

PENSAR EN MOVIMIENTO: Revista de Ciencias del Ejercicio y la Salud

ISSN: 1409-0724 ISSN: 1659-4436

pensarenmovimiento.eefd@ucr.ac.cr

Universidad de Costa Rica

Costa Rica

Aragón-Vargas, Luis Fernando; González-Lutz, María Isabel
Un novedoso enfoque de validación añade sólidas razones para no utilizar
la altura del salto vertical como predictor de la potencia de piernas [1]

PENSAR EN MOVIMIENTO: Revista de Ciencias del Ejercicio y la Salud, vol. 21, núm. 2, e53154, 2023, Julio-Diciembre Universidad de Costa Rica Montes de Oca, Costa Rica

DOI: https://doi.org/10.15517/pensarmov.v21i2.56768

Disponible en: https://www.redalyc.org/articulo.oa?id=442075225010

Número completo

Más información del artículo

Página de la revista en redalyc.org

Sistema de Información Científica Redalyc

Red de Revistas Científicas de América Latina y el Caribe, España y Portugal Proyecto académico sin fines de lucro, desarrollado bajo la iniciativa de acceso

abierto

Investigación descriptiva, correlacional o cualitativa Volumen 21, número 2, pp. 1-14 Abre 1 de julio, cierra 31 de diciembre, 2023 ISSN: 1659-4436

Un novedoso enfoque de validación añade sólidas razones para no utilizar la altura del salto vertical como predictor de la potencia de piernas

Luis Fernando Aragón-Vargas* y María Isabel González-Lutz

Envío original: 2022-12-14 Reenviado: 2023-06-23 Aceptado: 2023-06-13 Publicado en versión en español: 2023-09-28*

Doi: https://doi.org/10.15517/pensarmov.v21i2.56768

Editora asociada a cargo: PhD. Isaura Castillo Hernández

* Luis F. Aragón-Vargas es Editor Jefe de Pensar en Movimiento. El proceso de revisión a doble ciego se realizó con el manuscrito original en inglés y se hizo independientemente hasta tomar una decisión.

¿Cómo citar este artículo?

Aragón-Vargas, L. F., y González-Lutz, M. I. (2023). Un novedoso enfoque de validación añade sólidas razones para no utilizar la altura del salto vertical como predictor de la potencia de piernas. *Pensar en Movimiento: Revista de Ciencias del Ejercicio y la Salud, 21*(2), e56768. https://doi.org/10.15517/pensarmov.v21i2.56768

* Artículo traducido al español. Original en inglés disponible en: Aragón-Vargas, L. F., & González-Lutz, M. I. (2023). A novel validation approach shows new, solid reasons why vertical jump height should not be used to predict leg power. *Pensar en Movimiento: Revista de Ciencias del Ejercicio y la Salud, 21*(2), e53154. https://doi.org/10.15517/pensarmov.v21i2.53154

Un novedoso enfoque de validación añade sólidas razones para no utilizar la altura del salto vertical como predictor de la potencia de piernas

A novel validation approach shows new, solid reasons why vertical jump height should not be used to predict leg power

Uma nova abordagem de validação acrescenta fortes razões para não usar a altura do salto vertical como um indicador de potência das pernas.

Luis Fernando Aragón-Vargas¹⁰
María Isabel González-Lutz¹⁰
²

Resumen: La altura del salto se sigue usando ampliamente para predecir la potencia en seres humanos. El progreso individual, a menudo, se monitorea usando una estimación de la potencia, pero las ecuaciones de predicción se basan en datos grupales. El estudio pretende demostrar que la altura del salto vertical (VJP) y la potencia mecánica tienen una pobre correlación, particularmente en un mismo individuo. Se presentan dos experimentos; primero, 52 estudiantes universitarios físicamente activos ejecutaron cinco saltos verticales máximos cada uno; segundo, tres participantes masculinos ejecutaron 50 saltos máximos cada uno. Los participantes descansaron 1 minuto entre saltos. VJP se calculó a partir de los datos cinemáticos como posición más alta del centro de masa corporal (BCOM) menos BCOM de pie; la potencia pico (PEAKPWR) se calculó a partir de la fuerza vertical de reacción registrada por una plataforma de fuerza y la potencia promedio (MEANPWR) durante la propulsión a partir del cambio en la energía potencial del BCOM. Se realizaron análisis de regresión usando puntajes estandarizados de VJP como la variable predictora y puntajes estandarizados de potencia como las variables resultantes, con la expectativa de obtener una función de identidad y = x (intercepto = 0, pendiente = 1) y R^2 = 1. En el experimento 1, el modelo para zPEAKPWR arrojó $R^2 = 0.9707$ (p < .0001) pero la pendiente $(0.3452) \neq 1$ (p = 8.7x10⁻¹⁵). El modelo para zMEANPWR dio R² = 0.9239 (p < .0001); sin embargo, la pendiente $(0.4257) \neq 1$ ($p = 1.15 \times 10^{-5}$). En el experimento 2, todos los modelos individuales para zPEAKPWR v zMEANPWR arrojaron asociaciones débiles ($R^2 \le 0.21$) v pendientes $\ne 1$ ($p \le 0.21$) .001). En conclusión, el análisis de regresión para individuos y aun para grupos confirma que la altura de salto vertical es un pobre predictor de la potencia mecánica.

Palabras clave: cinemática, fenómenos biomecánicos, biomecánica, deporte, tren inferior, validación, análisis intra-sujeto.

² Universidad de Costa Rica, San José, Costa Rica. Correo electrónico: <u>mariaisabel.gonzalezlutz@ucr.ac.cr</u>

¹ Universidad de Costa Rica, San José, Costa Rica. Correo electrónico: luis.aragon@ucr.ac.cr

Abstract: Jump height continues to be widely used to predict power in humans. Individual progress is often monitored on the basis of estimated power, but prediction equations are based on group data. The objective of the study was to show that vertical jump performance (VJP) and mechanical power are poorly associated, particularly within individuals. Two experiments are presented. First, 52 physically active male college students performed five maximal vertical jumps each. Second, three young male participants performed 50 maximal jumps each. Participants rested for 1 minute between jumps. VJP was calculated from kinematic data as peak body center of mass (BCOM) minus standing BCOM; peak power (PEAKPWR) was calculated from the vertical ground reaction force registered by a force plate, and average power (MEANPWR) during propulsion from the change in potential energy of BCOM. Regression analyses were performed using standardized VJP scores as the predictor variable and standardized power scores as the resulting variables, expecting an identity function of y = x (intercept = 0, slope = 1) and $R^2 = 1$. In experiment 1, the model for zPEAKPWR $R^2 = 0.9707$ (p < .0001) but slope $(0.3452) \neq 1$ (p < .0001) .0001). The model for zMEANPWR $R^2 = 0.9239$ (p < .0001); nevertheless, slope (0.4257) \neq 1 (p < .0001). In experiment 2, all individual models for zPEAKPWR and zMEANPWR resulted in poor associations ($\mathbb{R}^2 \leq 0.21$) and slopes $\neq 1$ ($p \leq .001$). In conclusion, regression analysis for individuals, and even for groups, confirms that VJP is a poor predictor of mechanical power.

Key words: kinematics, biomechanical phenomena, biomechanics, sports, lower limbs, validation, within-subject analysis.

Resumo: A altura do salto ainda é amplamente usada para prever a potência em humanos. O

progresso individual é frequentemente monitorado usando a estimativa de potência, mas as equações de previsão são baseadas em dados de grupo. O objetivo do estudo é demonstrar que a altura do salto vertical (ASV) e a potência mecânica têm uma correlação débil, principalmente em um mesmo indivíduo. São apresentados dois experimentos: primeiro, 52 estudantes universitários fisicamente ativos realizaram cinco saltos verticais máximos cada um; segundo, três participantes do sexo masculino realizaram 50 saltos máximos cada um. Os participantes descansaram por 1 minuto entre os saltos. A ASV foi calculada a partir de dados cinemáticos como a posição mais alta do centro de massa corporal (CMC) menos o CMC em pé; a potência de pico (PEAKPWR) foi calculada a partir da força de reação vertical registrada por uma plataforma de força e a potência média (MEANPWR) durante a propulsão a partir da mudança na energia potencial do CMC. As análises de regressão foram realizadas usando os escores da ASV padronizados como variável preditora e os escores de potência padronizados como variáveis de resultado, com a expectativa de obter uma função de identidade y = x (interceptação = 0, inclinação = 1) e R^2 = 1. No experimento 1, o modelo para zPEAKPWR produziu R^2 = 0.9707(p < .0001), mas a inclinação $(0.3452) \neq 1$ ($p = 8.7 \times 10^{-15}$). O modelo para zMEANPWR apresentou $R^2 = 0.9239 \ (p < .0001)$; no entanto, a inclinação $(0.4257) \neq 1 \ (p = 1.15 \times 10^{-5})$. No experimento 2, todos os modelos individuais para zPEAKPWR e zMEANPWR apresentaram associações débeis $(R^2 \le 0.21)$ e inclinações $\ne 1(p \le .001)$. Em conclusão, a análise de regressão para indivíduos e

até mesmo para grupos confirma que a ASV é um indicador débil da potência mecânica.

Palavras-chave: cinemática, fenômenos biomecânicos, biomecânica, esporte, parte inferior do corpo, validação, análise intrassujeito.

1. Introducción

Las pruebas para medir la potencia humana han fascinado a los científicos del ejercicio por varias décadas. La potencia mecánica es un factor importante en el rendimiento deportivo, pero su medición exige equipos caros y sofisticados. La prueba de laboratorio por excelencia para medir potencia utiliza un cicloergómetro: se trata de la prueba de Wingate (Bar-Or, 1987), aunque se han propuesto mejores pruebas de ciclismo, especialmente en lo concerniente a la potencia pico (Del Coso y Mora-Rodríguez, 2006). De todos modos, las pruebas de ciclismo están sujetas a la crítica de que este no se parece a los deportes que involucran carreras o saltos; de ahí la preferencia por medir la potencia durante un salto vertical. Sin embargo, para estas pruebas durante el salto se debe contar con equipo de laboratorio sofisticado y costoso, como plataformas de fuerza o sistemas de captura del movimiento. Por otro lado, existe la opción de medir la altura del salto vertical o el rendimiento en el salto vertical (VJP): esta medida es práctica, confiable y precisa (Aragón-Vargas, 2000). El salto vertical es una tarea sencilla y claramente definida que tiene un resultado claro y objetivo: la altura del salto, sinónimo del rendimiento en el salto vertical. Más aún, se ha utilizado ampliamente la VJP para predecir la potencia en seres humanos (Harman et al., 1991; Kirkendall et al., 1987; Morin et al., 2019; Samozino et al., 2008). Ahora bien, a pesar de la lógica aparente de una correlación fuerte entre la potencia mecánica del tren inferior y la altura del salto vertical, existen limitaciones importantes en el cálculo y la predicción de aquella a partir de esta última.

Los primeros intentos cometieron un error básico: utilizar el tiempo de vuelo del salto vertical en el cálculo matemático de la potencia. A esto se la ha llamado "la fórmula de Lewis" y se ha demostrado que calcula más bien la potencia del saltador durante la caída (Harman et al., 1991), un dato sin valor alguno (se profundizará en este error común más adelante). Más allá, la asociación entre VJP y la potencia mecánica no es una función matemática sencilla: la altura del salto vertical depende más que nada de la velocidad vertical de despegue del centro de masa corporal (BCOM), pero también de la posición de BCOM en el instante del despegue (Aragón-Vargas y Gross, 1997a, 1997b). Aun si las investigaciones se centran únicamente en la velocidad de despegue, esta es una función del trabajo mecánico realizado durante la propulsión, no de la potencia mecánica. Para calcular la potencia es necesario medir una variable adicional, a saber, el tiempo de propulsión o empuje, para lo cual es indispensable contar con equipo calibrado de laboratorio; el cálculo no se puede hacer a partir de VJP.

Bosco et al. (<u>1983</u>) propusieron una fórmula matemática que persigue calcular la potencia mecánica promedio a partir de una serie de saltos verticales ejecutados sobre un dispositivo sencillo: una alfombra-cronómetro. Este método de ergómetro de salto se utiliza ampliamente, pero Herbert Hatze (<u>1998</u>) demostró cuidadosamente que, debido al uso de una serie de suposiciones no válidas para la derivación de las fórmulas, junto a un error promedio de alrededor

de 5%, asociado a una desviación estándar de 4.48%, el método no puede considerarse confiable ni válido para la evaluación de la potencia durante saltos de rebotes en serie.

Una estrategia alternativa es la utilización de ecuaciones de regresión, ampliamente utilizadas en las ciencias del ejercicio (Canavan y Vescovi, 2004; Lara-Sánchez et al., 2011; Sayers et al., 1999), aunque su validez ha sido cuestionada por varios autores que se citan a continuación. Un estudio descriptivo (Tessier et al., 2013) demostró que, aun para su ecuación cuidadosamente elaborada (R² = 0.94) con atletas altamente entrenados, la diferencia mínima de la potencia estimada necesaria para considerar a dos individuos como diferentes era demasiado grande (689.3 W). Los autores concluyeron que la altura del salto no debería utilizarse para predecir con precisión la potencia mecánica real de una persona. Más recientemente, Morin et al. (2019) publicaron una crítica sólida de la utilización de VJP para predecir la potencia mecánica. Ellos demostraron que tanto la masa corporal como la distancia de propulsión, la carga óptima y el perfil de fuerza-velocidad de cada individuo son variables importantes que afectan la relación entre altura del salto y potencia; finalmente, proponen una metodología diferente que se ve prometedora, pero es necesario evaluarla más ampliamente.

Mientras tanto, las ecuaciones de regresión mejoradas siguen utilizando la altura del salto como predictor principal; es necesario realizar una evaluación más estricta de la validez de utilizar VJP para este propósito. En un abordaje convencional de regresión, la fuerza de la asociación se evalúa con grupos de personas más grandes (o más pequeños) utilizando el coeficiente de determinación, esto es, qué proporción de la variación en la variable dependiente se puede explicar con la(s) variable(s) predictora(s). Sin embargo, aun si se encontraran coeficientes de determinación (R²) altos, esto solamente mostraría un efecto de grupo, no un efecto intra sujetos. En otras palabras, la mayoría de las ecuaciones de regresión para la potencia mecánica se han desarrollado utilizando datos grupales (Canavan y Vescovi, 2004; Hatze, 1998; Lara-Sánchez et al., 2011); sin embargo, estas ecuaciones se usan para predecir el rendimiento individual y para monitorear el progreso individual. Este defecto fue sugerido por Tessier et al. (2013) al realizar un análisis preliminar de cuatro saltos realizados por un mismo participante, pero luego no profundizaron en ello. La pregunta clave es: ¿qué tan buena es la asociación entre la altura del salto vertical y la potencia mecánica a nivel individual? Esto debería estudiarse poniendo a varios individuos a ejecutar múltiples saltos verticales máximos.

Por lo tanto, el propósito de esta investigación fue utilizar dos conjuntos de datos de salto vertical existentes, para confirmar la validez de usar la altura del salto vertical como predictor de la potencia mecánica de cada persona y para proponer una nueva metodología de evaluación de los modelos de predicción del rendimiento en las ciencias del ejercicio.

2. Metodología

En este estudio se utilizaron los resultados de dos experimentos previos, originalmente diseñados para investigar los factores kinesiológicos que distinguen a los buenos saltadores de los malos (Aragón-Vargas y Gross, 1997a) y para tratar de entender qué es lo que hace diferente el mismo saltador entre un salto y otro que acaba produciendo alturas de salto distintas, a pesar de que se le haya pedido saltar siempre lo más alto posible (Aragón-Vargas y Gross, 1997b).

Para esos experimentos se obtuvo consentimiento informado de todos los participantes, conforme al protocolo aprobado el 21 de setiembre de 1993 por el Comité de Revisión de Sujetos Humanos de la Facultad de Educación en la Universidad de Michigan. En el primer experimento original, 52 estudiantes universitarios varones ejecutaron cinco saltos verticales máximos cada uno, iniciando desde la posición preferida, con sus manos en las caderas. Todos los saltos involucraron un movimiento de impulso contrario o contramovimiento. Los participantes completaron tres saltos de práctica antes de la recolección de datos y, además, se les exigió esperar un minuto después de cada intento. Ellos ejecutaron los saltos descalzos, vestidos únicamente con un traje de baño o pantalón corto.

En el experimento original 2, tres varones jóvenes ejecutaron, cada uno, 50 saltos máximos en la plataforma de fuerza; se les exigió sentarse y descansar un minuto después de cada salto. Estos tres fueron escogidos entre diez participantes según su VJP: el peor, el mejor y el promedio, en el estudio en que se estudiaron las diferencias en VJP dentro de cada individuo (Aragón-Vargas y Gross, 1997b).

Ambos experimentos originales se realizaron con el mismo equipo de medición: las fuerzas de reacción del suelo y los momentos de fuerza se recolectaron con una plataforma de fuerza Bertec, Modelo 4060A, a una frecuencia de muestreo de 300 Hz. Para la recolección y procesamiento de los datos cinemáticos a 60 Hz se utilizó un sistema de análisis de movimiento tridimensional de video en tiempo real (Motion Analysis Corp.); los datos de video se filtraron con un filtro pasabajo Butterworth de cuarto orden, con una frecuencia efectiva de corte de 8 Hz. El modelo biomecánico utilizado, la colocación de los marcadores y todos los procedimientos analíticos han sido descritos previamente en forma detallada (Aragón-Vargas y Gross, 1997a). Brevemente, en vista de que el movimiento principal del salto vertical, según se describe aquí, ocurre en el plano sagital, se modeló el cuerpo humano como un sistema plano (bidimensional) de cuerpos rígidos, compuesto por cuatro segmentos conectados entre sí por articulaciones de bisagra libres de fricción, a saber: un segmento representando ambos pies, otro para ambas piernas inferiores, otros para ambos muslos y un cuarto segmento representando la cabeza, los brazos y el tronco. Este modelo supone que la tarea se ejecuta simétricamente por las extremidades derecha e izquierda. También, supone que, durante un salto vertical con las manos en las caderas, la cabeza, brazos y tronco (HAT) se comportan como un único segmento.

La altura del salto vertical (VJP) se calculó para cada salto utilizando los datos cinemáticos (ver la <u>Ecuación 1</u>), usando el modelo 2-D, donde BCOM_{peak} es la posición del centro de masa corporal en su punto más alto durante el vuelo y BCOM_{standing} es la posición del centro de masa corporal con los participantes quietos, de pie:

Ecuación 1
$$VJP = BCOM_{peak} - BCOM_{standing}$$

La potencia mecánica se calculó para los mismos saltos a partir de la fuerza de reacción vertical del suelo y del cambio en la energía potencial de todo el cuerpo. La potencia promedio (MEANPWR o $\overline{\dot{W}}$ en la ecuación) durante la propulsión se derive del cambio en la energía potencial del cuerpo como un todo, conforme a la <u>Ecuación 2</u>, donde m es la masa corporal para cada individuo en Kg, g = 9.81 m·s·², $Z_{takeoff}BCOM$ es la coordenada vertical del centro de masa

corporal en el instante de despegue, Z_{low}BCOM es la coordenada vertical de BCOM en el punto más bajo durante el empuje, y t_{prop} es el tiempo de empuje o de propulsión, en segundos (Aragón-Vargas y Gross, 1997a):

Ecuación 2
$$\overline{\dot{W}} = mg(z_{takeoff}BCOM - z_{low}BCOM)/t_{prop}$$

La potencia pico, PEAKPWR, se calculó a partir de la potencia mecánica instantánea de todo el cuerpo (\dot{W}) conforme a la <u>Ecuación 3</u>, donde Fz es la fuerza vertical de reacción del suelo y $\dot{z}BCOM$ es el componente vertical de la velocidad instantánea del centro de masa del cuerpo (Aragón-Vargas y Gross, 1997a):

Ecuación 3
$$\dot{W} = F_z \times \dot{z}BCOM$$

Los análisis del Experimento 1 consistieron en aplicar un abordaje tradicional de regresión con 52 participantes y 5 intentos cada uno. Los datos se analizaron utilizando resultados estandarizados (puntajes tipificados z), lo cual permite comparar variables que utilizan diferentes unidades de medida pero que, teóricamente, deberían arrojar resultados idénticos; los datos se estandarizaron usando el promedio grupal. Cada modelo incluyó a los participantes y los intentos como efectos aleatorios. Se utilizó un modelo para predecir zPEAKPWR y otro modelo para predecir zMEANPWR, utilizando zVJP como el predictor principal. Según el objetivo de validación, se esperaba obtener una función de identidad y = x (intercepto = 0, pendiente = 1) y un valor de R^2 = 1 para el modelo zVARIABLE = k + s (zVJP) + participante + intento + Error.

Para los análisis del Experimento 2 se utilizó un abordaje individualizado con 3 participantes que hicieron 50 intentos cada uno. Primero, se hizo un intento con un modelo único, el cual incluyó a los tres participantes y sus intentos. Posteriormente, se ajustaron modelos individuales con variables estandarizadas, utilizando el promedio de 50 saltos para cada individuo. Los análisis de regresión usaron puntajes tipificados de altura del salto vertical (zVJP) como variable predictora y los puntajes tipificados de la potencia pico (zPEAKPWR) o la potencia promedio (zMEANPWR) como variable resultante; se esperaba una función de identidad y = x (intercepto = 0, pendiente = 1) y un coeficiente de determinación R^2 = 1 para el modelo zVARIABLE = k + s (zVJP) + participante + Error. Todos los modelos de regresión se sometieron a prueba con el programa JMP Pro v.15.1.0 (SAS Institute, Inc.).

Los 52 varones del experimento 1 tenían las siguientes características: edad = 20.2 ± 2.1 años (promedio \pm *DT*), estatura = 1.79 ± 0.06 m, y peso = 74.3 ± 8.6 kg. Salto vertical = 506 ± 70 mm (rango: 372 a 663 mm). Su potencia pico fue 3863.2 ± 687.7 W. Los tres participantes del experimento 2 eran muy parecidos en su peso corporal: 70.9, 71.1, y 65.5 kg para el peor, el promedio y el mejor saltador, respectivamente. Su altura de salto vertical VJP fue ($M \pm DT$) de 301 ± 9 , 439 ± 17 y 586 ± 14 mm, respectivamente; las potencias pico correspondientes fueron 2079.3 ± 56.6 , 3706.0 ± 136.1 , y 4085.0 ± 74.2 W, respectivamente.

3. Resultados

El primer conjunto de análisis (<u>Figura 1</u>) corresponde a los datos del experimento 1 (Aragón-Vargas y González-Lutz, <u>2023a</u>). La Figura 1a muestra la línea ajustada para los valores de zPEAKPWR predichos por zVJP, conforme al modelo zPEAKPWR = k + s(zVJP) + participante + intento + Error. La asociación es fuerte: $R^2 = 0.9707$ (p < .0001) y el intercepto (-0.0027) no es distinto de 0 (p = 0.8238). Sin embargo, la pendiente (0.3452) es significativamente distinta de 1 ($p = 8.7x10^{-15}$). La Figura 1b muestra la línea ajustada para los valores de zMEANPWR predichos por zVJP, conforme al modelo zMEANPWR = k + s(zVJP) + participante + intento + Error. La asociación muestra un valor alto de $R^2 = 0.9239$ (p < .0001) y el intercepto (0.0243) no es distinto de 0 (p = .2343). Sin embargo, la pendiente (0.4257) es significativamente distinta de 1 ($p = 1.15x10^{-5}$).

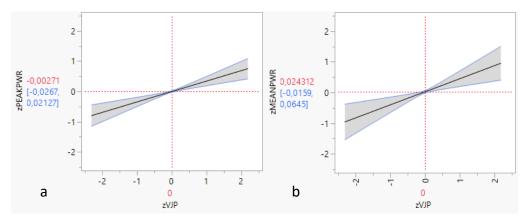


Figura 1. Predicción de la potencia normalizada a partir de la altura del salto vertical normalizada. Experimento 1, diseño entre sujetos con los participantes e intentos como efectos aleatorios. Participantes = 52; intentos = 5. (a): Potencia mecánica pico. Total de datos válidos = 256; R^2 = 0.9707; Intercepto = -0.0027; Pendiente = 0.3452. (b): Potencia mecánica promedio. Total de datos válidos = 252; R^2 = 0.9239; Intercepto = 0.0243; Pendiente = 0.4257. Fuente: los autores. Las figuras fueron creadas con JMP Pro v.15.1.0 (SAS Institute, Inc.).

El segundo conjunto de análisis corresponde al experimento 2 (Aragón-Vargas y González-Lutz, 2023b). La Figura 2a muestra la línea ajustada para los valores de zPEAKPWR predichos por zVJP, conforme al modelo zPEAKPWR = k + s(zVJP) + participante + Error. La asociación es fuerte con una $R^2 = 0.9891$ (p < .0001); el intercepto (0.0109) no es distinto de 0 (p = .2101). La pendiente (0.2010), sin embargo, es distinta de 1 ($p = 8.58x10^{-20}$). La Figura 2b muestra la línea ajustada para los valores de zMEANPWR predichos por zVJP, conforme al modelo zMEANPWR = k + s(zVJP) + participante + Error. La asociación es fuerte con una $k^2 = 0.9617$ (k < .0001); el intercepto (0.0075) no es diferente de 0 (k = .6465). La pendiente (0.4285), sin embargo, es distinta de 1 ($k = 8.8x10^{-5}$).

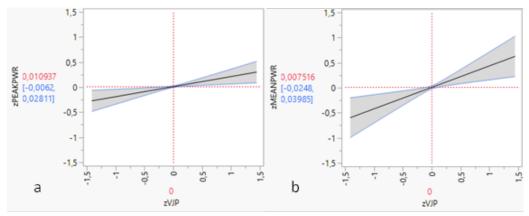


Figura 2. Predicción de la potencia mecánica normalizada a partir de la altura del salto vertical normalizada (zVJP). Experimento 2, diseño intra-sujetos, con los participantes como efecto aleatorio. Participantes = 3. Intentos = 50. (a) Potencia mecánica pico. Total de datos válidos: 147; R² = 0.9891; Intercepto = 0.0109; Pendiente = 0.2010. (b) Potencia mecánica promedio. Total de datos válidos: 147; R² = 0.9617; Intercepto = 0.0075; Pendiente = 0.4285. Fuente: los autores. Las figuras fueron creadas con JMP Pro v.15.1.0 (SAS Institute, Inc.).

<u>La Figura 3</u> muestra los ajustes bivariados individuales para zPEAKPWR como función de zVJP para el experimento 2. Todos estos modelos individuales obtuvieron Pendientes \neq 1: 0.396, 0.116 y 0.352, para los participantes DI07, DI10 y DI09, respectivamente (p < .0001). Los modelos para DI07 y DI09 fueron estadísticamente significativos (p < .05), pero el modelo para DI10 no lo fue (p = .4311). El intercepto no fue distinto de 0 (p = 1.000) en ninguno de los modelos.

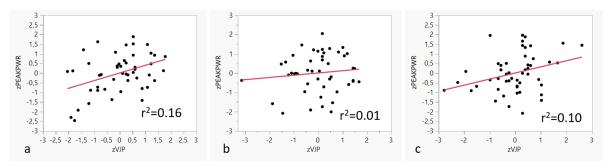


Figura 3. Ajustes bivariados individuales para zPEAKPWR como función de zVJP, experimento 2. (a) Participante DI07. (b) Participante DI10. (c) Participante DI09. Fuente: los autores. Las figuras fueron creadas con JMP Pro v.15.1.0 (SAS Institute, Inc.).

<u>La Figura 4</u> muestra los ajustes bivariados individuales para zMEANPWR como función de zVJP, también para los datos del experimento 2. Todos estos modelos individuales arrojaron Pendientes \neq 1: 0.152, 0.281 y 0.457, para los participantes DI07, DI10 y DI09, respectivamente (p < .0001). El único modelo significativo fue el correspondiente al participante DI09 (p = .0009). El intercepto no fue distinto de 0 en ninguno de los tres modelos (p = 1.000).

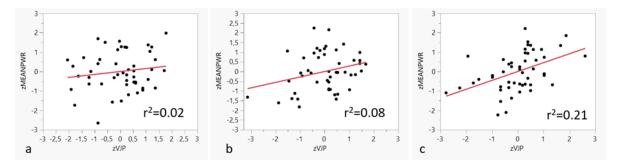


Figura 4. Ajustes bivariados individuales para zMEANPWR como función de zVJP, experimento 2. (a) Participante DI07. (b) Participante DI10. (c) Participante DI09. Fuente: los autores. Las figuras fueron creadas con JMP Pro v.15.1.0 (SAS Institute, Inc.).

4. Discusión

En este estudio se utilizaron técnicas de análisis de regresión para validar el uso del rendimiento en el salto vertical, esto es, la altura del salto, para predecir la potencia mecánica del tren inferior en seres humanos. Se concluye que la altura del salto vertical VJP no es un predictor válido de la potencia. Esto a pesar de que se demostró que la asociación entre VJP y la potencia mecánica, para 52 participantes que realizaron 5 saltos cada uno, fue significativa y, además, considerablemente alta, con coeficientes de determinación superiores a 0.92. Lo anterior concuerda con estudios previos que han evaluado ecuaciones de regresión fundamentadas en VJP (Canavan y Vescovi, 2004; Sayers et al., 1999; Tessier et al., 2013).

Aun con una muestra pequeña de tres participantes que realizaron 50 saltos verticales cada uno, los modelos aquí presentados fueron estadísticamente significativos y mostraron coeficientes de determinación superiores a 0.96. Sin embargo, al evaluar los modelos en el presente estudio mediante puntajes estandarizados (zVJP, zPEAKPWR, and zMEANPWR), se esperaba que arrojaran intercepto = 0 y pendiente = 1. En efecto, los interceptos no fueron estadísticamente distintos de 0, pero las pendientes sí fueron distintas de 1 en todos los casos para estas regresiones grupales. Este es un hallazgo importante del presente estudio, el cual ofrece evidencia adicional para respaldar la afirmación reciente de que VJP no es un predictor preciso de la potencia mecánica (Morin et al., 2019; Tessier et al., 2013); estos dos grupos utilizaron argumentos teóricos y análisis de regresión convencionales para datos grupales para respaldar su posición. Ahora bien, el hallazgo más importante de la presente investigación es que cuando los análisis de regresión se centran en cada persona, la asociación entre la altura del salto vertical y la potencia mecánica en seres humanos es sumamente débil, como se discutirá más adelante.

Este manuscrito utilizó la altura del salto vertical (VJP) como la variable predictora. VJP se calculó con mucha precisión, pero, en la vida diaria, los entrenadores y preparadores físicos acostumbran hacer una estimación de la altura de salto (JUMPAIR) a partir del tiempo en el aire, esto es, del tiempo de vuelo durante el salto, que es una prueba mucho más práctica. Aquí se realizaron los mismos análisis descritos en el experimento 1, pero utilizando zJUMPAIR como predictor principal. Los resultados fueron muy parecidos a los que se obtuvieron con zVJP,

mostrando excelentes coeficientes de determinación tanto para los modelos de zPEAKPWR (r^2 = 0.97) como de zMEANPWR (r^2 = 0.92) (p < .0001), mientras que las pendientes correspondientes también fueron estadísticamente distintas de 1: 0.548 y 0.601, respectivamente (p < .0001). Por lo tanto, el problema señalado al predecir la potencia mecánica a partir de VJP también existe si se usa como predictor la altura del salto vertical calculada a partir del tiempo en el aire.

Los resultados fueron aún más preocupantes cuando se analizó a cada uno de los tres individuos que ejecutaron 50 saltos por separado: todos los coeficientes de determinación se vieron considerablemente atenuados, a pesar de la utilización de puntajes estandarizados (tipificados) para los modelos; el modelo zPEAKPWR no fue significativo para uno de los individuos, mientras que el modelo zMEANPWR no fue significativo para dos de ellos. Aunado a ello, todas las pendientes en estos modelos fueron estadísticamente distintas de 1. Estos resultados son evidencia sólida de que la asociación entre la altura del salto y la potencia mecánica en seres humanos es mucho más débil de lo que se había mostrado antes.

Este abordaje de análisis individual en las ciencias del ejercicio es particularmente relevante, ya que existe una variabilidad intra-sujeto considerable en variables clave de rendimiento; esta variabilidad pasa desapercibida al tomar en cuenta los valores promedio (Mann, 2011). Cuando se han estudiado las respuestas individuales a un régimen de entrenamiento, el rendimiento cambia en forma distinta para cada individuo (Barquero y Salazar, 2020; Mann et al., 2014). Estas respuestas individuales se pierden cuando las variables de rendimiento son calculadas utilizando ecuaciones de regresión desarrolladas a partir de datos grupales. Para saltos distintos, la amplitud del movimiento de empuje, así como la duración correspondiente, pueden ser más cortas o largas, pero si el trabajo realizado es el mismo, la potencia será más alta o más baja, respectivamente (Morin et al., 2019); mientras tanto, VJP se mantiene igual. Cada persona usa estrategias distintas para alcanzar la misma altura del salto (Aragón-Vargas y Gross, 1997b), pero esta realidad se ve oscurecida por las grandes diferencias entre un participante y otro en los análisis de regresión convencionales que usan datos grupales. Dado que la utilización principal de las pruebas de potencia es supervisar o controlar el progreso individual, la aplicación de la fuerza de la asociación encontrada con grupos grandes a los individuos no tiene sentido.

Se considera justificable hacer un comentario adicional acerca del error de utilizar el tiempo de vuelo para el cálculo matemático de la potencia, debido a su prevalencia. La lógica es la siguiente: para obtener la potencia, se puede dividir el trabajo realizado durante el empuje (la propulsión) entre el tiempo necesario para hacer ese trabajo. Si se conoce la altura del salto vertical del participante (h), su masa corporal (m) y el valor de g (la aceleración por la gravedad), es posible calcular el trabajo porque toda la energía cinética en el instante del despegue (la cual es idéntica al trabajo realizado durante la fase positiva del empuje contra el suelo) se convierte en energía potencial en el punto más alto del vuelo, a saber, m·g·h. Esto es correcto, pero el problema se introduce en el siguiente paso: el tiempo desde el instante del despegue hasta el punto más alto durante el vuelo (o el tiempo desde el punto más alto hasta el aterrizaje) se calcula típicamente como 1/2 del tiempo de vuelo. Sin embargo, como ya se ha señalado anteriormente, cuando se usa este tiempo en el cálculo, el resultado no representa la potencia ejercida por el saltador durante el empuje, sino la potencia promedio del saltador mientras cae (Harman et al.,

1991). Este cálculo es inservible, porque el tiempo de vuelo necesariamente está asociado con la altura del salto, conforme a la ecuación matemática de caída libre $h = (g \cdot t_i^2)/2$, donde t_f es el tiempo desde el punto más alto hasta el aterrizaje. La potencia calculada de esta forma no tiene nada que ver con la potencia mecánica desarrollada por los músculos durante el empuje—la variable de interés—, en vista de que se usa el tiempo equivocado. El tiempo de empuje solamente se puede obtener utilizando equipo sofisticado. Lamentablemente, este error básico está ampliamente diseminado, aún en libros de texto (Rodríguez Zárate et al., 2018, p. 57, figura 20). El error anteriormente explicado se ve agravado por el hecho de que el tiempo en que el centro de masa de un cuerpo se mueve hacia arriba o hacia abajo durante el vuelo no es 1/2 del tiempo en el aire, como típicamente se asume, ya que los saltadores normalmente despegan del suelo con sus rodillas y caderas en una extensión completa o casi completa, pero aterrizan con sus rodillas y caderas parcialmente flexionadas (Hatze, 1998). Esto lo confirman los cálculos no publicados elaborados por los autores de esta investigación: con 256 saltos ejecutados por 52 participantes distintos, el tiempo de vuelo hacia arriba $(0.276 \pm 0.027 s)$ es significativamente distinto del tiempo de vuelo hacia abajo o caída libre $(0.302 \pm 0.170 s, p = 0.0155)$.

5. Conclusiones

Se concluye que la altura del salto vertical no debería utilizarse para predecir la potencia de piernas, puesto que los modelos de regresión utilizando valores estandarizados de altura del salto y potencia mecánica para los datos grupales no logran cumplir con el criterio de que la pendiente no sea distinta de 1, a pesar de que arrojan altos coeficientes de determinación. Más aún, las ecuaciones de predicción comúnmente utilizadas se fundamentan en datos grupales, pero son utilizadas predominantemente para supervisar el progreso individual; las ecuaciones predictoras para individuos que ejecutan saltos múltiples no logran cumplir con el criterio de que la pendiente no sea distinta de 1 y, además, arrojan coeficientes de determinación muy pobres ($R^2 \le 0.21$). Morin et al. (2019) recomiendan algunas soluciones prácticas para la medición de la potencia en seres humanos, fundamentadas en publicaciones previas de Samozino et al. (2008) y Jiménez-Reyes et al. (2017); su metodología debería evaluarse utilizando los mismos procedimientos presentados aquí, enfatizando los análisis intra-sujeto. Dichos análisis podrían demostrar que el abordaje de Morin et al. (2019) es sólido y útil para el monitoreo de atletas individuales. Mientras tanto, se recomienda que siempre que se guieran usar los resultados de la potencia mecánica de manera efectiva, estos deberían obtenerse directamente utilizando una plataforma de fuerza o un sistema de análisis cinemático. Las mediciones de la altura del salto vertical deberían reportarse, analizarse e interpretarse únicamente como altura del salto vertical.

Repercusiones prácticas

- La altura del salto es un mal predictor de la potencia de piernas.
- La potencia mecánica debería medirse directamente con métodos e instrumentos debidamente validados.
- Tanto las ecuaciones para la predicción de la potencia como de otros aspectos del rendimiento deberían evaluarse siempre con nuestro modelo de análisis intra-sujeto, en

vista de que su uso primordial será para monitorear los cambios en individuos, no en grupos.

Conflictos de intereses. Los autores declaran no tener conflictos de interés económicos ni de otro tipo. Los autores no tienen interés económico ni de otro tipo en los equipos de medición ni en su distribución. Todos los autores declaran que los resultados del estudio han sido presentados con claridad y honestidad y sin inventar, falsificar ni manipular los datos de manera inapropiada.

Traducción al español: Ph.D. Luis Fernando Aragón Vargas, Universidad de Costa Rica.

Contribuciones: Luis Fernando Aragón-Vargas (A-B-C-D-E) y María Isabel González-Lutz (B-D-E)

A-Financiamiento, B-Diseño del estudio, C-Recolección de datos, D-Análisis estadístico e interpretación de resultados, E-Preparación del manuscrito.

6. Referencias

- Aragón-Vargas, L. F. (2000). Evaluation of Four Vertical Jump Tests: Methodology, Reliability, Validity and Accuracy. *Measurement in Physical Education and Exercise Science*, *4*(4), 215–228. https://doi.org/10.1207/S15327841MPEE0404 2
- Aragón-Vargas, L. F., y González-Lutz, M. I. (2023a). Dataset for experiment 1 of A novel validation approach shows new, solid reasons why vertical jump height should not be used to predict leg power. *Pensar en Movimiento: Revista de Ciencias del Ejercicio y la Salud, 21*(2). https://doi.org/10.15517/pensarmov.v21i2.56206
- Aragón-Vargas, L. F., y González-Lutz, M. I. (2023b). Dataset for experiment 2 of A novel validation approach shows new, solid reasons why vertical jump height should not be used to predict leg power. *Pensar en Movimiento: Revista de Ciencias del Ejercicio y la Salud, 21*(2). https://doi.org/10.15517/pensarmov.v21i2.56208
- Aragón-Vargas, L. F., y Gross, M. M. (1997a). Kinesiological factors in vertical jump performance: Differences among individuals. *Journal of Applied Biomechanics*, *13*(1), 24–44. https://doi.org/10.1123/jab.13.1.24
- Aragón-Vargas, L. F., y Gross, M. M. (1997b). Kinesiological factors in vertical jump performance: Differences within individuals. *Journal of Applied Biomechanics*, *13*(1), 45–65. https://doi.org/10.1123/jab.13.1.45
- Bar-Or, O. (1987). The Wingate anaerobic test. An update on methodology, reliability and validity. *Sports Medicine*, *4*(6), 381–394. https://doi.org/10.2165/00007256-198704060-00001
- Barquero, J. F., y Salazar, W. (2020). Efecto agudo de los entrenamientos de fuerza, velocidad, pliometría y velocidad contra resistencia en la carrera de velocidad. *Pensar en Movimiento: Revista de Ciencias del Ejercicio y la Salud*, 18(2), e40315. https://doi.org/10.15517/pensarmov.v18i2.40315

- Bosco, C., Luhtanen, P., y Komi, P. V. (1983). A simple method for measurement of mechanical power in jumping. *European Journal of Applied Physiology and Occupational Physiology*, 50(2), 273–282. https://doi.org/10.1007/BF00422166
- Canavan, P. K., y Vescovi, J. D. (2004). Evaluation of Power Prediction Equations: Peak Vertical Jumping Power in Women. *Medicine & Science in Sports & Exercise*, *36*(9), 1589–1593. https://doi.org/10.1249/01.MSS.0000139802.96395.ac
- Del Coso, J. D., y Mora-Rodríguez, R. (2006). Validity of cycling peak power as measured by a short-sprint test versus the Wingate anaerobic test. *Applied Physiology, Nutrition, and Metabolism = Physiologie Appliquee, Nutrition Et Metabolisme*, 31(3), 186–189. https://doi.org/10.1139/h05-026
- Harman, E., Rosenstein, M., Frykman, P., Rosenstein, R., y Kraemer, W. (1991). *Estimation of Human Power Output from Vertical Jump*. https://www.semanticscholar.org/paper/Estimation-of-Human-Power-Output-from-Vertical-Jump-Harman-Rosenstein/47eeda520e5a2595392064a2faaf93909323751e
- Hatze, H. (1998). Validity and Reliability of Methods for Testing Vertical Jumping Performance. *Journal of Applied Biomechanics*, *14*(2), 127–140. https://doi.org/10.1123/jab.14.2.127
- Jiménez-Reyes, P., Samozino, P., Pareja-Blanco, F., Conceição, F., Cuadrado-Peñafiel, V., González-Badillo, J. J., y Morin, J.-B. (2017). Validity of a Simple Method for Measuring Force-Velocity-Power Profile in Countermovement Jump. *International Journal of Sports Physiology and Performance*, *12*(1), 36–43. https://doi.org/10.1123/ijspp.2015-0484
- Kirkendall, D. R., Gruber, J. J., y Johnson, R. E. (1987). *Measurement and evaluation for physical educators.*Human
 Kinetics.
 https://library.olympics.com/Default/doc/SYRACUSE/67952/measurement-and-evaluation-for-physical-educators-don-r-kirkendall-joseph-j-gruber-robert-e-johnson
- Lara-Sánchez, A. J., Zagalaz, M. L., Berdejo-del-Fresno, D., y Martínez-López, E. J. (2011). Jump Peak Power Assessment Through Power Prediction Equations in Different Samples. *The Journal of Strength & Conditioning Research*, 25(7), 1957–1962. https://doi.org/10.1519/JSC.0b013e3181e06ef8
- Mann, T. (2011). Mean response disregards the importance of individual variation. *South African Journal of Sports Medicine*, 23(1), 30. https://doi.org/10.17159/2078-516X/2011/v23i1a532
- Mann, T. N., Lamberts, R. P., y Lambert, M. I. (2014). High responders and low responders: Factors associated with individual variation in response to standardized training. *Sports Medicine*, *44*(8), 1113–1124. https://doi.org/10.1007/s40279-014-0197-3
- Morin, J.-B., Jiménez-Reyes, P., Brughelli, M., y Samozino, P. (2019). When Jump Height is not a Good Indicator of Lower Limb Maximal Power Output: Theoretical Demonstration, Experimental Evidence and Practical Solutions. *Sports Medicine*, *49*(7), 999–1006. https://doi.org/10.1007/s40279-019-01073-1
- Rodríguez Zárate, N. M., Argothy Bucheli, R. E., Acero Jáuregui, J. A., Gómez Salazar, L., Menzel, H., y Cohen, D. D. (2018). *Lineamiento de política pública en ciencias del deporte en Biomecánica*. Coldeportes. https://acortar.link/Y8dpff

- Samozino, P., Morin, J.-B., Hintzy, F., y Belli, A. (2008). A simple method for measuring force, velocity and power output during squat jump. *Journal of Biomechanics*, *41*(14), 2940–2945. https://doi.org/10.1016/j.jbiomech.2008.07.028
- Sayers, S. P., Harackiewicz, D. V., Harman, E. A., Frykman, P. N., y Rosenstein, M. T. (1999). Cross-validation of three jump power equations. *Medicine & Science in Sports & Exercise*, 31(4), 572–577. https://doi.org/10.1097/00005768-199904000-00013.
- Tessier, J.-F., Basset, F.-A., Simoneau, M., y Teasdale, N. (2013). Lower-Limb Power cannot be Estimated Accurately from Vertical Jump Tests. *Journal of Human Kinetics*, *38*(2013), 5–13. https://doi.org/10.2478/hukin-2013-0040

Pensar en Movimiento

Realice su envío aquí

Consulte nuestras normas de publicación aquí

Indexada en:

pensarenmovimiento.eefd@ucr.ac.cr

Revista Pensar en Movimiento

PensarMov

