SAS, por sus siglas en inglés: Statistical Analysis System) (2011).

La degradación *in vitro* de la materia seca (DIVMS) se determinó a 24 h y 48 h. Se calculó por diferencia entre el peso de la materia inicial, antes de ser incubada, y el peso de la materia residual después de 24 h y 48 h de incubación. Al final del periodo de incubación, el residuo de cada frasco se filtró a través de papel de filtrado previamente pesado. Los papeles con residuo se secaron a 65 °C por 48 h, se pesaron y se restó el peso del papel filtro.

Las fracciones de fermentación se obtuvieron mediante el volumen fraccional (Vf) de gas de fermentación producido a tres intervalos de tiempo: 0 h a 8 h (Vfo-8), 8 h a 24 h (Vf8-24) y 24 h a 72 h (Vf24-72) de incubación, que corresponden a carbohidratos solubles, carbohidratos de reserva y carbohidratos estructurales, respectivamente (Sandoval y col., 2016). Estos volúmenes fraccionales (mL/g)

fueron transformados a fracciones (g/kg) de rápida (FR), media (FM) y lenta (FL) fermentación mediante las siguientes ecuaciones de regresión (Miranda y col., 2015): FR (g/kg) = $Vf_{0-8}/0.426$ 6 (R² = 0.944 1), FM (g/kg) = $Vf_{8-24}/0.615$ 2 (R² = 0.998), FL (g/kg) = $Vf_{24-72}/0.345$ 3 (R² = 0.965 3).

Se fabricaron 49 microsilos (7 tratamientos con 7 repeticiones). Se tomaron 7 submuestras por microsilo, mismas que conformaron una muestra compuesta. El diseño experimental utilizado fue completamente al azar, con 7 repeticiones para MS, PC y pH, y 21 repeticiones para los parámetros de fermentación, fracciones v DIVMS, las cuales fueron obtenidas de los valores medios, productos de la repetición por tres veces consecutivas del experimento, según recomienda Udén y col. (2012). Los resultados se analizaron a través de procedimientos de modelo linear general (GLM, por sus siglas en inglés: General Linean Model) del SAS (2011) y las medias se compararon con la prueba de Tukey (P < 0.05).

RESULTADOS Y DISCUSIÓN

El contenido de MS fue mayor (P < 0.05) en los ensilajes de sorgo con inclusión de inoculantes y aditivos en comparación al control (31.52 %) (Tabla 2). Esto podría estar relacionado con la evaporación de agua durante el proceso de ensilaje (Miranda-Yuquilema y

■ Tabla 2. Proteína cruda, valores de pH y porcentaje de materia seca (MS) en ensilajes de sorgo. Table 2. Crude protein, Hp values and dry matter (DM) percentage in sorghum silages.

Tratamiento	PC (%)		рН		MS (%)	
Tratamiento	Inicial	Final	Inicial	Final	Inicial	Final
1. Control	8.00 ± 0.08	$6.28 \pm 0.16^{\rm bcd}$	5.10 ± 0.09	$3.94 \pm 0.31^{\rm a}$	29.85 ± 1.93	$31.52 \pm 1.63^{\rm a}$
2. Lactosuero	8.03 ± 0.01	$6.81 \pm 0.32^{\rm ab}$	5.12 ± 0.07	$3.71 \pm 0.06^{\rm ab}$	30.10 ± 2.55	$39.29 \pm 2.40^{\rm b}$
3. Yogur	7.70 ± 0.16	6.55 ± 0.10^{bc}	5.13 ± 0.09	3.62 ± 0.05^{b}	30.20 ± 1.72	$41.46 \pm 3.97^{\rm bc}$
4. Yogur + AF	7.84 ± 0.15	$6.53 \pm 0.09^{\rm bcd}$	5.11 ± 0.12	$3.63 \pm 0.11^{\rm b}$	29.75 ± 1.76	$43.31 \pm 2.42^{\rm bc}$
5. Ácido fosfórico	7.80 ± 0.17	$6.00 \pm 0.27^{\rm d}$	5.12 ± 0.15	$3.59 \pm 0.05^{\rm b}$	30.30 ± 1.20	40.88 ± 3.06^{bc}
6. L. plantarum	8.00 ± 0.06	7.18 ± 0.06^{a}	5.13 ± 0.02	$3.78 \pm 0.07^{\rm ab}$	29.60 ± 1.65	$46.64 \pm 4.46^{\rm bc}$
7. Mezcla mineral	7.85 ± 0.26	$6.27 \pm 0.12^{\rm cd}$	5.10 ± 0.14	$3.79 \pm 0.04^{\rm ab}$	30.20 ± 2.04	45.22 ± 2.79^{bc}

Media en la misma columna con letras distintas difiere estadísticamente (P < 0.05). $\pm = desviación estándar; <math>PC = proteína cruda; pH = potencial de hidrógeno; MS = materia seca.$

col., 2017). Corral y col. (2011) también reportaron un aumento de MS al ensilar sorgo. Sin embargo, los resultados del presente trabajo difieren a lo documentado en otros trabajos al evaluar el efecto de *Lactobacillus acidophilus, Enterococcus faecium, Lactobacillus plantarum* y *Pediococcus acidilactici* sobre la calidad nutritiva de ensilajes de maíz, al indicarse que la MS disminuye al incorporar inoculantes al proceso de fermentación (Cubero y col., 2010).

Las concentraciones de PC, pH y MS fueron diferentes (P < 0.05) entre los tratamientos evaluados, siendo el T6 (Lactobacillus plantarum) el que presentó mayor PC, con 7.18 %, pero similar (P > 0.05) al T2 (lactosuero), con 6.81 % de PC, mientras que el T5 presentó el menor contenido (P < 0.05), con 6 % (Tabla 2). La pérdida del nutriente se asocia a la proteólisis y su utilización como fuente de energía durante la fermentación (Castaño y Villa, 2017), así como a la cantidad de efluentes exudados durante este proceso (Corral y col., 2011), lo que reduce la calidad nutricional del ensilaje (Rendón y col., 2014). Otros trabajos han reportado también pérdidas en el contenido de PC que varían en los rangos del 11 % al 55 % (Boschini y Pineda, 2016: Pineda y col., 2016). En este estudio, el uso de *L. plantarum* (T6) y lactosuero (T2) conservó mejor la PC en los ensilajes de sorgo, situación que podría atribuirse a una menor degradación de la proteína y menor pérdida de N, derivado de una fermentación más eficiente durante el proceso de ensilado (Ruiz y col., 2009).

Bajo las condiciones experimentales de los tratamientos evaluados, se encontró que el pH disminuyó más rápidamente hasta los 10 d del proceso de ensilaje y a partir de este tiempo la disminución del pH fue menor (datos no mostrados). Al finalizar el experimento, los tratamientos T3, T4 y T5 tuvieron mayor acidez (P < 0.05). No obstante, todos los tratamientos presentaron niveles de pH por debajo de 4.0, lo que sugiere un proceso de fermentación adecuado (Avellaneda y col., 2016) que facilita la conservación durante el proceso de ensilaje (Perea y col., 2017).

En cuanto a los parámetros de fermentación y degradación *in vitro* (Tabla 3), el T1 se fermentó en menor tiempo (L = 10.51 h) que el resto de los tratamientos evaluados, mientras que la mayor tasa de producción de gas (S) fue para T1, T2, T6 y T7 (P < 0.05). Su poten-

■ Tabla 3. Valores de fase lag, tasa de fermentación, volumen máximo de gas y degradación *in vitro* del ensilaje de sorgo.

Table 3. Lag phase values, fermentation rate, maximum gas volume and *in vitro* degradation of sorghum silage.

Tratamiento	L (h)	S (h)	Vmáx (mL/g)	DIVMS 24 h (%)	DIVMS 48 h (%)
1. Control	$10.51 \pm 0.77^{\rm b}$	$0.02 \pm 0.000 6^{a}$	357.23 ± 5.70^{ab}	31.32 ± 0.02^{ab}	$46.83 \pm 0.29^{\rm a}$
2. Lactosuero	13.12 ± 1.20^{a}	$0.02 \pm 0.000 4^{\rm a}$	362.83 ± 3.50^{a}	31.95 ± 0.73^{a}	47.20 ± 1.10^{a}
3. Yogur	$14.42 \pm 0.20^{\rm a}$	$0.01 \pm 0.001 2^{\rm b}$	$332.70 \pm 6.69^{\rm abc}$	$28.36 \pm 0.26^{\circ}$	$41.80 \pm 0.40^{\circ}$
4. Yogur + AF	$12.86 \pm 2.00^{\rm ab}$	$0.01 \pm 0.000 5^{\rm b}$	$337.90 \pm 4.68^{\rm abc}$	$27.95 \pm 0.05^{\circ}$	$43.85 \pm 0.25^{\rm abc}$
5. Ácido fosfórico	$15.28 \pm 0.96^{\rm a}$	$0.01 \pm 0.001 2^{\rm b}$	$316.43 \pm 3.50^{\rm bcd}$	26.90 ± 0.34°	$41.58 \pm 4.26^{\circ}$
6. L. plantarum	$14.11 \pm 0.96^{\rm a}$	$0.02 \pm 0.000 4^{\rm a}$	294.07 ± 8.85^{d}	29.35 ± 0.09^{bc}	46.02 ± 0.65^{ab}
7. Mezcla mineral	14.37 ± 1.20^{a}	0.02 ± 0.0007^{a}	$308.23 \pm 10.30^{\rm cd}$	$23.76 \pm 0.04^{\rm d}$	42.60 ± 2.20°

Media en la misma columna con letras distintas difieren estadísticamente (P < 0.05). ± = desviación estándar; L = Fase lag; S = Tasa de producción de gas; Vmáx = Volumen máximo de gas; %DIVMS = Porcentaje de Degradación in vitro de la Materia Seca.

cial de fermentación, dado por el volumen máximo de gas (Vmáx), fue mayor (P < 0.05) para el T2, T3 y T4, pero igual al T1. El T6 presentó Vmáx menor (P < 0.05).

Se encontraron diferencias significativas en la DIVMS entre los tratamientos evaluados. El T1 obtuvo una DIVMS a 24 h de 31.32 %, mientras que los T3, T4 y T5 tuvieron menor DIVMS (P < 0.05). Pero el T7 mostró la menor DIVMS a 24 h, con 23.76 %. En cuanto a la DIVMS a 48 h, los T1, T2 y T6 tuvieron mayor degradación (P < 0.05), aunque similar al T4. Los T3, T5 y T7 tuvieron menor DIVMS (Tabla 3). La DIVMS a 24 h y 48 h del ensilaje de sorgo se vio afectada por el uso de T3, T4, T5 y T7, lo que pudiera estar relacionado con el aporte de factores de crecimiento de los microorganismos ruminales (Rodríguez y col., 2013). En este sentido, el Vmáx se asoció a la DIVMS a 24 h; no obstante la bondad de ajuste fue baja ($R^2 = 0.295$, P = 0.05). Por su parte, los parámetros L ($R^2 = 0.18$, P = 0.052) y S ($R^2 = 0.045$, P = 0.09) no se asociaron a la DIVMS, por lo que se considera que estos parámetros pueden variar por otros factores (datos no mostrados).

Las diferencias entre las fracciones fermentables del ensilaje de sorgo con incorporación de inoculantes y aditivos fueron significativas (P < 0.05) (Tabla 4). El T1 tuvo valores de fermentación rápida (FR) de 5.71 g/kg, similar al T4. El T7 presentó menor fracción de FR, con 1.84 g/kg (P < 0.05). La fermentación media (FM) de los ensilajes se vio afectada (P < 0.05) por el tipo de inoculante y aditivo utilizado. Se observa que la FM y FL del T2 fue similar al T1 (P < 0.05), pero estos fueron superiores al resto de los tratamientos (P > 0.05).

Las diferencias encontradas en FR, FM y FL entre los tratamientos evaluados provocaron diferencias (P < 0.05) en la FT. La disminución en las fracciones FR y FM de los tratamientos evaluados posiblemente se debió a que los inoculantes y aditivos provocaron una mayor acidificación durante el proceso de conservación del sorgo, lo que redujo la cantidad de carbohidratos no estructurales como los azúcares y el almidón (Cajarville y col., 2012; Rendón y col., 2014). Este efecto influye directamente sobre el tiempo en que los microorganismos comienzan la degradación de los sustratos (fase Lag), así también, influye sobre la DIVMS a 24 h (Tabla 3). Por su parte, la FL de los ensilajes no se vio afectada (P > 0.05) por el uso de inoculantes y aditivos. Por otra parte, los ensilajes presentaron mayor FL en comparación con FR y FM, lo cual coincide con lo reportado en la literatura, que indica que los

■ Tabla 4. Fracciones fermentables de ensilaje de sorgo con incorporación de inoculantes y aditivos. Table 4. Fermentable fractions of sorghum silage with the incorporation of inoculants and additives.

The town is not a	Fracciones fermentables (g/kg)					
Tratamiento	FR0 a 8	FM8a24	FL24 a 72	FT		
1. Control	$5.71 \pm 0.62^{\rm a}$	17.50 ± 0.26^{a}	82.18 ± 4.45 ^a	105.40 ± 4.80^{a}		
2. Lactosuero	$3.78 \pm 0.64^{\rm bc}$	16.65 ± 0.43^{ab}	83.46 ± 4.07^{a}	103.89 ± 3.44^{ab}		
3. Yogur	$2.13 \pm 0.31^{\rm cd}$	$15.23 \pm 0.29^{\text{cb}}$	71.09 ± 3.50 ^b	88.45 ± 3.37 ^{bc}		
4. Yogur + AF	4.35 ± 0.37^{ab}	$13.97 \pm 1.13^{\circ}$	71.03 ± 2.18^{b}	$94.40 \pm 3.46^{\rm bc}$		
5. Ácido fosfórico	$2.13 \pm 0.62^{\rm cd}$	13.51 ± 1.18°	$72.94 \pm 3.70^{\rm b}$	88.59 ± 4.10^{bc}		
6. L. plantarum	$2.29 \pm 0.68^{\rm cd}$	13.74 ± 1.11°	68.86 ± 1.90 ^b	84.90 ± 3.77°		
7. Mezcla mineral	1.84 ± 0.99^{d}	14.54 ± 0.51 ^{cb}	71.03 ± 2.30 ^b	87.42 ± 3.71°		

Media en la misma columna con letras distintas difieren estadísticamente (P < 0.05). \pm = desviación estándar; FR_{0 a 8} = Fermentación rápida; FM_{8 a 24} = Fermentación media; FL_{24 a 72} = Fermentación lenta; FT = Fermentación total.

ensilajes de gramíneas tropicales tienen un bajo contenido de azúcares y elevada concentración de carbohidratos estructurales (Li y col., 2014).

CONCLUSIONES

El uso de lactosuero y *Lactobacillus plantarum* en ensilajes de sorgo disminuyeron la pérdida de PC, y en general, la adición de inoculan-

tes y aditivos mejoró el pH de los mismos, pero el yogur, ácido fosfórico y mezcla mineral en el proceso de ensilaje del sorgo provocaron la disminución del aprovechamiento de las fracciones de fermentación rápida y fermentación media, reduciendo el potencial de fermentación de los ensilajes, lo que, en consecuencia, provocó un efecto negativo en su DIVMS a 24 h y 48 h.

REFERENCIAS

Aguirre, C., Medina, M., Montenegro, L., Sánchez, A., Barrera-Alvárez, A. y Espinoza, I. (2017). Cinética de fermentación y degradabilidad ruminal *in vitro* de dietas con diferente fuente de nitrógeno. *Revista de Ciencia y Tecnología*. 10(2): 69-73.

Antolín, M., González, M., Goñi, S., Domínguez, I. y Ariciaga, C. (2012). Rendimiento y producción de gas *in vitro* de maíces híbridos conservados por ensilaje o henificado. *Revista Mexicana de Ciencias Pecuarias*. 47(4): 413-423.

Avellaneda, J., Peña-Galeas, M., Godoy-Espinoza, V., Tapia-Moreno, E., Casanova-Ferrín, L., Zambrano-Calderón, C. y Alarcón-Solórzano, B. (2016). Influencia del residuo de piña sobre la presencia de lactobacilos homo y heterofermentativos en el ensilaje de pasto Cuba-CT115. Revista Amazónica Ciencia y Tecnología. 5(1): 16-24.

Bande, M. J., Resch, C. y Quintela, M. (2015). El sorgo grano para ensilar en Galicia como nueva alternativa al maíz forrajero: producción y calidad nutritiva en siembras tardías. *Revista Pastos*. 45(1): 47-55.

Bateman, J. V. (1970). *Nutrición animal: Manual de métodos analíticos* (Primera edición). México: Ed. Herrero Hermanos, Centro Regional de Ayuda Técnica. 468 Pp.

Borreani, G., Tabacco, E., Schmidt, R. J., Holmes, B. J., and Muck, R. E. (2018). Silage review: Factors affecting dry matter and quality losses in silages. *Journal of Dairy Science*. 101(5): 3952-3979.

Boschini, C. y Pineda, L. (2016). Ensilaje de kikuyo (*Pennisetum clandestinun* o *Kikuyuocloa clandestina*) fermentado con tres aditivos. *Agronomía Mesoamericana*. 27(1): 49-60.

Cajarville, C., Britos, A., Garciarena, D., and Repetto, J. L. (2012). Temperate forages ensiled with molasses or fresh cheese whey: Effects on conservation quality, effluent losses and ruminal degradation. *Animal Feed Science and Technology*, 171(1):14–19.

Castaño, G. A. and Villa, L. M. (2017). Use of whey and molasses as additive for producing silage of Cuba OM-22 (*Cenchrus purpureus x Cenchrus glaucum*). Cuban Journal of Agricultural Science. 51(1): 61-70.

Corral, A., Domínguez, D., Rodríguez, F. A., Villalobos, G., Ortega, J. A. y Muro, A. (2011). Composición química y cinética de degradabilidad de ensilaje de maíz convencional y sorgo de nervadura café. *Revista Brasileira de Ciências Agrárias*. 6(1): 181-187.

Cubero, J. F., Rojas, A. y WingChing, R. (2010). Uso del inóculo microbial elaborado en finca en ensilaje de maíz (*Zea mays*). Valor nutricional y fermentativo. *Agronomía Costarricense*. 34(2): 237-250.

Guevara, C., Patiño, R. y Mejía, C. (2016). Respuesta productiva de vacas lactantes F1 Holstein x Gyr recibiendo ensilajes de maíz o sorgo como suplemento alimenticio en época seca. *Revista Colombiana de Ciencia Animal.* 8(Sup): 319-324.

Harris, L. (1970). Métodos para el análisis químico y la evaluación biológica de los alimentos para animales. (Dieciseisava edición). Estados Unidos de Norte América: Universidad de Florida. 174 Pp.

Li, M., Zi, X., Zhou, H., Hou, G., and Cai, Y. (2014). Effects of sucrose, glucose, molasses and cellulase on fermentation quality and *in vitro* gas production of king grass silage. *Animal Feed Science and Technology.* 197(1): 206–212.

Maza, L., Vergara, O. y Paternina, E. (2011). Evaluación química y organoléptica del ensilaje de Maralfalfa (*Pennisetum* sp.) más yuca fresca (*Manihot esculenta*). *Revista MVZ Córdoba*. 16(2):2528-2537.

Menke, K. H. and Steingass, H. (1988). Estimation of the energetic feed value obtained from chemical analyses and *in vitro* gas production using rumen fluid. *Animal Research and Development*. 28:7-55.

Miranda, L. A., Sandoval-González, L. y Améndola-Massioti, R. (2015). Producción de gas como método para estimar *in vitro* la concentración de carbohidratos fermentables en rumen, en *Congreso Asociación Latinoamericana de producción animal.* [En línea]. Disponible en: http://www.sochipa.cl/uploads/media/ALPA2015.pdf. Fecha de consulta: 9 de julio de 2019.

Miranda-Yuquilema. E., Marin-Cárdenas, A., González-Pérez, M. y Sánchez-Macías, D. (2017). Evaluación física, química y microbiológica del ensilaje de yuca con caupí y cultivo microbiano. *Enfoque UTE*. 8(5):67-75.

Montenegro, L., Espinoza, I., Sánchez, A., Barba, C., García, A., Requena, F. y Martínez, A. (2018). Composición química y cinética de degradación ruminal *in vitro* del ensilado de pasto saboya (Megat-hyrsus maximus) con inclusión de residuos de frutas tropicales. *Revista Científica Facultad de Ciencias Veterinarias de Zulia*. 27(4):306-3012.

Muck, R. E., Nadeau, M. G., McAllister, T. A., Contreras-Govea, F. E., Santos, M. C., and Kung, L. (2018). Silage review: Recent advances and future uses of silage additives. *Journal of Dairy Science*. 101(5): 3980-4000.

NRC, National Research Council (2007). Nutrient requirements of small ruminants (sheep, goats, cervids and new world camelids) (Primera edición). Estados Unidos de Norte América. Ed. The National Academy Press. 384 Pp.

Perea, C., Hoyos, J. L., Garcés, Y. J., Muñoz, L. E. y Gómez, J. A. (2017). Evaluación de procesos para obtener ensilaje de residuos piscícolas para alimentación animal. *Ciencia en Desarrollo*. 8(2):39-50.

Pineda, L., Chacon, P. y Boschini, C. (2016). Evaluación de la calidad del ensilado de pasto estrella africana (*Cynodon nlemfluensis*) mezclado con tres diferentes aditivos. *Agronomía Costarricense*. 40(1):11-27.

Pinto, R., Hernández, D., Guevara, F., Gómez, H., Medina, F., Hernández, A., ..., and Ruiz, B. (2010). Preferencia de ovinos por ensilaje de *Pennisetum purpureum* mezclado con arbóreas forrajeras tropicales. *Livestock Research for Rural Development*. 22(6):1-13.

Rendón, M. E., Noguera, R. y Posada, S. L. (2013). Cinética de degradación ruminal del ensilaje de maíz con diferentes niveles de inclusión de vinaza. *Revista CES de Medicina Veterinaria y Zootecnia*. 8(2):42-51.

Rendón, M. E., Noguera, R. R. y Posada, S. L. (2014). Vinaza de caña como aditivo acidificante en la elaboración de ensilaje de maíz (*Zea mays*). *Livestock Research for Rural Development*. [En línea]. Disponible en: http://www.lrrd.org/lrrd26/1/rend26007.html. Fecha de consulta: 11 de julio de 2019.

Reyes, J., Montañez, O., Guerra, C. y Ley, A. (2018). Efecto de la inclusión de aditivos sobre la calidad del ensilado de caña azúcar. Revista MVZ Córdoba. 23(2): 6710-6717.

Rodríguez, R., Lores, J., Gutiérrez, D., Ramírez, A., Gómez, S. y Elías, A. (2013). Inclusión del aditivo microbiano Vitafert en la fermentación ruminal *in vitro* de una dieta para cabras. *Revista Cubana de Ciencia Agrícola*. 47(2):171-178.

Ruiz, B. O., Castillo, Y., Anchondo, A., Rodríguez, C., Beltrán, R., La O, O. y Payán, J. (2009). Efectos de enzimas e inoculantes sobre la composición del ensilaje de maíz. *Archivos de Zootecnia*. 58(222):163-172.

Sánchez-Duarte, J. I., Kalscheur, K., García, A. D., and Contreras-Govea, F. E. (2019). Performance of dairy cows fed conventional sorghum or corn silages compared with brown midrib sorghum silage: A Meta-analysis. *Journal of Dairy Science*. 102 (2):419-425.

Sandoval, L., Miranda, L., Lara, A., Huerta, M., Uribe, M. y Martínez, M. (2016). Fermentación in vitro y la correlación del contenido nutrimental de leucaena asociada con pasto estrella. Revista Mexicana de Ciencias Agrícolas. 7(16): 3185-3196.

SAS, Statistical Analysis System (2011). User's Guide: Statistics, Version 9.6th Edition. SAS Inst., Inc., Cary, NC.

Schofield, P. and Pell, A. N. (1995). Measurement and kinetic analysis of the neutral detergent-soluble carbohydrate fraction of legumes and grasses. *Journal of Animal Science*, 73(11): 3455-3463.

Shi, J., Diao, Q., and Li, F. (2012). Effects of different bacterial inoculants on the fermentation and aerobic stability of whole-plant corn silage. African *Journal of Agricultural Research*. 7(2): 164-169.

Udén, P., Robinson, P., Mateos, G., and Blank, R. (2012). Use of replicates in statistical analyses in papers submitted for publication in Animal Feed Science and Technology. *Animal Feed Science and Technology*. 171(1):1-5.