

PENSAR EN MOVIMIENTO: Revista de Ciencias del Ejercicio y la Salud

ISSN: 1409-0724 ISSN: 1659-4436

pensarenmovimiento.eefd@ucr.ac.cr

Universidad de Costa Rica

Costa Rica

Gutiérrez-Vargas, Randall; Ugalde-Ramírez, José Alexis; Pino-Ortega, José; Trejos-Montoya, José Andrés; Blanco-Romero, Luis; Sánchez-Ureña, Braulio; Gutiérrez-Vargas, Juan Carlos; Rojas-Valverde, Daniel

PERFIL ANTROPOMÉTRICO, AERÓBICO Y DE POTENCIA MUSCULAR DE JUGADORES JUVENILES DE BALONCESTO COSTARRICENSES [1]

PENSAR EN MOVIMIENTO: Revista de Ciencias del Ejercicio y la Salud, vol. 21, núm. 1, e53772, 2023, Enero-Junio Universidad de Costa Rica Montes de Oca, Costa Rica

DOI: https://doi.org/10.15517/pensarmov.v21i1.53772

Disponible en: https://www.redalyc.org/articulo.oa?id=442073900006

Número completo

Más información del artículo

Página de la revista en redalyc.org

Sistema de Información Científica Redalyc

Red de Revistas Científicas de América Latina y el Caribe, España y Portugal Proyecto académico sin fines de lucro, desarrollado bajo la iniciativa de acceso

Investigación Descriptiva, Correlacional o Cualitativa

PENSAR EN MOVIMIENTO:

Revista de Ciencias del Ejercicio y la Salud
ISSN 1659-4436

Vol. 21, No.1, pp. 1- 17

Abre 1° de enero, Cierra 30 de julio, 2023

PERFIL ANTROPOMÉTRICO, AERÓBICO Y DE POTENCIA MUSCULAR DE JUGADORES JUVENILES DE BALONCESTO COSTARRICENSES¹

ANTHROPOMETRIC, AEROBIC AND MUSCLE POWER PROFILE OF YOUNG COSTA RICAN BASKETBALL PLAYERS

PERFIL ANTROPOMÉTRICO, AERÓBICO E DE POTÊNCIA MUSCULAR DE JOGADORES JUVENIS DE BASQUETE DA COSTA RICA

Randall Gutiérrez-Vargas^{® 1,4,5}, José Alexis Ugalde-Ramírez ^{® 1,4,5}, José Pino-Ortega ^{® 6}, José Andrés Trejos-Montoya ^{® 2,4,5}, Luis Blanco-Romero ^{® 2,5}, Braulio Sánchez-Ureña ^{® 2,4,5}, Juan Carlos Gutiérrez-Vargas ^{® 3,4,5} y Daniel Rojas-Valverde ^{® 1,4,5}

jose.ugalde.ramirez@una.cr

¹Centro de Investigación y Diagnóstico en Salud y Deporte (CIDISAD), Universidad Nacional, Heredia. Costa Rica

²Programa de Ciencias del Ejercicio y la Salud (PROCESA), Universidad Nacional, Heredia, Costa Rica

³Centro de Estudios para el Desarrollo del Rendimiento y la Salud (CEDERSA), Universidad Nacional, Heredia, Costa Rica

⁴Núcleo de Estudios para el Alto Rendimiento y la Salud (NARS), Universidad Nacional, Heredia, Costa Rica

⁵Escuela de Ciencias del Movimiento Humano y Calidad de Vida, Universidad Nacional, Heredia, Costa Rica

Departamento de Actividad Física y Deporte, Universidad de Murcia, Murcia, España

Envío original: 2021-09-10 Reenviado: 2022-03-12 Aceptado: 2022-06-07 Publicado en versión en español: 2023-01-17

Doi: https://doi.org/10.15517/pensarmov.v21i1.53772

¹ Artículo traducido al español. Original en inglés disponible en: Gutiérrez-Vargas, R., Ugalde-Ramírez, J. A., Pino-Ortega, J., Trejos-Montoya, J. A., Blanco-Romero, L., Sánchez-Ureña, B., Gutiérrez-Vargas, J. C., & Rojas-Valverde, D. (2022). Anthropometric, aerobic and muscle power profile of young Costa Rican basketball players. *Pensar en Movimiento: Revista de Ciencias del Ejercicio y la Salud, 20*(2), e48357. https://doi.org/10.15517/pensarmov.v20i2.48357

Editora asociada a cargo: Ph.D. Elizabeth Carpio Rivera

RESUMEN

Gutiérrez-Vargas, R., Ugalde-Ramírez, A., Pino-Ortega, J., Trejos-Montoya, J.A., Blanco-Romero, L., Sánchez-Ureña, B., Gutiérrez-Vargas, J.C. y Rojas-Valverde, D. (2022). Perfil antropométrico, aeróbico y de potencia muscular de jugadores juveniles de baloncesto costarricenses. PENSAR EN MOVIMIENTO: Revista de Ciencias del Ejercicio y la Salud, 21(1), 1-17. El objetivo de este estudio fue describir un perfil antropométrico, aeróbico y de potencia muscular de basquetbolistas juveniles costarricenses según sexo, posiciones de juego y categoría de edad. Se evaluaron 99 jugadores juveniles (43 mujeres y 56 hombres; 18 bases, 51 aleros y 30 pívots; 42 categoría U16 y 57 categoría U18) de ocho equipos diferentes. La experiencia deportiva de los jugadores fue de 6.5 ± 3.1 años. Se realizaron las siguientes evaluaciones: altura, peso, índice de masa corporal, masa músculo-esquelética, porcentaje de grasa, prueba de contramovimiento (CMJ) y prueba de Yo-Yo de Recuperación Intermitente Nivel I. Los principales resultados mostraron valores significativamente mayores en hombres que en mujeres en peso, talla, masa músculo-esquelética, distancia recorrida en la prueba Yo-Yo, en el VO2max, altura en el CMJ y en el tiempo de vuelo. El porcentaje de grasa fue mayor en mujeres que en hombres. Los jugadores pívots presentaron significativamente mayor estatura, peso corporal y porcentaje de grasa que las otras posiciones de juego. Los bases y los aleros cubrieron más metros en la prueba Yo-Yo y tuvieron mayor VO2máx que los pívots. Entre las categorías U16 y U18 no se encontraron diferencias significativas en ninguna variable. Modelos de regresión mostraron la influencia del peso, porcentaje de grasa corporal, masa músculo esquelética y la edad sobre el VO2máx y CMJ. Como conclusión, según el sexo y las posiciones de juego de los jugadores, estos indicadores variaron. Además, esta información será útil para procesos de promoción, desarrollo y diseño de entrenamientos de baloncesto juvenil en Costa Rica.

Palabras clave: baloncesto, evaluación, CMJ, Prueba Yo-Yo, posiciones de juego, sexo.

ABSTRACT

Gutiérrez-Vargas, R., Ugalde-Ramírez, A., Pino-Ortega, J., Trejos-Montoya, J.A., Blanco-Romero, L., Sánchez-Ureña, B., Gutiérrez-Vargas, J.C. & Rojas-Valverde, D. (2022). Anthropometric, aerobic and muscle power profile of young Costa Rican basketball players. PENSAR EN MOVIMIENTO: Revista de Ciencias del Ejercicio y la Salud, 21(1), 1-17. The purpose of this study was to describe an anthropometric, aerobic and muscle power profile of young Costa Rican basketball players according to sex, play positions and age. The assessment was carried outa on 99 young players (43 women and 56 men; 18 guards, 51 forwards and 30 centers; 42 in the U16 category and 57 in the U18 category) from eight different teams. The sports

experience of the players was 6.5 ± 3.1 years. The following parameters were assessed: height, weight, body mass index, skeletal muscle mass and body fat percentage, countermovement test (CMJ) and Yo-Yo Intermittent Recovery Test Level I. The main results showed significantly higher values in men than in women in terms of weight, height, skeletal muscle mass, distance covered in the yo-yo test, VO2max, height in CMJ and in flight time. Body fat percentage was higher in women than in men. Centers showed significantly higher height, weight and body fat percentage than other play positions. Guards and forwards covered more meters in the yo-yo test and showed higher VO2max than centers. No significant differences were found between the U16 and U18 categories in any variable. Regression models showed the influence of weight, body fat percentage, skeletal muscle mass and age on VO2max and CMJ. In conclusion, these indicators varied according to the sex and play position of the players. Additionally, this information will be useful for processes of promotion, development and training design of youth basketball in Costa Rica.

Keywords: basketball, assessment, CMJ, Yo-Yo Test, play positions, sex.

RESUMO

Gutiérrez-Vargas, R., Ugalde-Ramírez, A., Pino-Ortega, J., Trejos-Montoya, J.A., Blanco-Romero, L., Sánchez-Ureña, B., Gutiérrez-Vargas, J.C. e Rojas-Valverde, D. (2022). Perfil antropométrico, aeróbico e de potência muscular de jogadores juvenis de basquete da Costa Rica. PENSAR EN MOVIMIENTO: Revista de Ciencias del Ejercicio y la Salud, 21(1), 1-17. Este estudo teve como objetivo descrever um perfil antropométrico, aeróbico e de potência muscular de jogadores juvenis de basquete da Costa Rica segundo o sexo, as posições de jogo e a categoria de idade. Foram avaliados 99 jogadores juvenis (43 mulheres e 56 homens; 18 armadores, 51 alas e 30 pivôs; 42 na categoria U16 e 57 na categoria U18) de oito equipes diferentes. A experiência esportiva dos jogadores foi de 6,5 ± 3,1 anos. Foram realizadas as seguintes avaliações: altura, peso, índice de massa corporal, massa musculoesquelética e porcentagem de gordura, teste de salto com contramovimento (SCM) e teste de Yo-Yo de Recuperação Intermitente Nível I. Os principais resultados mostraram valores significativamente maiores em homens do que em mulheres com relação ao peso, tamanho, massa muscular esquelética, distância percorrida no teste Yo-Yo, VO2max, altura no SCM e no tempo de voo. A porcentagem de gordura foi maior em mulheres do que em homens. Os jogadores pivôs apresentaram significativamente maior estatura, peso corporal e porcentagem de gordura do que as outras posições de jogo. Os armadores e os alas cobriram mais metros no teste Yo-Yo e tiveram maior VO2max do que os pivôs. Entre as categorias U16 e U18 não foram encontradas diferenças significativas em nenhuma variável. Modelos de regressão mostraram a influência do peso, da porcentagem de gordura corporal, da massa musculoesquelética e da idade no VO2max e SCM. Conclui-se, portanto, que esses indicadores variam segundo o sexo e as posições dos jogadores. Além disso, essa informação será útil para processos de fomentação, desenvolvimento e desenho de treinamentos de basquete juvenil na Costa Rica.

Palavras-chave: basquete, avaliação, SCM, teste Yo-Yo, posições de jogo, sexo.

El baloncesto es un deporte de cooperación-oposición, en el que dos equipos de cinco jugadores compiten en una cancha de 15x28 metros. Se caracteriza por movimientos rápidos y repetidos que requieren sistemas energéticos tanto aeróbicos como anaeróbicos para realizar las actividades físicas como desplazamientos, saltos, sprints, cambios de dirección, ejecuciones técnicas y comportamientos tácticos a lo largo del juego (Ben Abdelkrim et al., 2010; Mancha-Triguero et al., 2020; Metaxas et al., 2009). Estudios anteriores han descrito los perfiles de actividad física en hombres y mujeres. En los hombres, se ha reportado que la distancia recorrida está entre 68 y 73 m/min y el porcentaje de distancia recorrida a una velocidad superior a 16 km/h se sitúa entre el 3.1% y el 4.1% de la distancia total recorrida (Pino-Ortega et al., 2019). Por otro lado, en los equipos femeninos, el 20.1% del tiempo de un partido las jugadoras están paradas (<3.6 km/h), el 27.5% caminando (3.6-6.5 km/h), el 21.5% trotando (6.5-10.2 km/h), el 20% corriendo (10.2-14.4 km/h) y el 10.7% se dedica a correr al sprint (>14.4 km/h) (Reina et al., 2020).

Para obtener un rendimiento óptimo durante los partidos y las competiciones, es crucial que los jugadores de baloncesto tengan cualidades bien entrenadas, como la resistencia cardiorrespiratoria, la fuerza muscular, la potencia y la agilidad (González De Los Reyes et al., 2020; Metaxas et al., 2009; Zarić et al., 2018). Además, es importante porque puede ayudar a guiar los procesos de entrenamiento (Ziv y Lidor, 2009) e indicar la eficacia de los diferentes métodos de entrenamiento (Vamvakoudis et al., 2007). Asimismo, este tipo de información también puede ayudar a los entrenadores, ojeadores o responsables de la selección e identificación de talentos (Gryko et al., 2018; Torres-Unda et al., 2013).

La capacidad aeróbica y anaeróbica puede variar en función de factores como la edad, el sexo y la posición de juego de los jugadores (Mancha-Triguero et al., 2020; Pojskić et al., 2015). Algunos estudios realizados en jóvenes jugadores de baloncesto europeos aportan información sobre las características fisiológicas en función del sexo (Ziv y Lidor, 2009). Los hombres tienen un mayor consumo máximo de oxígeno (VO2máx) que las mujeres (Ziv y Lidor, 2009). En jugadores bosnios (edad: 19.09 ± 3.13 años), se encontró que los valores aeróbicos y relativos de la potencia anaeróbica son mayores en los bases y los aleros (Pojskić et al., 2015). En cuanto a la potencia muscular evaluada mediante el test CMJ, se observa una mayor altura de salto en los varones italianos de 16.8 ± 2.0 años (Castagna et al., 2008) en comparación con las jugadoras españolas de edad similar (16.2 ± 1.2 años) (Fort-Vanmeerhaeghe et al., 2016).

El efecto de la edad en las capacidades físicas ha sido reportado en investigaciones anteriores (Nikolaidis et al., 2015). Por ejemplo, la distancia recorrida en el Yo-Yo test difiere entre tres categorías jóvenes italianas, siendo mayor en los jugadores sub17 que en los sub15 y sub14 (Vernillo et al., 2012). Además, los valores de salto más altos se identifican en los jugadores españoles masculinos sub16 y sub17 en comparación con las categorías sub14 y sub15 (Calleja-González et al., 2018).

Los procesos de evaluación permiten conocer y caracterizar los parámetros antropométricos, principalmente en etapas de desarrollo (González De Los Reyes et al., 2020; Leonardi et al., 2018; Matulaitis et al., 2019). Entre las características que diferencian a los jugadores de baloncesto de otros deportistas y no deportistas se encuentran la altura y la talla corporal, cuyos valores tienden a ser mayores en los jugadores de baloncesto (Metaxas et al., 2009; Tsunawake et al., 2003; Vaquera et al., 2015). En jugadores masculinos U12 - U18 de una academia de baloncesto de la primera liga griega, se ha reportado un índice de masa corporal entre 17 y 26 kg/m2 (Nikolaidis et al., 2015). En jugadoras de baloncesto colombianas (tres categorías: infantil [U-12], prejuvenil [U-14] y juvenil [U-16]), el porcentaje de grasa corporal osciló entre el 22% y el 27% (González De Los Reyes et al., 2020). En cuanto al porcentaje de tejido muscular, en jugadoras europeas se han reportado porcentajes muy similares entre posiciones de juego: 41.2%, 42.1% y 41.3% para escoltas, aleros y pívots, respectivamente (Erčuli y Bračič, 2014). En los jugadores de categoría sub14 y sub15, el tipo de somatotipo predominante es el ecto-mesomórfico (Gryko et al., 2018; Hadzhiev y Dzimbova, 2020). Los jugadores con mayor estatura son los que juegan en las posiciones de centro, seguidos de los delanteros y los guardias, que suelen ser los que tienen menor estatura (Vaquera et al., 2015).

Las características antropométricas se han asociado con el rendimiento físico. En categorías brasileñas U13 y U15, la estatura fue un predictor del rendimiento durante la prueba Yo-Yo (Leonardi et al., 2018). Un peso corporal elevado afecta negativamente al rendimiento físico en el CMJ y en los sprints de carrera y pruebas de resistencia en U12 y U18 (Nikolaidis et al., 2015). En los estudios realizados por Fort-Vanmeerhaeghe et al. (2016) y Torres-Unda et al. (2013), los autores encontraron relaciones entre las capacidades físicas y las acciones técnicas específicas durante los partidos. En jugadores españoles sub16 y sub18, la capacidad de salto, la velocidad, la agilidad, la potencia anaeróbica, la capacidad repetida en el sprint y la potencia aeróbica se correlacionaron con los robos y las asistencias realizadas por partido (Fort-Vanmeerhaeghe et al., 2016), así como con el número de puntos conseguidos a lo largo de una temporada (Torres-Unda et al., 2013). Por otro lado, incluso las características antropométricas y la habilidad motriz pueden explicar alrededor del 41.3% y 38% del rendimiento en baloncesto en mujeres y hombres, respectivamente (Hoare, 2000). En jugadoras de baloncesto de entre 18 y 32 años, la antropometría y la condición física predijeron parámetros relacionados con el rendimiento (García-Gil et al., 2018).

Dada la ausencia de información científica sobre este tema en el contexto costarricense, el objetivo de este estudio fue describir el perfil antropométrico, aeróbico y de potencia muscular de los jugadores de baloncesto juveniles de Costa Rica según el sexo, la posición de juego y la categoría de edad. Además, se utilizaron regresiones múltiples para conocer las posibles variables antropométricas que podrían influir en las capacidades físicas: resistencia aeróbica y potencia muscular.

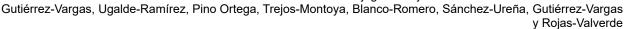
METODOLOGÍA

Participantes

Un total de 99 jugadores juveniles (43 mujeres y 56 hombres) de ocho clubes costarricenses del área metropolitana (GAM) participaron en el estudio. Dieciocho eran escoltas, 51 delanteros y 30 centros. Además, los jugadores fueron divididos según su edad cronológica en: categoría sub16 (n = 42; edad = 15.3 ± 0.6) y categoría sub18 (n = 57; edad = 17.3 ± 0.4). La experiencia deportiva media de los jugadores era de 6.5 ± 3.1 años y entrenaban 3.4 ± 0.1 veces por semana con un total de 7.5 ± 3.1 horas por semana.

Cada jugador fue invitado voluntariamente a participar en el estudio, el cual fue ratificado con la firma de un consentimiento informado por parte de los mayores de edad (>18 años) y un asentimiento por parte de los jugadores menores de edad (<18 años) en conjunto con el consentimiento de los padres. Los protocolos de esta investigación fueron aprobados por la Junta de Revisión Institucional de la Universidad Nacional de Costa Rica (CECUNA) mediante el código 2019-P004.

Instrumentos


<u>Antropometría.</u> Se utilizó un estadiómetro portátil (SECA, Hamburgo, Alemania) para medir la altura del cuerpo con una precisión de ± 1 mm. Con el estadiómetro contra la pared, el participante se colocaba descalzo, el evaluador confirmaba una postura erguida y luego, considerando el plano de Frankfurt como referencia, realizaba la medición.

Se utilizó un InBody 370, modelo JMW140 (Chungcheongnam-do, Corea del Sur) para un análisis de bioimpedancia con el que se determinó el peso, el índice de masa corporal (IMC), la masa músculo-esquelética (MME) y el porcentaje de grasa corporal. El jugador se colocaba en el InBody, tras quitarse los zapatos y cualquier objeto metálico, colocaba los pies en los electrodos de la base y sujetaba los electrodos de las manos. El participante debía permanecer en posición vertical hasta que se completara la exploración.

Potencia muscular. El salto con contramovimiento (CMJ) de la prueba de Bosco se administró en una plataforma de salto Axon (Bioingeniería Deportiva, San Martín, Argentina) y se utilizó el software Smart Axon 4.02 para obtener los siguientes datos: a) altura de salto en centímetros y b) tiempo de vuelo en milisegundos. Antes de aplicar esta prueba, se dio una explicación y demostración al participante. A continuación, los participantes debían partir de una posición erguida con las manos en la cadera, realizar una sentadilla (ángulo de 90° en las rodillas) y efectuar un salto explosivo sin soltar las manos de la cadera. Cada participante tuvo tres intentos con un minuto de descanso entre ellos. Cuando se observaba una ejecución incorrecta, se repetía el intento correspondiente. Para el análisis se consideró la media de los tres saltos.

<u>Capacidad aeróbica.</u> Se aplicó la prueba Yo-Yo de recuperación intermitente nivel I. La prueba consiste en realizar carreras de ida y vuelta de 20 metros a una velocidad creciente dirigida por una grabación de audio. Hay 10 segundos de recuperación activa entre cada carrera. La prueba finalizaba si: a) el participante no podía llegar a la primera línea antes del sonido (puede que acabe de llegar) por segunda vez o b) se sentía agotado e incapaz de continuar. Los evaluadores explicaron el protocolo de la prueba a los jugadores y se les permitió realizar una

prueba de tres carreras para asegurarse de que la habían entendido. Esta prueba se aplicó en grupos de ocho jugadores simultáneamente. Los evaluadores verificaron las llegadas a la primera línea e indicaron al participante cuando no se cumplía el criterio o cuando debían retirarse. Para estimar el VO2máx (ml/kg/min), se utilizó la siguiente fórmula (Bangsbo et al., 2008):

 $VO2máx (ml/kg/min) = distancia (m) \times 0.0084 + 36.4.$

Procedimiento

PENSAR EN

En primer lugar, los autores se pusieron en contacto con los clubes para invitarles a participar en el estudio. Se acordó con el cuerpo técnico realizar una visita durante una sesión de entrenamiento para explicar a los entrenadores, jugadores y padres las pruebas que se iban a realizar, los beneficios y los posibles riesgos de participar. Se hizo lectura del consentimiento informado, o el asentimiento, según el caso, y se firmaron como corresponde.

Las pruebas se realizaron en el gimnasio que utiliza cada club para entrenar, asignando un espacio para cada prueba. Todas las pruebas fueron realizadas por evaluadores con más de cinco años de experiencia y siempre estuvieron presentes en cada visita. El orden de las pruebas fue el siguiente: en primer lugar, se preguntó a cada jugador por su edad, posiciones de juego y años de experiencia jugando al baloncesto. En segundo lugar, se realizaron las pruebas, empezando por la talla corporal; luego, el análisis de bioimpedancia, el CMJ y terminando con el test Yo-Yo. Para cada prueba, los resultados se registraron en un formulario y posteriormente se introdujeron en un programa estadístico para su análisis.

Análisis estadístico

Se realizaron las pruebas de Kolmogorov-Smirnov para comprobar la normalidad de los datos. Se utilizó una prueba t-Student de muestras independientes para la comparación entre hombres y mujeres, así como para comparar las categorías U16 y U18. Se utilizaron ANOVAs de muestras independientes de una vía para la comparación entre las posiciones de juego (bases, aleros y pívots). Cuando fue necesario, se aplicó una prueba post hoc de Bonferroni. Para determinar las magnitudes de las diferencias, se calculó el tamaño del efecto de la d de Cohen para las pruebas t de Student (Hopkins et al., 2009), clasificadas como: 0-0.2 (bajo), 0.2-0.6 (pequeño), 0.6-1.2 (medio) y > 1.2 (grande) tamaño del efecto. Para los ANOVAs, el omega cuadrado (ωp2) se consideró como: > 0.01 (pequeño), > 0.06 (mediano), y > 0.14 grande (Cohen, 1988). Asimismo, se realizó un análisis de regresión múltiple para determinar qué parámetros antropométricos (altura, peso, índice de masa corporal, masa músculo-esquelética y porcentaje de grasa corporal) podían predecir el rendimiento en cuanto a VO2máx y CMJ. El método que se siguió para ello fue por pasos. Se comprobaron los supuestos de multicolinealidad, homocedasticidad y normalidad. Todos los análisis se realizaron con el software SPSS (Statistic Package for Social Sciences, Chicago, IL) considerando un nivel de significación de p < .05.

RESULTADOS

La <u>Tabla 1</u> muestra las diferencias entre hombres y mujeres en las variables analizadas, excepto el IMC. Los hombres tenían una mayor altura y peso corporal que las mujeres. El

porcentaje de grasa corporal es mayor en las mujeres, mientras que la masa músculo-esquelética es mayor en los hombres. En las pruebas de capacidades físicas, los varones mostraron mayores resultados en la distancia recorrida en la prueba de Yo-Yo y el VO2máx, así como en la altura y el tiempo de vuelo del CMJ.

Tabla 1 Comparación de las variables entre hombres y mujeres.

Variables	Mujeres	Hombres	t	р	d (Cohen)
Altura (cm)	166.27 ± 6.87	175.83 ± 7.57	-6.480	<.001*	1.31
Peso (kg)	64.06 ± 12.87	72.29 ± 12.45	-3.210	.002*	0.65
BMI (kg/m ²)	23.68 ± 3.35	23.35 ± 3.54	0.407	.685	0.08
Grasa corporal (%)	22.44 ± 8.40	14.93 ± 6.58	4.833	<.001*	1.00
SMM (kg)	25.90 ± 3.99	34.77 ± 5.25	-9.217	<.001*	1.87
Distancia (m)	476.28 ±	901.43 ± 339.58	-7.737	<.001*	1.47
	203.18				
VO2máx (ml/kg/min)	40.40 ± 1.71	43.97 ± 2.85	-7.737	<.001*	1.47
CMJ (cm)	26.53 ± 4.40	35.21 ± 5.58	-8.386	<.001*	1.70
FT (ms)	463.48 ± 38.12	533.85 ± 44.58	-8.281	<.001*	1.68

Nota. Los datos se presentan como media ± DT. cm = centímetros, kg = kilogramos, IMC = índice de masa corporal, MME = masa músculo-esquelética, % = porcentaje, VO_{2máx} = consumo máximo de oxígeno, ml/kg/min = mililitro por kilogramo por minuto, CMJ = salto a contramarcha, FT = tiempo de vuelo, ms = milisegundo, m = metros. *p < .05. Fuente: elaboración propia.

La Tabla 2 muestra las diferencias entre las posiciones de juego. No se observan diferencias significativas en SMM, CMJ y FT. Los jugadores que juegan en las posiciones centrales son más altos, tienen mayor peso y porcentaje de grasa corporal que el resto de las posiciones. Los bases y aleros recorrieron más distancia en la prueba Yo-Yo y su VO2máx fue superior al de los pívots.

Tabla 2
Comparación de variables entre posiciones de juego.

Variables	Bases	Aleros	Pívot	F	р	ωp 2
Talla (cm)	167.78 ± 8.36 ^{c}	170.86 ± 8.67	175.43 ±	5.292	.007	0.07
			7.61 a			
Peso (kg)	66.88 ± 10.95 ^{c}	63.76 ± 9.80 c	78.22 ±	14.70	<.001*	0.21
			14.72 ab	1		
BMI (kg/m ²)	24.17 ± 4.44 ^{c}	22.03 ± 3.09	25.58 ±	9.572	<.001*	0.14
()			3.83 a			
Grasa corporal (%)	19.08 ± 9.40 °	15.04 ± 6.41	23.01 ±	10.61	<.001*	0.16
			8.17 a	5		
SMM (kg)	31.68 ± 4.30	30.38 ± 6.23	31.38 ± 7.90	0.374	.689	0.01
Distancia (m)	820.00 ±	771.76 ± 358.15	561.33 ±	4.508	.013	0.06
	366.93 c		305.08 ab			
VO2máx	43.29 ± 3.08 ^{c}	42.88 ± 3.01	41.11 ±	4.509	.013*	0.06
(ml/kg/min)			_{2.56} ab			
CMJ (cm)	33.08 ± 7.47	31.83 ± 7.04	29.80 ± 5.23	1.548	.218	0.01
, ,						
FT (ms)	518.17 ± 63.03	506.84	488.30 ±	1.953	.147	0.01
		± 58.32	37.98			

Nota. Los datos se presentan como media \pm *DT*. cm = centímetros, kg = kilogramos, IMC = índice de masa corporal, SMM = masa muscular esquelética, % = porcentaje, VO_{2máx} = consumo máximo de oxígeno, ml/kg/min = mililitro por kilogramo por minuto, CMJ = salto con contramovimiento, FT = vuelo tiempo, ms = milisegundos, m = metros. * p < .05. Fuente: elaboración propia.

- a Significativamente diferente de los guardias
- b Significativamente diferente de los delanteros
- c Significativamente diferente de los centros

En cuanto a las comparaciones entre las categorías U16 y U18, no se encontraron diferencias significativas en ninguna de las variables analizadas. Los datos se pueden ver en la Tabla 3.

Tabla 3
Comparación de variables según categorías de edad U16 y U 18

Variable	U16	U18	t	р	d (Cohen)
Talla (cm)	170.19 ± 8.91	172.78 ± 8.38	-1.484	.141	0.30
Peso (kg)	67.20 ± 14.17	69.82 ± 12.49	-0.971	.334	0.20
BMI (kg/m ²)	23.13 ± 3.94	23.75 ± 3.87	-0.784	.435	0.16
Grasa corporal (%)	17.70 ± 8.50	18.55 ± 8.16	-0.499	.619	0.10
SMM (kg)	29.90 ± 6.27	31.66 ± 6.56	-1.343	.182	0.27
Distancia (m)	642.85 ± 331.54	771.22 ± 367.59	-1.789	.077	0.36
VO _{2máx} (ml/kg/min)	41.79 ± 2.78	42.87 ± 3.08	-1.789	.077	0.36
CMJ (cm)	30.16 ± 7.35	32.38 ± 6.01	-1.654	.101	0.34
FT (ms)	494.03 ± 62.21	510.09 ± 47.40	-1.459	.148	0.30

Nota. Los datos se presentan como media \pm *DT*. cm = centímetros, kg = kilogramos, IMC = índice de masa corporal, SMM = masa muscular esquelética, % = porcentaje, VO_{2máx} = consumo máximo de oxígeno, ml/kg/min = mililitro por kilogramo por minuto, CMJ = salto con contramovimiento, FT = tiempo de vuelo, ms = milisegundo, m = metros. *p < .05. Fuente: elaboración propia.

Los análisis de regresión múltiple mostraron que el porcentaje de grasa corporal, la masa músculo-esquelética y la edad predijeron significativamente el 43% (R2= 0.43) del VO2máx. Asimismo, el peso corporal, la masa músculo-esquelética y la edad predijeron el 37% (R2= 0.37) del rendimiento en el test CMJ (ver <u>Tabla 4</u>).

Tabla 4
Resumen de los modelos de regresión múltiple para las capacidades físicas

Variable dependiente	Predictores	β	F	p	R ²
VO2máx	Grasa corporal (%)	-0.183	25.832	<.001	0.43
(ml/kg/min)	SMM (kg)	0.110			
	Edad (años)	1.582			
	Constante	32.760			
CMJ (cm)	Grasa corporal (%)	-0.508	20.975	<.001	0.37
	Peso (kg)	0.188			
	Edad (años)	1.155			
	Constante	8.715			

Nota. cm = centímetros, kg = kilogramos, SMM = masa muscular esquelética, % = porcentaje, $VO_{2m\acute{a}x}$ = consumo máximo de oxígeno, ml/kg/min = mililitro por kilogramo por minuto, CMJ = salto con contramovimiento. Fuente: elaboración propia.

DISCUSIÓN

Para mejorar el rendimiento en el baloncesto es necesario apoyarse en estudios científicos. Esta es una de las primeras investigaciones que describe el perfil antropométrico, aeróbico y de potencia muscular de los jugadores de baloncesto juveniles de Costa Rica según el sexo, la posición de juego y la categoría.

En cuanto al indicador antropométrico, la estatura promedio observada en las jugadoras costarricenses fue de 166.28 ± 6.87 cm, en comparación con los 175.84 ± 7.57 cm observados en los hombres. En jugadoras colombianas con una edad media de 16.7 ± 1.0 años, se ha reportado una altura de 160.1 ± 0.1 cm (González De Los Reyes et al., 2020). En un estudio longitudinal que incluyó a jugadores masculinos españoles de una academia nacional, la estatura observada en las categorías sub14, sub15, sub16 y sub17 fue de 189.2 ± 5.6, 192.0 ± 5.4, 195.6 ± 5.0 y 196.4 ± 4.8 cm, respectivamente (Calleja-González et al., 2018), valores superiores a los encontrados en los jugadores costarricenses evaluados en el presente estudio. Un aspecto que influye en las diferencias de estatura entre los deportistas de distintas partes del mundo es la genética. Algunas características antropométricas y de composición corporal de los jugadores están asociadas a características específicas de la población de una región geográfica concreta. Asimismo, la genética influye en las características antropométricas de los jugadores y estas características pueden estar asociadas al rendimiento (Leonardi et al., 2018).

Teniendo en cuenta las diferencias encontradas entre las posiciones de juego en este estudio, los pívots tenían un mayor IMC y porcentaje de grasa corporal en comparación con los aleros y los bases. Los jugadores más altos eran los pívots. Estos datos coinciden con lo encontrado en jugadores de baloncesto masculinos jóvenes de élite (edad: 14.0 ± 0.3) y adultos profesionales (edad: 24.4 ± 5.4) de clubes polacos (Gryko et al., 2018). Los jugadores base son más mesomórficos en comparación con los pívots, aunque estos últimos tienen una mayor masa

Esta obra está bajo una

libre de grasa, mientras que los aleros tienden a ser más delgados, aunque más bajos (Ziv y Lidor, 2009).

En cuanto a la masa músculo-esquelética, pocos estudios han reportado esta variable como tal; sin embargo, en jugadores masculinos con una edad media de 14.6 ± 0.4 años, no se reportaron diferencias en la masa libre de grasa entre las tres posiciones de juego (Erčulj y Bračič, 2014). Estas diferencias pueden atribuirse a las exigencias técnicas y físicas específicas de cada rol táctico. Por ejemplo, la altura y la proporción de brazos son criterios determinantes para los jugadores pívots (Gryko et al., 2018). Una mayor estatura conlleva una mayor longitud de brazos, lo que puede facilitar el rendimiento en el juego (Calleja-González et al., 2018). En baloncesto, la estatura se ha asociado con la eficacia en los movimientos defensivos y con la capacidad de regateo en jugadores europeos de las categorías U10 a U17 (Matulaitis et al., 2019). Asimismo, otro aspecto que puede influir en estas diferencias es el nivel de competición y los criterios de selección de talentos. Los jugadores que son catalogados como de élite suelen presentar una estatura superior a la de sus homólogos que no son de élite (Torres-Unda et al., 2013).

Los jugadores varones tienen mayor altura, peso corporal y masa músculo-esquelética (kg) que las jugadoras, mientras que el porcentaje de grasa corporal es mayor en las mujeres. Esto coincide con los resultados de estudios anteriores (Calleja-González et al., 2018; Fort-Vanmeerhaeghe et al., 2016; González De Los Reyes et al., 2020; Mancha-Triguero et al., 2020). Las diferencias entre sexos pueden deberse a la influencia hormonal y a la maduración biológica de los jugadores, así como a la experiencia de entrenamiento (Leonardi et al., 2018). Los hombres pueden desarrollar más masa muscular y crecer más alto debido a la hormona de la testosterona. En este estudio, el IMC no mostró diferencias entre hombres y mujeres (H = 23.35 ± 3.54 vs M = 23.68 ± 3.35). Estos resultados son consistentes con los reportados en investigaciones anteriores (Mancha-Triquero et al., 2020). El IMC masculino y femenino fue de 21.9 y 22.3, respectivamente, en la categoría U16, mientras que fue de 22.4 para los hombres y 20.5 para las mujeres en la categoría U18 (Mancha-Triguero et al., 2020). Las mujeres europeas U16 y U18 reportaron un porcentaje de grasa corporal de 15.6% y 14.7%, respectivamente, que es menor (Fort-Vanmeerhaeget al., 2016) que el porcentaje encontrado en los jugadores costarricenses. Las diferencias en los indicadores de composición corporal entre sexos pueden estar asociadas a los hábitos alimenticios, así como al régimen de entrenamiento de los deportistas (González De Los Reyes et al., 2020; Vamvakoudis et al., 2007).

Los resultados del salto de contramovimiento fueron mayores en los hombres en comparación con las mujeres. En jugadores griegos U15 y U18, se informaron resultados de pruebas de CMJ de 31.8 ± 6.1 cm y 38.6 ± 7.0 cm, respectivamente (Nikolaidis et al., 2015). En jugadoras amateurs sub-16 de Colombia (González De Los Reyes et al., 2020), y en jugadoras top femeninas sub-16 serbias (Zarić et al., 2018), los resultados del CMJ estuvieron entre 18 y 25 cm. Según la literatura, los hombres muestran un mejor rendimiento en capacidades anaeróbicas que las mujeres (Ziv y Lidor, 2009). Una mayor proporción de masa muscular y un menor porcentaje de grasa corporal en los hombres pueden facilitar el desarrollo de la fuerza y la potencia muscular (Nikolaidis et al., 2015). Además, una mayor estatura y longitud de las piernas puede contribuir a una mayor fuerza mecánica en las pruebas de contramovimiento.

Curiosamente, el modelo de regresión mostró que el rendimiento de CMJ fue predicho por el peso, el porcentaje de grasa corporal y la edad. Este hallazgo es similar a los resultados reportados previamente (García-Gil et al., 2018; Nikolaidis et al., 2015; Hadzhiev y Dzimbova, 2020). En jugadoras de baloncesto de élite, un mayor grosor de los pliegues cutáneos se correlacionó con un menor rendimiento en el CMJ, el Sprint Test y la prueba T de agilidad (García-Gil et al., 2018). Del mismo modo, en 15 jugadores de baloncesto jóvenes (edad: 15.5 ± 1.2 años) de un equipo de Eurobasket (Blagoevgrad, Bulgaria) se han encontrado correlaciones de moderadas a altas (r = 0.53 a 0.95) entre la altura, la masa magra corporal, la masa grasa corporal, la masa magra blanda y el IMC con parámetros del test de Wingate como la potencia máxima, la potencia inferior, la potencia máxima relativa y el porcentaje de fatiga anaeróbica (Hadzhiev y Dzimbova, 2020). Además, la edad es una variable que puede condicionar la relación entre la composición corporal y el rendimiento físico de los jugadores. Un estudio concluyó que el IMC afectaba de forma diferente al rendimiento en salto y carrera según los grupos de edad (Nikolaidis et al., 2015). Otro estudio mostró diferencias significativas entre categorías, de manera que los atletas U17 y U18 saltaron más centímetros en comparación con los U15 y U16 (Calleja-González et al., 2018). La influencia de la edad en las capacidades físicas puede estar asociada a la maduración y desarrollo físico inherente a cada etapa de edad (Mancha-Triguero et al., 2020), así como a la experiencia deportiva y al tipo de entrenamiento (Leonardi et al., 2018; Vamvakoudis et al., 2007).

Los hombres cubrieron más distancia en la prueba Yo-Yo y presentaron un VO2máx más alto que las mujeres. Esto coincide con lo reportado en la literatura. Los jugadores juveniles costarricenses analizados cubrieron una distancia en la prueba de Yo-Yo dentro de los parámetros previamente reportados para los jugadores sub-élite de equipos italianos de las categorías U14, U15 y U16 (Vernillo et al., 2012), que estaba entre 729 y 1078 m. Los jugadores U16 masculinos reportaron un VO2máx (ml/kg/min) de 60.4 ± 5.1 (Castagna et al., 2008), mientras que las jugadoras U16 y U18 tuvieron un VO2máx (ml/kg/min) de 45.90 ± 2.61 y 46.59 ± 1.81, respectivamente (Fort-Vanmeerhaeghe et al., 2016). Una revisión que examinó varios estudios concluyó que el VO2máx en las mujeres está entre 44 y 54 ml/kg/min y entre 50 y 60 ml/kg/min para los hombres (Ziv y Lidor, 2009). En estudios anteriores (Fort-Vanmeerhaeghe et al., 2016; Vernillo et al., 2012; Ziv y Lidor, 2009), los valores de VO2máx (ml/kg/min) fueron superiores a los de los jugadores costarricenses evaluados en el presente estudio. Las diferencias entre las costarricenses y las españolas pueden deberse al nivel de las jugadoras. Las españolas estaban en una categoría de élite (Fort-Vanmeerhaeghe et al., 2016), mientras que las costarricenses no. Además, la frecuencia de entrenamiento por semana, la experiencia y el nivel de condición física son factores que afectan a la capacidad aeróbica (Ziv y Lidor, 2009). Investigaciones anteriores demostraron que los jugadores de élite obtuvieron mejores resultados en las pruebas de salto, resistencia, velocidad y agilidad (Torres-Unda et al., 2013).

Los bases y los aleros presentan mejores resultados en la prueba Yo-Yo; así mismo, el VO2máx fue mayor en comparación con los centros. Esto se alinea con los resultados reportados previamente, administrando otras pruebas aeróbicas, como la Course-Navette, a varones internacionales juveniles de una academia nacional española (Calleja González et al., 2018) y administrando la prueba de carrera en lanzadera de 20 m a jugadores de cuatro equipos de la

Premier League de Bosnia (Pojskić et al., 2015). Esto puede deberse a la exigencia física que suponen las funciones tácticas de estas posiciones. Tanto en los equipos U18 masculinos (Pino-Ortega et al., 2019) como en los femeninos (Reina et al., 2020), los distribuidores recorren una mayor distancia total por minuto y, a su vez, realizan un mayor número de recorridos de alta intensidad (Ziv y Lidor, 2009). Además, según los datos de la regresión, un bajo porcentaje de grasa corporal puede influir positivamente en la capacidad aeróbica. En este sentido, los guardias y los delanteros fueron los que presentaron una grasa corporal baja. Un proceso de entrenamiento óptimo puede disminuir la grasa corporal y aumentar la masa muscular, por lo tanto, el VO2máx y la potencia muscular pueden ser mejorados para que los jugadores puedan mostrar un mejor rendimiento durante los partidos.

CONCLUSIONES

El sexo influyó en los indicadores antropométricos como: altura, peso y masa músculoesquelética, que fueron mayores en los hombres que en las mujeres. Los hombres presentaron una grasa corporal inferior a la de las mujeres. Del mismo modo, los hombres mostraron mejores resultados en la prueba Yo-Yo, en el VO2máx y en el CMJ. Las posiciones de juego pueden condicionar las características antropométricas, la capacidad aeróbica y la potencia muscular. Los jugadores más altos y pesados fueron los centrales. Los bases y los aleros obtuvieron mejores resultados en la prueba Yo-Yo y mostraron el mayor VO2máx. Además, los jugadores con menor porcentaje de grasa corporal y mayor masa músculo-esquelética, peso corporal y los de mayor edad tuvieron mejor capacidad aeróbica y potencia muscular.

Implicaciones prácticas

Teniendo en cuenta las diferencias encontradas entre hombres y mujeres, así como entre las posiciones de juego, es importante considerar la especialización en los procesos de formación, principalmente en las etapas de entrenamiento.

Por otra parte, los resultados de la regresión múltiple sugieren que es importante mejorar el perfil de composición corporal de los jugadores juveniles, debido a su impacto en la capacidad aeróbica y la potencia muscular. Estas dos capacidades físicas son cruciales para el rendimiento en este deporte. Es necesario que los jugadores juveniles mantengan un peso corporal óptimo, disminuyan la grasa corporal y aumenten la masa muscular. Estos datos pueden orientar las estrategias de entrenamiento enfocadas a mejorar el rendimiento físico individual de los jugadores. A pesar de no observar diferencias entre las categorías sub16 y sub18, se recomienda respetar los procesos de maduración de cada jugador, garantizando un adecuado desarrollo deportivo.

Los resultados de los jugadores evaluados actualmente y las comparaciones con datos internacionales no son concluyentes, ya que los jugadores costarricenses presentan características antropométricas y capacidades físicas ligeramente inferiores o incluso superiores a las reportadas. Sería necesario realizar un estudio con una muestra costarricense más amplia, considerando incluso el nivel de los jugadores como criterio y si juegan en la selección nacional. Esto podría ayudar a establecer puntos de referencia a la hora de competir internacionalmente. Además, esta información es útil para la promoción y desarrollo de este deporte en Costa Rica.

y Rojas-Valverde

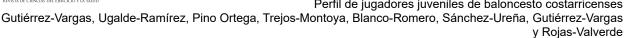
Contribuciones. Randall Gutiérrez-Vargas (A-B-C-E), José Alexis Ugalde-Ramírez (B-C-D-E), José Pino-Ortega (B-C-D-E), José Andrés Trejos-Montoya (B-C-E), Luis Blanco-Romero (B-C-E), Braulio Sánchez-Ureña (A-B-C-D), Juan Carlos Gutiérrez-Vargas (A-B-E) y Daniel Rojas-

Valverde (B-C-D-E)

A-Financiamiento, **B-**Diseño del estudio, **C-**Recolección de datos, **D-**Análisis estadístico e interpretación de resultados, **E-**Preparación del manuscrito.

Contacto de los autores: randall.gutierrez.vargas@una.cr; jose.ugalde.ramirez@una.cr; josepinoortega@um.es; jtrejos@una.cr; luis.blanco.romero@una.cr; braulio.sanchez.urena@una.cr; juan.gutierrez.vargas@una.cr; drojasv@una.cr

TRADUCCIÓN AL ESPAÑOL: elaborada por los autores.


REFERENCIAS

- Bangsbo, J., Iaia, F. M., y Krustrup, P. (2008). The Yo-Yo Intermittent Recovery Test. *Sports Medicine*, *38*(1), 37-51. https://doi.org/10.2165/00007256-200838010-00004
- Ben Abdelkrim, N., Castagna, C., Jabri, I., Battikh, T., El Fazaa, S., y Ati, J. E. (2010). Activity Profile and Physiological Requirements of Junior Elite Basketball Players in Relation to Aerobic-Anaerobic Fitness. *The Journal of Strength y Conditioning Research*, 24(9), 2330-2346. https://doi.org/10.1519/JSC.0b013e3181e381c1
- Calleja-González J., Mielgo, J., Lekue J.A., Leibar, X., Erauzkin J., Jukic, I., Ostojic, S., González, G., Fuentes, M., y Terrados, N. (2018). Anthropometry and performance of top youth international male basketball players in Spanish national academy. *Nutrición Hospitalaria*, 35(6), 1331-1339. https://doi.org/10.20960/nh.1897
- Castagna, C., Impellizzeri, F. M., Rampinini, E., D'Ottavio, S., y Manzi, V. (2008). The Yo–Yo intermittent recovery test in basketball players. *Journal of Science and Medicine in Sport,* 11(2), 202-208. https://doi.org/10.1016/j.jsams.2007.02.013
- Cohen, J. (1988). Statistical Power Analysis for the Behavioral Sciences (2nd ed.). Erlbaum.
- Erčulj, F., y Bračič, M. (2014). Morphological Profile of Different Types of Top Young Female European Basketball Players. *Collegium Antropologicum*, *38*(2), 517-523. https://hrcak.srce.hr/127555
- Fort-Vanmeerhaeghe, A., Montalvo, A., Latinjak, A., y Unnithan, V. (2016). Physical characteristics of elite adolescent female basketball players and their relationship to match performance. *Journal of Human Kinetics*, *53*(1), 167-178. https://doi.org/10.1515/hukin-2016-0020

- PENSAR EN MOVIMIENTO
 REVISTA DE CIENCIAS DEL EJERCICIO Y LA SALUD
- Gonzalez De Los Reyes, Y., Gálvez, A., y Mendoza-Romero, D. (2020). Comparación antropométrica, fuerza explosiva y agilidad en jugadoras jóvenes de baloncesto de Bogotá-Colombia. *Retos*, 38, 406-410. https://doi.org/10.47197/retos.v38i38.71967
- Gryko, K., Kopiczko, A., Mikołajec, K., Stasny, P., y Musalek, M. (2018). Anthropometric Variables and Somatotype of Young and Professional Male Basketball Players. *Sports, 6*(1), 9. https://doi.org/10.3390/sports6010009
- Hadzhiev, N., y Dzimbova, T. (2020). Anthropometric and anaerobic characteristics of young basketball players. *Journal of Physical Education and Sport,* 20(2), 707-712. https://efsupit.ro/images/stories/martie2020/Art%20102.pdf
- Hoare, D. G. (2000). Predicting success in junior elite basketball players—The contribution of anthropometric and physiological attributes. *Journal of Science and Medicine in Sport, 3*(4), 391-405. https://doi.org/10.1016/S1440-2440(00)80006-7
- Hopkins, W. G., Marshall, S. W., Batterham, A. M., y Hanin, J. (2009). Progressive Statistics for Studies in Sports Medicine and Exercise Science. *Medicine & Science in Sports & Exercise*, 41(1), 3-12. https://doi.org/10.1249/MSS.0b013e31818cb278
- Leonardi, T., Paes, R., Breder, L., Foster, C., Gonçalves, C., y Carvalho, H. (2018). Biological maturation, training experience, body size and functional capacity of adolescent female basketball players: A Bayesian analysis. *International Journal of Sports Science & Coaching*, 13(5), 713-722. https://doi.org/10.1177/1747954118772489
- Mancha-Triguero, D., García-Rubio, J., Antúnez, A., y Ibáñez, S. J. (2020). Physical and Physiological Profiles of Aerobic and Anaerobic Capacities in Young Basketball Players. *International Journal of Environmental Research and Public Health, 17*(4), 1409. https://doi.org/10.3390/ijerph17041409
- Matulaitis, K., Skarbalius, A., Abrantes, C., Gonçalves, B., y Sampaio, J. (2019). Fitness, Technical, and Kinanthropometrical Profile of Youth Lithuanian Basketball Players Aged 7–17 Years Old. *Frontiers in Psychology*, 10, 1677. https://doi.org/10.3389/fpsyg.2019.01677
- Metaxas, T. I., Koutlianos, N., Sendelides, T., y Mandroukas, A. (2009). Preseason Physiological Profile of Soccer and Basketball Players in Different Divisions. *The Journal of Strength & Conditioning Research*, 23(6), 1704-1713. https://doi.org/10.1519/JSC.0b013e3181b3e0c5
- Nikolaidis, P. T., Asadi, A., Santos, E. J. A. M., Calleja-González, J., Padulo, J., Chtourou, H., y Zemkova, E. (2015). Relationship of body mass status with running and jumping performances in young basketball players. *Muscles, Ligaments and Tendons Journal, 5*(3), 187-194. https://doi.org/10.11138/mltj/2015.5.3.187
- Pino-Ortega, J., Rojas-Valverde, D., Gómez-Carmona, C. D., Bastida-Castillo, A., Hernández-Belmonte, A., García-Rubio, J., Nakamura, F. Y., y Ibáñez, S. J. (2019). Impact of Contextual Factors on External Load During a Congested-Fixture Tournament in Elite U'18 Basketball Players. *Frontiers in Psychology, 10*, 1100. https://doi.org/10.3389/fpsyq.2019.01100
- Pojskić, H., Šeparović, V., Užičanin, E., Muratović, M., y Mačković, S. (2015). Positional role differences in the aerobic and anaerobic power of elite basketball players. *Journal of Human Kinetics*, *49*(1), 219- 227. https://doi.org/10.1515/hukin-2015-0124
- Reina, M., García-Rubio, J., y Ibáñez, S. J. (2020). Activity Demands and Speed Profile of Young Female Basketball Players Using Ultra-Wide Band Technology. *International Journal of*

PENSAR EN

Environmental Research and Public Health, 17(5), 1477. https://doi.org/10.3390/ijerph17051477

- Torres-Unda, J., Zarrazquin, I., Gil, J., Ruiz, F., Irazusta, A., Kortajarena, M., Seco, J., y Irazusta, J. (2013). Anthropometric, physiological, and maturational characteristics in selected elite and non-elite male adolescent basketball players. *Journal of Sports Sciences*, *31*(2), 196-203. https://doi.org/10.1080/02640414.2012.725133
- Tsunawake, N., Tahara, Y., Moji, K., Muraki, S., Minowa, K., y Yukawa, K. (2003). Body Composition and Physical Fitness of Female Volleyball and Basketball Players of the Japan Inter-high School Championship Teams. *Journal of Physiological Anthropology and Applied Human Science*, 22(4), 195-201. https://doi.org/10.2114/jpa.22.195
- Vamvakoudis, E., Vrabas, I. S., Galazoulas, C., Stefanidis, P., Metaxas, T. I., y Mandroukas, K. (2007). Effects of basketball training on maximal oxygen uptake, muscle strength, and joint mobility in young basketball players. *Journal of Strength and Conditioning Research*, *21*(3), 930-936. https://pubmed.ncbi.nlm.nih.gov/17685677/
- Vaquera, A., Santos, S., Villa, J. G., Morante, J. C., y García-Tormo, V. (2015). Anthropometric Characteristics of Spanish Professional Basketball Players. *Journal of Human Kinetics*, 46(1), 99-106. https://doi.org/10.1515/hukin-2015-0038
- Vernillo, G., Silvestri, A., y Torre, A. L. (2012). The Yo-Yo Intermittent Recovery Test in Junior Basketball Players According to Performance Level and Age Group. *The Journal of Strength & Conditioning Research*, 26(9), 2490-2494. https://doi.org/10.1519/JSC.0b013e31823f2878
- Zarić, I., Dopsaj, M., y Marković, M. (2018). Match performance in young female basketball players: Relationship with laboratory and field tests. *International Journal of Performance Analysis in Sport*, *18*(1), 90-103. https://doi.org/10.1080/24748668.2018.1452109
- Ziv, G., y Lidor, R. (2009). Physical Attributes, Physiological Characteristics, On-Court Performances and Nutritional Strategies of Female and Male Basketball Players. *Sports Medicine*, 39(7), 547-568. https://doi.org/10.2165/00007256-200939070-00003