

PENSAR EN MOVIMIENTO: Revista de Ciencias del Ejercicio y la Salud

ISSN: 1409-0724 ISSN: 1659-4436

pensarenmovimiento.eefd@ucr.ac.cr

Universidad de Costa Rica

Costa Rica

León, Felix; Mestre, Andres; Priego, Lorelu; Vera, Juan Carlos

Estudio completo de adaptaciones morfológicas en respuesta al ejercicio crónico en los tejidos osteomusculares: una revisión sistemática [1]

PENSAR EN MOVIMIENTO: Revista de Ciencias del Ejercicio y la Salud, vol. 21, núm. 2, e56165, 2023, Julio-Diciembre Universidad de Costa Rica Montes de Oca, Costa Rica

DOI: https://doi.org/10.15517/pensarmov.v21i2.56165

Disponible en: https://www.redalyc.org/articulo.oa?id=442075225005

Número completo

Más información del artículo

Página de la revista en redalyc.org

Sistema de Información Científica Redalyc Red de revistas científicas de Acceso Abierto diamante Infraestructura abierta no comercial propiedad de la academia

Bases de datos, metodologías y otros archivos complementarios Volumen 21, número 2, pp. 1-18 Abre 1° de Julio, cierra 31 de Diciembre, 2023

ISSN: 1659-4436

Estudio completo de adaptaciones morfológicas en respuesta al ejercicio crónico en los tejidos osteomusculares: una revisión sistemática

Felix León, Andres Mestre, Lorelu Priego y Juan Carlos Vera

Envío original: 2022-06-18 Reenviado: 2023-01-06, 2023-04-21 Aceptado: 2023-04-26

Publicado en versión en español: 2023-08-16*

Doi: https://doi.org/10.15517/pensarmov.v21i2.56165

Editor asociado a cargo: Ph.D Luis Fernando Aragón-Vargas

¿Cómo citar este artículo?

León, F., Mestre, A., Priego, L. y Vera, J.C. (2023). Estudio completo de adaptaciones morfológicas en respuesta al ejercicio crónico en los tejidos osteomusculares: una revisión sistemática. *Pensar en Movimiento: Revista de Ciencias del Ejercicio y la Salud*, 21(2), e56159. https://doi.org/10.15517/pensarmov.v21i2.56165

^{*} Apéndice traducido al español. Original en inglés disponible en: León, F., Mestre, A., Priego, L., & Vera, J. C. (2023). Full study of characteristics of morphological adaptations in response to chronic exercise across musculoskeletal tissues: a systematic review. *Pensar en Movimiento: Revista de Ciencias del Ejercicio y la Salud, 21*(1), e55427. https://doi.org/10.15517/pensarmov.v21i1.55427

Estudio completo de adaptaciones morfológicas en respuesta al ejercicio crónico en los tejidos osteomusculares: una revisión sistemática

Full study of morphological adaptations in response to chronic exercise across musculoskeletal tissues: a systematic review

Estudo completo adaptações morfológicas em resposta ao exercício crônico nos tecidos osteomusculares: uma revisão sistemática

- Felix León ¹
- Andres Mestre 10 2
 - Lorelu Priego D 3
- Juan Carlos Vera 🗓 4

Resumen: Hasta la fecha, no existe una revisión sistemática que resuma las adaptaciones morfológicas del sistema osteomuscular en respuesta al ejercicio crónico. La presente seleccionó artículos originales, con fecha de publicación de 2000 a 2020, idioma de publicación en inglés, con una clara intervención de ejercicio y que presentaran un cambio morfológico en el tejido estudiado. Participantes humanos independientemente de la edad, el género o condición de salud. Se identificaron 2819 registros. Después de eliminar los duplicados, la selección de títulos y resúmenes y la revisión de texto completo, se incluyeron 67 registros en el análisis final (6 para disco intervertebral, 6 para cartílago, 36 para hueso, 2 para ligamento, 9 para tendón y 7 para músculo). Los resultados destacan que las intervenciones más utilizadas fueron ejercicio aeróbico, contra resistencia y pliométrico. La población abarcó desde niños y personas sanas activas hasta personas con alguna condición de salud. Se concluye que, como respuesta al ejercicio crónico, existen adaptaciones morfológicas en los tejidos del sistema musculoesquelético que pueden variar desde un aumento de rigidez hasta un aumento de área. Aunque los tejidos pueden adaptarse, aún quedan varias preguntas, como la dosis y tipo de ejercicio óptimo, si pueden ocurrir adaptaciones en un tejido lesionado y las implicaciones funcionales de estas adaptaciones. La investigación futura debe abordar estas preguntas.

Palabras clave: osteomuscular, adaptación, estilo de vida, actividad física.

⁴ Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México, Campus Norte, Huixquilucan, Estado de México, México. Correo electrónico: juan.veragu@anahuac.mx

¹ Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México, Campus Norte, Huixquilucan, Estado de México, México. Correo electrónico: felix.leon@anahuac.mx

² Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México, Campus Norte, Huixquilucan, Estado de México, México. Correo electrónico: andres.mestreza@anahuac.mx

³ Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México, Campus Norte, Huixquilucan, Estado de México, México. Correo electrónico: niria.priegogu@anahuac.mx

Abstract: To date, there is no systematic review that summarizes the morphological adaptations of the musculoskeletal system in response to chronic exercise. This systematic review selected original articles published in English between 2000 and 2020, with a clear exercise intervention and presenting a morphological change in the tissue under study, and covering human participants irrespective of age, gender or health condition. In total, 2819 records were identified. After removal of duplicates, title and abstract screening and full-text review, 67 records were included in the final analysis (6 for inter-vertebral disc, 6 for cartilage, 36 for bone, 2 for ligament, 9 for tendon and 7 for muscle). The most used interventions were aerobic, resistance, and plyometric exercise. Population ranged from children and healthy active people to individuals with a health condition. In conclusion, as a response to chronic exercise there are morphological adaptations in the tissues of the musculoskeletal system which vary from increased stiffness to an increase in cross-sectional area. Although tissues can adapt, several questions still linger, such as optimal dose and type of exercise, whether adaptations can occur in an injured tissue, and functional implications of these adaptations. Future research should address these questions.

Keywords: Musculoskeletal system physiology, adaptation, morphology, lifestyle, physical activity

Resumo: Até o momento, não há uma revisão sistemática que resuma as adaptações morfológicas do sistema osteomuscular em resposta ao exercício crônico. Esta revisão sistemática selecionou artigos originais, com data de publicação de 2000 a 2020, idioma de publicação em inglês, com clara intervenção de exercícios e que apresentaram alteração morfológica no tecido estudado. Participantes humanos, independentemente da idade, sexo ou condição de saúde. Foram identificados 2.819 registros. Após eliminar os artigos duplicados, triagem de título e resumo e revisão do texto completo, 67 registros foram incluídos na análise final (6 para disco intervertebral, 6 para cartilagem, 36 para osso, 2 para ligamento, 9 para tendão e 7 para músculo). Os resultados destacam que as intervenções mais utilizadas foram exercícios aeróbicos, resistidos e pliométricos. A população variou de crianças e pessoas saudáveis ativas a pessoas com alguma condição de saúde. Conclui-se que, em resposta ao exercício crônico, ocorrem adaptações morfológicas nos tecidos do sistema musculoesquelético, que podem variar desde um aumento de rigidez até um aumento de área. Embora os tecidos possam se adaptar, várias questões permanecem, como a dose ideal e o tipo de exercício, se adaptações podem ocorrer no tecido lesado e as implicações funcionais dessas adaptações. Pesquisas futuras devem abordar essas questões.

Palavras-chave: osteomuscular, adaptação, estilo de vida, atividade física.

Appendix. Full study characteristics including authors, year of publication, study design, population, intervention, comparison and outcomes. Abbreviation list: IVD, intervertebral disc; RCT, randomized controlled trial; ADC, apparent diffusion coefficient; OA, osteo arthritis; BMD, bone mineral density; BMC, bone mineral content; FN femoral neck; CSA, cross

sectional area; TSI, time since injury; ToA, total bone area; BSI, bone strength index; vBMD, volumetric bone mineral density; ACL, anterior cruciate ligament; PCL, posterior cruciate ligament; AT, Achilles tendon; PT, patellar tendon; AP, pennation angle; FL, fascicle length; VL, vastus lateralis.

CIMOHU

Autores	Año	Tipo de estudio	Población	Intervención	Comparativa	Resultados
Disco intervertebral	1			•	1	1
Belavy et al.	<u>2019</u>	Observacional, transversal	Ciclistas que rodan altos volumen de 25 a 35 años (<i>n</i> = 36, 18 ciclistas, 18 ningún deporte)	Ninguna intervención	- Ningún deporte	-DIV más alto en ciclistas (0.75 mm, p = .006) -Tiempos T2 del DIV más altos en ciclistas (10.5 ms, p = .021).
Belavy et al.	<u>2017</u>	Observacional, transversal	Individuos de 25 a 35 años (<i>n</i> = 79, 24 ningún deporte, 30 corredores, 25 corredores de larga distancia)	Ninguna intervención	-Ningún deporte -Corredores (20-40 km) -Corredores de larga distancia (más de 50 km)	-Tiempos T2 del DIV más altos en corredores (+9.2%) y corredores de larga distancia (+11.4%) (<i>p</i> < .01 en comparación con ningún deporte)DIV más alto en relación con el cuerpo vertebral en corredores y corredores de larga distancia (<i>p</i> < .05 en comparación con ningún deporte).
Bowden et al.	2018	Observacional, control de casos	Participantes de 35 a 55 años (n = 26, 15 actividad vigorosa diaria, 16 sedentarismo elevado, 14 más de 30 min de actividad moderada a vigorosa)	Ninguna intervención	-Actividad vigorosa diaria -Sedentarismo alto -Más de 30 minutos de actividad moderada a vigorosa	-Valores de T2 más altos en T5/S1 (p = .004) en participantes con cualquier cantidad de actividad vigorosa diaria.
Khanzadeh et al.	2020	Cuasi experimental	Hombres con dolor lumbar y radicular unilateral o bilateral en las piernas debidos a hernia de disco lumbar (n = 30, 15 grupo de suspensión, 15 grupo convencional)	Ejercicio de suspensión (8 semanas)	Ejercicios convencionales de estabilidad de <i>cor</i> e	Sin cambios en la altura del DIV entre los grupos.

Owen et al.	2020	Ensayo controlado aleatorizado simple-ciego	Personas con lumbalgia crónica no específica (<i>n</i> = 40, 20 ejercicio, 20 control)	Ejercicios aeróbicos y de resistencia (6 meses)	Control (terapia manual y ejercicios de control motor)	Sin cambios en los tiempos T2, CDA y altura del DIV completo entre los grupos tras controlar los falsos positivos.
Owen et al.	2021	Observacional, transversal	Participantes de una amplia gama de deportes y controles no deportistas (<i>n</i> = 379 308 deportistas, 71 controles)	Ninguna intervención	-Deporte (béisbol, natación, baloncesto, kendo, fútbol, atletismo) -Ningún deporte (control)	-Altura de DIV lumbar media relativa a la altura del cuerpo vertebral 7.6% mayor que los controles en baloncesto ($p=.001$) y natación ($p=.001$)Altura individual del DIV relativa a la altura del cuerpo vertebral mayor que los controles en baloncesto (6.3-14%, $p \le .029$) y natación (7.6-15%, $p \le 010$)Altura individual del DIV relativa a la altura del cuerpo vertebral mayor que los controles en L2 a L3 en fútbol (8.7%, $p=.36$) y en L3 a L4 para béisbol (7.6%, $p=.011$).
Cartílago						
Armagan et al.	<u>2015</u>	Prospectivo, aleatorizado simple-ciego	Pacientes ambulatorios de 45- 70 años con OA idiopática de rodilla (n = 70, 30 ejercicio en casa, 40 sulfato de glucosamina)	Programa de ejercicios en casa (6 meses)	Grupo de sulfato de glucosamina	Mejora del grosor del cartílago (pretratamiento 2.5 (0 min-4 máx) post tratamiento. 2 (0 min -3 máx), $p < .05$) en el cóndilo femoral medial en el grupo de ejercicio en casa.
Cotofana et al.	2010	Ensayo controlado aleatorizado	Mujeres de 45-55 años (n = 38, 18 resistencia, 15 fuerza, 5 autógeno)	Intervención con ejercicio (3 meses)	-Entrenamiento de fuerza -Entrenamiento de resistencia -Entrenamiento autógeno (control)	Sin cambios significativos en la morfología del cartílago de la rodilla (rótula, tibia medial y fémur medial).
Hinterwimmer et al.	<u>2014</u>	Intervencional, no aleatorizado	Principiantes de maratón asintomáticos (<i>n</i> =	Programa de carrera supervisada y	-Ningún grupo de comparación	- El grosor del cartílago lateral del fémur disminuyó un 1.7 \pm 1.6% (p = .010).

			10, 5 hombres y 5 mujeres)	un maratón (6 meses)		- El volumen del cartílago femoral lateral disminuyó un $3.2 \pm 3.0\%$ ($p = .012$).
Koli et al.	<u>2015</u>	Ensayo controlado aleatorizado	Mujeres posmenopáusicas con OA tibiofemoral leve (n = 80, 40 ejercicio, 40 control)	Ejercicio aeróbico tipo step (12 meses)	Ninguna actividad física (control)	Mejora total del cartílago rotuliano (valor inicial 47.9 (DT 7.9), postratamiento -3.8 (IC 95%: -6.4 a -1.9), p = .018).
Küçük et al.	<u>2018</u>	Experimental, prospectivo comparativo	Mujeres con OA bilateral primaria de rodilla (<i>n</i> = 45, 15 aeróbica, 15 isocinética, 15 isométrica)	Intervención con ejercicio (4 semanas)	-Ejercicio isocinético -Ejercicio aeróbico -Ejercicio isométrico	Cambio en el volumen del cartílago rotuliano (de 2.24 \pm 0.29 mm³ antes del tratamiento a 2.35 \pm 0.34 mm³ después del tratamiento, p = .036) en el grupo isométrico.
Munukka et a	al. <u>2016</u>	ECA de dos brazos	Mujeres de 60-68 años con OA de rodilla leve (n = 87, 43 grupo acuático, 44 grupo control)	Entrenamiento acuático de resistencia (4 meses)	Tratamiento habitual (control)	Disminución de los tiempos T2 (-1.2 ms, IC 95%: -2.2 a-0.2, p = .021) en el grupo acuático en comparación con los controles en el cartílago femoral medial.
Hueso						
Alghadir et a	ıl. <u>2016</u>	ECA	Sujetos sanos de 30-60 años (<i>n</i> = 100, 47 hombres 53 mujeres)	Ejercicio aeróbico (12 semanas)	-Ningún grupo de comparación	-Aumento de la DMO en la cadera (normal 0.97 ± 0.18 ; $p < .05$; osteopénica 0.89 ± 0.1 ; $p < .01$; osteoporótica 0.98 ± 0.27 ; $p < .01$)Aumento de la DMO en la columna vertebral (normal: 0.96 ± 0.12 ; $p < .05$; osteopénica: 1.6 ± 0.35 ; $p < .01$; osteoporótica: 1.93 ± 0.45 ; $p < .1$).
Bailey y Brod Wavell	oke- <u>2010</u>	ECA	Mujeres premenopáusicas (n = 85, 21 EJ2, 22 EJ4, 22 EJ7, 20 CON)	Intervención con ejercicio (6 meses)	-Ejercicio pliométrico dos días a la semana (EJ2) -Ejercicio pliométrico cuatro días a la semana (EJ4)	-Aumento de la DMO del cuello femoral grupo EJ7(+1.7 (+0.7-2.7) que en CON (-0.3 (-1.2-0.5), p = .003) y EJ2(+0.2 (-0.8-1.2), p = .015).

					-Ejercicio pliométrico siete días a la semana (EJ7) -Control (CON)	
Bailey et al.	2010	Transversal, descriptivo	Hombres caucásicos sanos (<i>n</i> = 281)	Ninguna intervención	-Historial de carga de por vida (tercil bajo, medio, alto)	-CMO más alto en la mitad del fémur en el tercil medio $(5.639 \pm 0.90, p < .05)$ y alto $(5.771 \pm 0.658, p < .01)$ en comparación con el tercil bajoMayor CMO en la tibia media en el tercil medio $(4.266 \pm 0.534, p < .01)$ y alto $(p < .01)$ en comparación con el tercil bajo.
Bolton et al.	<u>2012</u>	ECA simple- ciego	Mujeres posmenopáusicas con osteopenia (<i>n</i> = 39, 19 EJ, 20 CON)	Resistencia, impacto y equilibrio (EJ) (52 semanas)	-Control (CON)	-Aumento no significativo del 0.5% en el grupo EJ y pérdida no significativa del 0.9% en el grupo CON de la DMO total de caderaDiferencia media en el cambio entre grupos de -0.012 g/cm2 (IC del 95%: -0.022 a -0.002 g/cm2, p = .02) en la DMO total de cadera.
Detter et al.	<u>2013</u>	Estudio prospectivo controlado	Niños de 6-9 años (<i>n</i> = 2395, 808 EJ, 1587 CON)	Clases estándar de actividad física (5 años)	-Educación física diaria (EJ,200 min/semana) -Educación física diaria (CON,60 min/semana)	-Mayor aumento anual de la DMO de la columna vertebral (0.045 [0.038, 0.050] $p < .001$), del CMO del CF (0.36 [0.32, 0.40] $p = .02$) y del área del CF (0.21 [0.18, 0.24] $p = .03$) en las niñas EJ en comparación con las CON. - Mayor CMO cortical tibial (2.8 (2.7, 2.9) $p = .03$), mayor área cortical tibial (236 (225, 245) $p = .02$) y mayor at radial (130 (122, 139) $p = .04$) en las niñas EJ en comparación con las CON. -Mayor aumento anual de la DMO de la columna vertebral (0.028 (0.025, 0.030 $p = .01$) en los niños EJ en comparación con los niños CON.

Dowthwaite et al.	2007	Transversal, cohorte	Gimnastas premenárquicas (<i>n</i> = 56)	Ninguna intervención	-Gimnastas -No gimnastas	-Mayor CMO en el radio ultradistal (0.90 (0.82-0.98), $p \le .001$), DMO areal (0.365 (0.343-0.386), $p \le .001$), anchura media perióstica 16.20 (15.43-16.96), $p < .05$) en el radio ultradistal en el grupo de gimnastasMayor CMO (1.09 (1.03-1.16), $p \le .001$), DMO areal (0.511 (0.487-0.535), $p < .05$), anchura media del periostio (10.62 (10.23-11.01), $p \le .001$) y área transversal cortical (53.76 (50.66-56.86), $p \le .001$) en 1/3 distal del radio en el grupo de gimnastas.
Draghici et al.	<u>2019</u>	Transversal, cohorte	Hombres con LM (<i>n</i> = 13)	Remo FES	-Ningún grupo de comparación	-Interacción entre distancia total remada, TTL y fuerza máxima del pie en el espesor trabecular (R2 = 0.72 , $p < .01$).
Du et al.	<u>2021</u>	ECA	Mujeres posmenopáusicas (<i>n</i> = 10)	Ejercicio unilateral de alto impacto (6 meses)	-Ningún grupo de comparación	-Aumento del número de trabéculas (inicio: 1.70 ± 0.13 ; después de la intervención: 1.78 ± 0.20 ; interacción tiempo × pierna: $p = .043$).
Ducher et al.	<u>2004</u>	Transversal	Tenistas de nivel regional (<i>n</i> = 57, 33 hombres, 24 mujeres)	Ninguna intervención	-Cúbito distal y radio del brazo que utilizan para jugar -Cúbito distal y radio del brazo que no utilizan para jugar	-Mayor CMO total en el radio (14.98 \pm 7.03, p < .0001) y en el cúbito (13.44 \pm 7.36, p < .0001) en el brazo que utiliza para jugar.
Ducher et al.	2011	Cohorte, prospectivo	Jugadoras de tenis competivas de 10 a 17 años (<i>n</i> = 45,13 premenárquicas (pre/peri), 32 postmenárquicas (post))	Practicar tenis (12 meses)	-Cúbito distal y radio del brazo que utilizan para jugar -Cúbito distal y radio del brazo que no utilizan para jugar	-Aumento en el grupo pre/peri de CMO (20.6 \pm 10.0, p < .001), ATO (11.7 \pm 6.6, p < .001) y CoA (19.9 \pm 11.7, p < .001) en el brazo que juega en comparación con el brazo que no juegaAumento en el grupo posterior de CMO (19.2 \pm 10.2, p < .001) y ATO (10.1 \pm 5.0, p < .001) en el brazo que juega en comparación con el brazo que no juega.

Ducher et al.	<u>2009</u>	Transversal, descriptivo	Tenistas masculinos de competición pre, peri y postpuberales (<i>n</i> = 43)	Ninguna intervención	- Tenis (deporte)	-Mayor área cortical (35.6 ± 10.3, p < .01) en niños prepúberes frente a peripúberesMayor área cortical (66.1 ± 18.6, p < .01) en niños postpúberes frente a peripúberes.
Greene et al.	<u>2009</u>	ECA	Niñas prepúberes de 6-10 años (<i>n</i> = 42, 13 CON, 13 LD, 13 HD)	Ejercicios de caída con una sola pierna (8 meses)	-Caída baja 14 cm (CB) -Caída alta 23 cm (CA) -Control (CON)	- Sin cambios en las adaptaciones osteogénicas en la geometría ósea, las propiedades biomecánicas o el índice de resistencia ósea.
Harding et al.	2020	Ensayo controlado semialeatorizad o	Hombres de mediana edad y mayores ≥ 45 años con osteopenia u osteoporosis (<i>n</i> = 93, 34 HiRIT, 33 IAC, 26 CON)	Entrenamiento de resistencia progresiva de alta intensidad e impacto, HiRIT (8 meses)	-Compresión axial isométrica (CAI) -Control (CON)	-Aumento en HiRIT del grosor cortical medial del CF en comparación con CON (5.6 \pm 1.7% frente a -0.1 \pm 1.9%, p = .028) y CAI (5.6 \pm 1.7% frente a 0.7 \pm 1.7%, p = .044)Mejora del volumen cortical deL CF (009 \pm 0.05 cm³, p = .041) en HiRITMejora en HiRIT en comparación con CON para CMO total de tibia distal (0.1 \pm 0.3% 286 frente a -3.0 \pm 0.4%, p < .001), DMOv total (0.0 \pm 0.3% frente a -0.8 \pm 0.3%, p = .050), área total (0.0 \pm 0.4% frente a -2.1 \pm 0.5%, p = .001), IRO total (0.1 \pm 0.4% frente a -3.9 \pm 0.5%, p < .001), CMO trabecular (0.4 \pm 0.4% frente a -1.8 \pm 0.5%, p = .001), área trabecular (0.2 \pm 0.5% frente a -1.6 289 \pm 0.5%, p = .013) e IRO trabecular (0.7 \pm 0.5% frente a -1.9 \pm 0.6%, p = .001).
Hasselstrøm et al.	2008	Ensayo controlado no aleatorizado	Niños en edad preescolar (n = 379, 135 niños y 108 niñas INT, 62 niños y 76 niñas CON)	Clases estándar de actividad física (3 años)	-Clases de actividad física estándar con mayor volumen (180 min/semana, INT) -Clases de actividad física estándar con volumen normal (90 min/semana, CON)	-Incremento en el CMO distal del antebrazo $(2.14 \pm 0.34, p = .04)$ en las niñas INT comparadas con las niñas CONAumento del área escaneada distal del antebrazo $(7.42 \pm 0.82, p = .005)$ en las niñas INT en comparación con las niñas CON.

-Diferencia en la densidad total del fémur distal

Heinonen et al. 20	<u>002</u>	Observacional, transversal	Levantadoras de pesas y <i>powerlifters</i> de nivel nacional e internacional (<i>n</i> = 14, 14 CON)	Ninguna intervención	-Levantadores de pesas y powerlifters de nivel nacional e internacional. - Edad emparejada, relativamente activos (CON)	(301.2 (30.0), $p = .040$) a favor del grupo de halterofilia. -Diferencia en el área de la sección transversal en el radio distal (101.9 (28.0), $p = .029$) y en el eje radial (88.8 (16.5), $p = .001$) a favor del grupo de halterofilia. -Diferencia en el eje de la pared cortical en el eje radial (3.6 (0.46), $p = .037$) a favor del grupo de halterofilia. -Diferencia en el área cortical en la parte media de la tibia (305.7(35.0), $p = .034$) a favor del grupo de halterofilia.
Hughes et al. 20	<u>018</u>	Observacional, longitudinal	Reclutas femeninas del ejército estadounidense (<i>n</i> = 91)	Entrenamiento básico de combate (8 semanas)	Ninguna comparación	-Aumento del grosor trabecular medio [1.13% (0.76, 1.50); $p < .001$], del número trabecular [1.21% (0.48, 1.94); $p < .05$], del volumen óseo trabecularVolumen óseo/volumen total [1.87% (1.31, 2.43); $p < .001$], DMO trabecular [2.01% (1.44, 2.58); $p < .001$] y grosor cortical [0.98% (0.38, 1.58); $p < .001$] en la tibia.
Karinkanta et al. 20	<u>007</u>	ECA	Mujeres de 70-79 años (n = 149, 37 RES, 37 BAL, 39 COMB, 37 CON)	Intervención con ejercicio (12 meses)	-Grupo de entrenamiento de resistencia (RES) -Grupo de entrenamiento de equilibrio y salto (BAL) -Grupo de entrenamiento de resistencia y equilibrio- salto (COMB) -Grupo de control sin entrenamiento (CON)	-Ningún efecto sobre la DMO en el cuello femoral o la tibia.

mm, p = .047).

Kukuljan et al.	<u>2011</u>	ECA	Varones sanos de 50-79 años (<i>n</i> = 180,45 EJ+LF, 46 EJ, 45 LF, 44 CON)	Intervención con ejercicio y suplementos (18 meses)	-Ejercicio más leche fortificada (EJ+LF) -Ejercicio (EJ) -Leche fortificada (LF) -Control (CON)	-Aumento de la DMO del cuello femoral [1.9% (IC del 95%: 1.2 a 2.5)], CSA [1.8% (IC del 95%: 0.8 a 2.7)] en el grupo de ejercicioAumento de la DMO trabecular de la columna lumbar [2.2% (IC del 95%: 0.2 a 4.1)] en el grupo de ejercicio.
Lambert et al.	2020	ECA simple-ciego	Mujeres adultas jóvenes sanas inactivas de 18-30 años (<i>n</i> = 22, 10 entrenamiento de impacto, 12 entrenamiento de resistencia)	Dos regímenes de ejercicios (10 meses)	-Entrenamiento de impacto progresivo de alta intensidad (EI) -Entrenamiento de resistencia progresiva de alta intensidad (ER)	-Mejora de la DMO en el radio dominante tanto en el EI (0.033 ± 0.015 g/cm², $p = .046$) como en el ER (0.037 ± 0.014 g/cm², $p = .015$)Mejora de la densidad trabecular ($1.86 \pm 0.90\%$ frente a - $1.30 \pm 0.81\%$, $p = .029$), distal del radio ($8.55 \pm 2.26\%$ frente a $1.50 \pm 2.04\%$, $p = .040$) y total del IRO ($15.35 \pm 2.83\%$ frente a $2.67 \pm 2.55\%$, $p = .005$) en la extremidad no dominante en el grupo EI en comparación con ERMejora del contenido cortical (2.63 ± 1.08 mg, $p = .025$), la densidad (29.53 ± 7.70 mg/cm³, $p = .001$) y el grosor cortical (0.06 ± 0.02 mm, $p = .019$) en la extremidad no dominante en el grupo de ER en comparación con el de EIMejora de la CMO trabecular del CF dominante ($9.64 \pm 5.29\%$ frente a - $10.74 \pm 5.86\%$, $p = .024$), la BMC total ($8.06 \pm 5.22\%$ frente a - $11.15 \pm 5.77\%$, $p = .30$) y la DMO cortical ($3.68 \pm 1.99\%$ frente a - $4.14 \pm 2.20\%$, $p = .021$) en el grupo de ER en comparación con el grupo de EIMejora del área cortical dominante de la tibia (3.41 ± 1.31 mm2, $p = .017$) y de la circunferencia perióstica (0.38 ± 0.15 mm, $p = .018$) en el grupo de ERMejora del grosor cortical tanto en RT (0.05 ± 0.02 mm, $p = .021$) como en IT (0.05 ± 0.02

Lang et al.	2014	Prospectivo, no aleatorizado	Hombres y mujeres sanos (n = 22, 8 ABDADD, 7 SPM, 7 COMBO)	Intervención con ejercicios (16 semanas)	-Abducción/aducción de cadera en bipedestación (ABDADD) -Sentadilla/peso muerto (SPM) -Combinación (COMBO)	-Aumento del volumen de la región cortical trocantérica (4.1%, p < .01) en el grupo ABADDAumento de la DMOv integral, de la DMOv cortical y del volumen cortical (1.6% a 3.4%, p < .05) en el grupo SQDL en el cuello femoralAumento de la DMO integral vertebral (3.1%, p < .05) y de la DMO trabecular espinal (7.0%, p < .05) en el grupo SQDL.
Marques et al.	2013	Prospectivo, no aleatorizado	Adultos mayores caucásicos (n = 40, 20 mujeres, 20 hombres)	Intervención CON ejercicio (resistencia e impacto impar, 32 semanas)	Ninguna comparación	-Incremento trocantérico (0.648 \pm 0.080 mujeres, 0.774 0.114 hombres, p < .001); Incremento intertrocantérico (1.041 \pm 0.139 mujeres, 1.172 \pm 0.163 hombres, p = .005); cadera total (0.872 \pm 0.111 mujeres, 1.006 \pm 0.138, p = .001); columna lumbar (0.896 \pm 0.129 mujeres, 1.065 \pm 0.172 hombres, p = < .001) y CF (0.705 \pm 0.104 mujeres, 0.821 \pm 0.115 hombres, p = .002).
Marques et al.	<u>2011</u>	ECA	Mujeres caucásicas de edad avanzada (n = 60, 30 EJ, 30 CON)	Entrenamiento con ejercicios multicomponent e (8 meses)	-Entrenamiento con ejercicios (EJ) -Control (CON)	-Aumento de la DMO del CF (0.717 \pm 0.085, p = .008) en el grupo EJ.
Milliken et al.	2003	Prospectivo, comparativo	Mujeres posmenopáusicas con y sin THS (<i>n</i> = 94, 26 EJ, 30 NO, 17 EJ+THS, 21 THS)	Intervención con ejercicio y terapia hormonal (12 meses)	-Ejercicio (EJ) -Sin ejercicio, sin THS (NO) -Ejercicio + THS (EJ+THS) -Sin ejercicio, HRT (HRT)	-Aumento de la DMO en el trocánter mayor $(3.0 \pm 7.7, p = .03)$ en EX+HRT a los 12 mesesAumento de la DMO en el triángulo de Ward $(1.0 \pm 8.7, p = .04)$ en EJ a los 12 meses.
Morse et al.	<u>2019</u>	ECA comparativo	Hombres y mujeres no ambulatorios con LM (<i>n</i> = 69, 35 EJ, 34 EJ+ZA)	Intervención con ejercicio y suplementación (12 meses)	-Ejercicio de remo con estimulación eléctrica funcional (EX) -Ejercicio de remo con estimulación eléctrica	-Mayor VBC en la metáfisis proximal de la tibia (345 \pm 109 mm³, p = .006) y en la metáfisis distal del fémur (471 \pm 225 mm³, p = .05) en EJ+ZA en comparación con EJ.

-Aumento del CMO trabecular (231.9 \pm 56, p =

.048) en el grupo ej en comparación con el

Pang et al.

zoledrónico (EJ+ZA) -Mayor DMO en el CF (1.26 \pm 0.17, p < .001), -Ejercicio de resistencia columna lumbar (1.36 \pm 0.15, p < .001), mayor Hombres activos (n Ninguna (ER) tamaño cortical transversal en la tibia (310 ± Observacional, Nilsson et al. 2013 = 361, 106 E, 78 -Fútbol (FUT) 34, p < .001) número trabecular (2.25 ± 0.27, transversal intervención **FUT, 177 CON)** -Sin ejercicio (CON) p < .001) grosor trabecular (90.8 ± 11.0, p < .001) .001) en el grupo FUT. -Aumento del área de DMO en todo el cuerpo Curso de (p = .031; dz = 0.36) y en los brazos (p = .001;formación dz = 0.57). Reclutas de militar básica -Aumento de la DMO total (pierna dominante Observacional, O'Leary et al. infantería británicos de infantería 351 ± 41 , p < .05, pierna no dominante 233 \pm 2019 Ninguna comparación longitudinal (n = 42)del Ejército 25, p < .05), trabecular (pierna dominante 232 Británico (13 \pm 25, p < .05, pierna no dominante 233 \pm 25, p < .05) y cortical (pierna dominante 888 ± 26, p semanas) < .05, pierna no dominante 896 \pm 26, p < .05). Personas con -Ejercicio aeróbico, de

Programa

ejercicio (19

semanas)

cerebrovascular que intensivo de

accidente

viven en la

comunidad (n = 63,

32 EJ, 31 CON)

ECA

2006

funcional + ácido

equilibrio v de

resistencia (EJ)

-Ejercicio de las

superiores (CON)

extremidades

CON.

Rantalainen et al.	<u>2011</u>	Observacional, transversal	Mujeres atletas premenopáusicas (<i>n</i> = 180, 60 Al, 47 Gl, 15 GM, 16 BIR, 42 SIR) y 41 referentes no atléticos.	Ninguna intervención	-Deporte de alto impacto (AI) -Deporte de gran impacto (GI) -Deporte de gran magnitud (GM) -Deporte de bajo impacto repetitivo (BIR) -Deporte sin impacto repetitivo (SIR) -No atlético	-No hubo interacciones significativas entre regiones y grupos de ejercicio (F= 1.587 ; $p=$.140) en la DMO cortical radial mediaLos grupos GI tenían una DMO cortical entre 1.5 y 2.6% ($p < .05$) inferior a la de los grupos de referencia en los cuatro sectores (posterior, lateral, anterior y medio) de la tibiaEl grupo BIR tenía un 1.0% menos de DMO en el sector anterior ($p < .05$) que los pacientes de referencia en los cuatro sectores (posterior, lateral, anterior y medio) de la tibiaEl grupo AI tenía un 1.2% menos de DMO en el sector lateral ($p < .05$) que los referentes en los cuatro sectores (posterior, lateral, anterior y medio) de la tibia.
Specker y Binckley	2003	Aleatorizado, controlado con placebo, parcialmente ciego	Niños de 3-5 años (<i>n</i> = 239, 57 MFC, 57 MFP, 62 MGC, 62 MGP)	Ejercicio más suplementación o placebo (1 año)	-Motricidad Fina+ Calcio (MFC) -Motricidad fina+placebo (MFP) -Motricidad Gruesa+Calcio (MGC) -Motricidad gruesa+placebo (MGP)	-Aumento del CMO de la pierna en el grupo MGC (40.9 ± 1.3 , $p = .05$) en comparación con otros gruposAumento de la circunferencia perióstica (49.5 ± 0.7 MGC, 49.9 ± 0.7 MGP, $p = .03$) y endóstica (40.7 ± 0.9 MGC, 41.7 ± 0.9 MGP, $p = .05$) tanto en MGC como en MGP en comparación con otros grupos.
Vainionpää et al.	2007	ECA	Mujeres de 35 a 40 años (<i>n</i> = 5161, 60 EJ, 60 CON)	Ejercicios de impacto y pliométricos EX (12 meses)	-Control (CON)	-Aumento de la circunferencia ósea a la altura media del fémur 0.2% (IC 95%: 0.01% a 0.35%; $p=.033$) en el grupo EJ en comparación con CONLos sujetos en el cuartil más alto (> 66 sesiones de ejercicio durante los 12 meses) mostraron una ganancia del 1.2 % (IC 95 %: 0.2 a 2.2; $p=0.03$) en la circunferencia ósea y

una ganancia del 0.5 % (IC 95 %: 0.0 a 0.9; p

						= .04) en el AT cortical en comparación con los sujetos en el cuartil más bajo (< 19 sesiones) en la tibia proximal.
Valdimarsson et al.	<u>2006</u>	Prospectivo no aleatorio	Niñas en edad escolar (n = 103, 53 INT, 50 CON)	Actividad física ordinaria en el programa escolar sueco (1 año)	-Actividad física en el programa escolar sueco con mayor volumen (40min/día, INT) -Actividad física en el programa escolar sueco con mayor volumen (60min/semana, CON)	-Mayor CMO en la columna lumbar $(2.4 \pm 1.1, p = .01)$ y L3 $(0.94 \pm 0.63, p < .001)$ en el grupo INT en comparación con el grupo CONMayor DMO en la columna lumbar $(0.044 \pm 0.0; p < .001)$ y L3 $(0.047 \pm 0.0; p < .001)$ en el grupo INT en comparación con el grupo CONMayor anchura ósea en L3 $(0.17 \pm 0.12, p < .001)$ en el grupo INT en comparación con el grupo CON.
Watson et al.	<u>2015</u>	ECA simple- ciego	Mujeres posmenopáusicas mayores de 60 años con baja masa ósea (n = 28, 12 EPRAi, 16 CON)	Entrenamiento progresivo de resistencia de alta intensidad EPRAi (8 meses)	-Control (CON)	-Mejora en la DMO del CF $(0.3 \pm 0.5 \% \text{ vs. } 2.5 \pm 0.8 \%, p = .016)$ y DMO de la CL $(1.6 \pm 0.9 \% \text{ vs. } 1.7 \pm 0.6 \%, p = .005)$ en el grupo EPRAi.
Winters-Stone et al.	<u>2014</u>	ECA simple- ciego	Hombres con cáncer de próstata (<i>n</i> = 51, 29 EJ, 22 FLEX)	Entrenamiento de resistencia progresivo de intensidad moderada + entrenamiento de impacto EJ (12 meses)	-Entrenamiento de flexibilidad (FLEX, utilizado como control)	- Preservación de la DMO en L4 en el grupo EJ (-0.4%, p = .03) en comparación con la pérdida (-3.1%) en los controles (FLEX).
Winters-Stone et al.	<u>2013</u>	ECA	Mujeres supervivientes de cáncer de mama con menopausia secundaria al tratamiento (<i>n</i> = 71, 35 EJ, 35 FLEX)	Entrenamiento de resistencia progresivo de intensidad moderada + entrenamiento	-Entrenamiento de flexibilidad (FLEX, utilizado como control)	-Cambios en la DMO de la columna vertebral (coeficiente ITT de la pendiente del tiempo 0.009; SE 0.004; $t(48)$ 2.21; p = .032) y del CF (coeficiente ITT de la pendiente del tiempo 0.011; SE 0.004; $t(48)$ 3.19; p = .004) entre las mujeres con más de 1 año de menopausia en el grupo EJ.
				10		

de impacto EJ (12 meses)

Winters-Stone y Snow	2006	Prospectivo, no aleatorizado	Mujer premenopáusica (<i>n</i> = 35, 19 LOWER, 16 UPPER+LOWER, 24 CON)	Intervención de ejercicio (12 meses)	-Resistencia de la parte inferior del cuerpo más ejercicio de salto (LOWER) -Resistencia de la parte superior e inferior del cuerpo más ejercicio de salto (UPPER+LOWER) -Control (CON)	-Incremento en trocánter mayor en UPPER+LOWER ($2.2\pm2.8, p<.05$) y LOWER ($2.6\pm2.5, p<.05$) comparado con CONDisminución de la DMO de la columna vertebral en UPPER+LOWER ($1.3\pm37, p<.05$) en comparación con CON y LOWER.
Wochna et al.	<u>2019</u>	Prospectivo, no aleatorizado	Mujeres posmenopáusicas de 54-65 años (<i>n</i> = 18, 9 EJ, 9 CON)	Entrenamiento de fitness acuático (6 meses)	Entrenamiento de fitness acuático (EJ)Ninguna actividad física (CON)	-Ningún efecto en la DMO de la cadera izquierda, la columna lumbar o todo el cuerpo.
Ligamento						
Grzelak et al.	2012	Observacional, descriptivo	Levantadores de pesas masculinos y controles emparejados por edad (n = 28, 9 EJ, 19 CON)	Ninguna intervención	-Levantamiento de pesas (EJ) -Control emparejado por edad (CON)	-AST medias más altas en EJ (71.7, 52.9-111.2) que en CON (40.56, 23.83-59.1) para LCAAST medias más altas en EJ (64.48; 52-88) que en CON (44.98; 31.3-71) para el LCP.
Myrick et al.	<u>2019</u>	Observacional, prospectivo	Futbolistas universitarias de la División-I (<i>n</i> = 17)	Temporada de fútbol 2013- 2014	Ninguna comparación	-El volumen medio del LCA aumentó entre la pre y post temporada (pre1426 cc (SD = 288), post 556 cc (SD = 269), p = .006) - Mayor aumento de volumen en la rodilla derecha que en la izquierda (derecha 211 cc,

Tendón

Arampatzis et al.	<u>2007</u>	Intervencional no aleatorizado		Flexión plantar isométrica (14 semanas)	-Intervención con ejercicio (una pierna con magnitud de tensión baja y una pierna con magnitud de tensión alta, EJ) -Control sin ejercicio (CON)	-Aumento en el AST del TA en el 60% y el 70% de la longitud del tendón en la pierna de alta tensión (p < .05)Aumento en el AST del TA en el 60% y el 70% de la longitud del tendón en la pierna de alta tensión en comparación con la pierna de baja tensión (p < .05).
Bohm et al.	<u>2014</u>	ECA	Adultos varones (<i>n</i> = 39, 14 G1, 14 G2, 13 CON)		-Contracción de flexión plantar + pierna protocolo de referencia + salto contralateral a una pierna (G1) -Contracción de flexión plantar + pierna de protocolo de referencia + flexión plantar isométrica contralateral durante 12 s (G2) -Sin entrenamiento específico (CON)	-Aumento de la rigidez del TA (p < .001) en G1Aumento del AST del TA en el protocolo de pierna de referencia G1 en la parte del tendón comprendida entre el 30% y el 100%Aumento del AST del TA en la pierna de saltos de una pierna del G1 en la parte del tendón comprendida entre el 20% y el 30%Aumento de la rigidez deL TA (p < .001) en G2 -Aumento del AST del TA en G2, tanto en el protocolo de pierna de referencia como en la pierna de flexión plantar isométrica, en la parte del tendón comprendida entre el 30% y el 100%.
Epro et al.	2019	Descriptivo transversal		Ninguna intervención	-Salto de altura (SA) -Triple salto (TS) -Salto de longitud (SL) -Salto con pértiga (SP)	-Mayor rigidez del TA en la pierna de despegue en comparación con la pierna de impulsión ($p < .001$)Mayor rigidez del AT en hombres comparado con mujeres ($p < .001$)Valores más bajos de rigidez del AST en SP comparado con SA ($p = .038$), TS ($p = .041$) y SL ($p = .035$).
Epro et al.	<u>2017</u>	Intervención no aleatoriazada	• .	Flexión plantar isométrica (14 semanas y 1.5	-Control sin ejercicio (CON)	-Mayor rigidez del TA en EJ (598.2 \pm 141, p = .01) a las 14 semanas. -Mayor AST del TA en EJ (72.0 \pm 11.5, p = .007) a las 14 semanas.

-Intervención con

				años de seguimiento)		-Mayor rigidez del TA en EJ (637.1 ± 183, <i>p</i> < .001) a los 1.5 añosMayor AST del TA en EJ (71.5 ± 11, <i>p</i> < .01) a los 1.5 años.
Karamanidis y Epro	2020	Observacional transversal y longitudinal (1 año y 4 años)	Participantes jóvenes sanos (<i>n</i> = 91, 67 A, 24 CON)	Ninguna intervención	-Atletas de élite internacionales de salto de obstáculos (AE) -Jóvenes sanos recreativamente activos (CON)	despegue comparada con la pierna de impulsión en el grupo AE (675 ± 195 vs. 630 ±
Milgrom et al.	<u>2014</u>	Observacional longitudinal	Reclutas de infantería en formación básica (<i>n</i> = 55)	Formación básica de infantería (6 meses)	Ninguna comparación	-Aumento del AST del TA en la pierna derecha (50.2 \pm 9.6, p = .037) y en la pierna izquierda (51.1 \pm 8.3, p = .013).
Werkhausen et al.	<u>2018</u>	Intervención no aleatorizada	Voluntarios recreativamente activos (<i>n</i> = 21, 11 EJ, 10 CON)	Flexión plantar unilateral isométrica explosiva (10 semanas)	- Ningún ejercicio (CON)	-Aumento de la rigidez AST (459 \pm 147, p < .05) en el grupo INT.
Westh et al.	<u>2007</u>	Observacional descriptivo	Sujetos sanos (<i>n</i> = 30, 10 CM, 10 CF, 10 MNC)	Ninguna intervención	-Corredores masculinos (CM) -Corredores femeninas (CF) -Mujeres no corredoras (MNC)	-Mayor AST del TR en la porción proximal y distal en CM en comparación con la CF y la MNC (p < .01)Mayor AST del TR en la porción media en la CM en comparación con la CF (p < .05) y la MNC (p < .01)Mayor AST del TR distal en comparación con la parte proximal en la CM (p < .01) y la MNC (p < .05).

-Menor AST del TA en la parte distal en CF y MNC en comparación con CM (p < .01). -Sujetos sedentarios -Mayor AST del TR en el grupo VOL (pierna (SED) Hombres sanos (n = dominante 127.9 ± 16.2, pierna no dominante -Jugadores de voleibol Descriptivo Zhang et al. 2015 40, 10 SED, 15 VOL, 129.4 ± 17.4) y BAL (pierna dominante 129.5 transversal intervención (VOL) ± 32.6, pierna no dominante 133.7 ± 28.3) en 15 BAL) -Jugadores de comparación con SED (p < .05). baloncesto (BAL) Músculo -Aumento del MMM tanto en los ADULTOS MAYORES como en los JÓVENES (11.164 $\pm 573 \text{ y } 13.128 \pm 508, p < .05$). Entrenamiento -Participantes de 60 a -Aumento del AST de las fibras de tipo II tanto Adultos sanos (n = de resistencia 75 años (ADULTOS en los ADULTOS MAYORES como en los 70, 31 ADULTO Intervencional de los JÓVENES (4.636 \pm 298 y 5.917 \pm 264, p < Bickel et al. 2011 MAYORES) no aleatoriazado MAYOR. 30 extensores de -Participantes de 20-35 .05). JÓVENES) la rodilla (16 años (JÓVENES) -Aumento del AST de las fibras de tipo I tanto semanas) en los ADULTOS MAYORES como en los JÓVENES (5.237 \pm 241 \vee 4.991 + 178, ρ < .05). Ejercicio de resistencia de Sujetos sanos (n = sentadilla en -Aumento de la masa muscular total del muslo -Hombres Fernandez-32, 16 hombres, 16 supino bilateral, Intervencional 2014 -Muieres tanto en hombres $(1.031,1 \pm 64.4; p < .05)$ Gonzalo et al. no aleatoriazado mujeres) con volante de como en mujeres (628.5 \pm 50.2; p < .05). inercia (6 semanas)

Franchi et al.	<u>2015</u>	ECA	Hombres jóvenes sanos con actividad recreativa (<i>n</i> = 10)	Ejercicio de resistencia con press de pierna (4 semanas)	-Solo contracción excéntrica de las piernas (EXC) -Solo contracción concéntrica de las piernas (CON)	-Mayor LF en EXC ($5\pm0.6\%$, $p<.001$) que en CONAumento de AP en CON ($7\pm0.9\%$, $p<.001$) que en EXCAumento del grosor muscular tanto en EXC como en CON ($7.5\pm1.6\%$ y $8.4\pm1.4\%$, $p<.001$)Aumento del TLM tanto en EXC como en CON ($2.3\pm0.5\%$ y $3\pm0.6\%$, $p<.01$ y $p<.001$).
Franchi et al.	2014	Intervencional no aleatoriazado	Hombres jóvenes (<i>n</i> = 12, 6 EXC, 6 CON)	Ejercicios de resistencia de press de pierna (10 semanas)	-Ejercicio excéntrico (EXC) -Ejercicio concéntrico (CON)	-Aumento del volumen muscular VL tanto en EXC (6 \pm 0.4%, p < .0001) como en CON (8 \pm 0.5%, p < .0001)Aumento de LF en ECC (12 \pm 2%, p < .0001) en comparación con CONAumento de AP en CON (30 \pm 0.5%, p < .0001) en comparación con EXCDiferencia en hipertrofia regional VL en porción media entre EXC y CON (7 \pm 1% y 11 \pm 1%, p < .01)Diferencia en la hipertrofia regional VL en la porción distal entre EXC y CON (+8 \pm 2% y +2 \pm 1.5%, p < .05)Similitudes en la hipertrofia regional VL en la porción proximal entre EXC y CON (-1 \pm 1% y -0.5 \pm 1%).
Häkkinen et al.	2002	ECA	Mujeres premenopáusicas con fibromialgia (<i>n</i> = 21, 11 FMT, 10 FMC and 12 CON)	Entrenamiento de resistencia corporal total (21 semanas)	-Mujeres sanas (CON)	-Aumento del AST en el cuádriceps femoral en FMT a una longitud del fémur de 5-12/15 (p < .0501)Aumento del AST del cuádriceps femoral en CON a una longitud del fémur de 3-12/15 (p < .05001).

Holm et al.	2008	Intervencional no aleatoriazado	Hombres jóvenes sanos y sedentarios (<i>n</i> = 11)	Entrenamiento de resistencia unilateral (12 semanas)	-Carga ligera (CL) -Carga pesada (CP)	-Mayor aumento del AST total del cuádriceps en CP (7.6 \pm 1.4% p < .05) en comparación con CL.
Marzilger et al.	2020	ECA	Hombres jóvenes activos (n = 47, 33 EJ, 14 CON)	de la rodilla (33	-Sin ejercicio (CON) -p45: velocidad angular 45°/s -p120: velocidad angular 120°/s -p210: velocidad angular 210°/s -p300: velocidad angular 300°/s	-Aumento de la LF en todos los protocolos de ejercicio (p45: 5.7%, p = .006, p120: 4.2%, p = .004, p210: 3.6%, p = .024, p300: 7.6%, p = .002) en comparación con CONAumento del volumen del VL independientemente del protocolo (p < .001).

REFERENCIA

León, F., Mestre, A., Priego, L. y Vera, J.C. (2023). Adaptaciones morfológicas en respuesta al ejercicio crónico en los tejidos osteomusculares: una revisión sistemática. *Pensar en Movimiento: Revista de Ciencias del Ejercicio y la Salud, 21*(2), e56159. https://doi.org/10.15517/pensarmov.v21i2.56159