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Abstract

Algorithmic thinking is a key element for individuals to be aligned with the computer
era. Its study is important not only in the context of computer science but also in
mathematics education and all STEAM contexts. However, despite its importance,
a lack of research treating it as an independent construct and validating its
operational definitions or rubrics to assess its development in university students
through confirmatory factor analysis has been discovered. The aim of this paper is
to conduct a construct validation through confirmatory factor analysis of a rubric for
the algorithmic thinking construct, specifically to measure its level of development
in university students. Confirmatory factor analysis is performed on a series of
models based on an operational definition and a rubric previously presented in the
literature. The psychometric properties of these models are evaluated, with most of
them being discarded. Further research is still needed to expand and consolidate
a useful operational definition and the corresponding rubric to assess algorithmic
thinking in university students. However, the confirmatory factor analysis confirms
the construct validity of the rubric, as it exhibits very good psychometric properties
and leads to an operational definition of algorithmic thinking composed of four
components: Problem analysis, algorithm construction, input case identification,
and algorithm representation.
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Resumen

El pensamiento algoritmico es un elemento clave para ser un individuo alineado
con la era de la computacion. Su estudio es importante no solo en el contexto de
las ciencias de la computacion, sino también en la didactica de la matematica y
en todos los contextos STEAM. Pero a pesar de su importancia, se ha descubierto
una carencia de investigaciones que lo traten como un constructo independiente
y que validen sus definiciones operacionales o rubricas para evaluar su desarrollo
en estudiantes universitarios mediante analisis factorial confirmatorio. El objetivo
de este articulo es realizar una validacion de constructo por medio de analisis
factorial confirmatorio de una rubrica para el constructo pensamiento algoritmico,
especificamente para medir su nivel de desarrollo en estudiantes universitarios. Se
realiza un analisis factorial confirmatorio sobre una serie de modelos basados en
una definicion operacional y una rubrica previamente presentadas en la literatura.
Se evaluan las propiedades psicométricas de estos modelos, descartandose la
mayoria de ellos. Aun se necesita mas investigacion para ampliar y consolidar
una definicion operacional util, y la rubrica correspondiente, para evaluar el
pensamiento algoritmico en estudiantes universitarios. Sin embargo, el analisis
factorial confirmatorio llevado a cabo confirma la validez de constructo de la
rubrica, ya que presenta muy buenas propiedades psicométricas y conduce a
una definicion operacional de pensamiento algoritmico compuesta por cuatro
componentes: analisis del problema, construccion del algoritmo, identificacion de
los casos de entrada y representacion del algoritmo.

Resumo

O pensamento algoritmico € um elemento-chave para que os individuos estejam
alinhados com a era da computacao. Seu estudo € importante nao apenas no
ambito da ciéncia da computacao, mas tambem na didatica da matematica e em
todos os contextos STEAM. No entanto, apesar de suaimportancia, faltam pesquisas
que o tratem como um construto independente e que validem suas definicoes
operacionais ou rubricas para avaliar seu desenvolvimento em estudantes
universitarios por meio de analises fatoriais confirmatorias. O objetivo deste artigo
€ realizar uma validagao de construto por meio de analise fatorial confirmatoria
de uma rubrica para o construto pensamento algoritmico, especificamente para
medir seu nivel de desenvolvimento em estudantes universitarios. E realizada
uma analise fatorial confirmatoria sobre uma série de modelos baseados em uma
definicao operacional € uma rubrica previamente apresentadas na literatura. As
propriedades psicométricas desses modelos sao avaliadas, € a maioria deles é
descartada. Ainda sao necessarias mais pesquisas para ampliar e consolidar uma
definicao operacional util e a rubrica correspondente para avaliar o pensamento
algoritmico em estudantes universitarios. No entanto, aanalise fatorial confirmatoria
realizada confirma a validade de construto da rubrica, pois esta apresenta
propriedades psicomeétricas muito boas, e conduz a uma definicao operacional de
pensamento algoritmico composta por quatro componentes: analise do problema,
construcao do algoritmo, identificacao dos casos de entrada, e representagcao do
algoritmo.
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Introduction

Computational thinking (CT) is becoming a fundamental skill for 21-century citizens
worldwide (Grover & Pea, 2018; Nordby et al., 2022) since it is related to beneficial skills
that are considered applicable in everyday life (Wing, 2006; 2017). Algorithmic thinking
(AT) is considered the main component of CT (JuSkeviciene, 2020; Selby & Woollard,
2013; Stephens & Kadijevich, 2020). Moreover, most of the CT definitions have their
roots in AT (JuskeviCiene, 2020), although some very influential CT definitions do not
mention AT at all (Shute et al., 2017; Weintrop et al,, 2016; Wing, 2006).

Today, daily life is surrounded by algorithms and governed by algorithms, so AT
is considered one of the key elements to be an individual aligned with the era of
computing (Juskeviciené, 2020). Research on AT is very important in computer science
education, but it also has a vital role in mathematics education and STEAM contexts
(Kadijevich et al, 2023). Despite its importance, AT has been found to lack research
that treats it as an independent construct with independent-of-CT assessments (Park
& Jun, 2023).

CT is still a blurry psychological construct, and its assessment remains a thorny,
unresolved issue (Bubica & Boljat, 2021; Martins-Pacheco et al, 2020; Roman-
Gonzalez et al., 2019; Tang et al., 2020), and open, as a research challenge, demanding
scholars' attention urgently (Poulakis & Politis, 2021). Moreover, the same happens with
AT (Lafuente Martinez et al,, 2022; Stephens & Kadijevich, 2020) due to its relationship
with CT.

A wide variety of CT assessment tools are available (Tang et al.,, 2020; Zuniga Munoz
et al, 2023), ranging from diagnostic tools to measures of CT proficiency and
assessments of perceptions and attitudes towards this thinking way, among others.
(Roman-Gonzalez et al, 2019). However, empirical research evaluating the validity
and reliability of these instruments remains relatively low compared to the volume of
research in this area (Tang et al,, 2020). Consequently, as noted by Bubica and Boljat
(2021), "there is still not enough research on CT evaluation to provide teachers with
enough support in the field" (p. 453).

While much research focuses on measuring and assessing CT (Poulakis & Politis, 2021),
the same cannot be said for AT. Moreover, these research streams do not converge
(Stephens & Kadijevich, 2020). Furthermore, a limited percentage of research on CT
assessment is directed towards undergraduate students (Tang et al., 2020).

Alimited number of efforts, albeit divergent, have been made to formulate operational
definitions for AT, as evidenced by works such as those by Juskeviciene and Dagiené
(2018), Lafuente Martinez et al. (2022), Navas-Lopez (2021), and Park and Jun (2023).
Additionally, attempts have been undertaken to develop an assessment rubric
(Navas-Lopez, 2021) and apply confirmatory factor analysis (CFA) for AT measurement
instruments (Bubica & Boljat, 2021; Lafuente Martinez et al,, 2022).

Despite these contributions, there remains a notable gap in the literature regarding
validating instruments specifically designed to assess AT as an independent construct
distinct from CT. So far, there are only two factorial models for AT in adolescents or
adults with acceptable psychometric properties: a unifactorial model (Lafuente
Martinez et al, 2022) and a bifactorial model (Ortega Ruipérez et al,, 2021). Therefore,
this research endeavors to develop a more detailed factorial model through the
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construct validation of the rubrics applied by Navas-Lopez (2021) to assess AT in
undergraduate students.

Developing reliable instruments for studying AT is crucial, particularly with the rising
integration of CT and AT in basic education curricula around the world (Kadijevich
et al,, 2023). Continuous research is crucial to identify components, dimensions, and
factors that illuminate the assessment of AT (Lafuente Martinez et al., 2022; Park & Jun,
2023).

Literature review

Some definitions

As this paper focuses on AT, it is crucial to understand the concept of an algorithm
clearly. According to Knuth (1974), an algorithm is defined as “a precisely-defined
sequence of rules instructing how to generate specified output information from given
input information within a finite number of steps” (p. 323). This definition encompasses
human and machine execution without specifying any particular technology
requirement.

In line with this definition, Lockwood et al. (2016) describe AT as “a logical, organized
way of thinking used to break down a complicated goal into a series of (ordered)
steps using available tools" (p. 1591). This definition of AT, like the previous definition of
algorithm, does not require the intervention of any specific technology.

For Futschek (2006), AT is the following set of skills that are connected to the
construction and understanding of algorithms:

o

the ability to analyze given problems,

o

the ability to specify a problem precisely,
c. the ability to find the basic actions that are adequate to the given problem,

d. the ability to construct a correct algorithm for a given problem using the basic
actions,

e. the ability to think about all possible special and regular cases of a problem,
f.  the ability to improve the efficiency of an algorithm. (p. 160)

There are other operational definitions for AT. Some of them emphasize specific skills,
such as the correct implementation of branching and iteration structures (Grover, 2017;
Bubica & Boljat, 2021). Most of them describe AT in terms of a list of skills (Bubica &
Boljat, 2021; Lafuente Martinez et al., 2022; Lehmann, 2023; Park & Jun, 2023; Stephens
& Kadijevich, 2020), such as analyzing algorithms or creating sequences of steps.
Despite similarities, these skill lists cannot be considered equivalent to each other.

The definition of CT will now be addressed by expanding on the concept of AT. It
could be defined as “the thought processes involved in formulating a problem and
expressing its solution(s) in such a way that a computer -human or machine- can
effectively carry out” (Wing, 2017, p. 8). Unlike the AT definitions, this CT definition allows
for machines' involvement. Consequently, CT does involve considerations about the
technology underlying the execution of these solutions (Navas-Lopez, 2024).
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As with AT, different operational definitions of CT describe it as a list of various
components or skills, such as abstraction, decomposition, and generalization (Otero
Avila et al, 2019; Tsai et al,, 2022). Additionally, several authors explicitly include AT
as an operational component of CT in their empirical research (Bubica & Boljat, 2021;
Korkmaz et al., 2017; Lafuente Martinez et al., 2022; Otero Avila et al., 2019; Tsai et al.,
2022).

For Stephens and Kadijevich (2020), the cornerstones of AT are decomposition,
abstraction, and algorithmization, whereas CT incorporates these elements along
with automation. This distinction underscores that automation is the defining factor
separating AT from CT.

Lehmann (2023) describes algorithmization as the ability to design a set of ordered
steps to produce a solution or achieve a goal. These steps include inputs and outputs,
basic actions, or algorithmic concepts such as iterations, loops, and variables. Note
the similarity with Lockwood et al. (2016) definition of AT.

Kadijevich et al. (2023) assert that AT requires distinct cognitive skills, including
abstraction and decomposition. Following JuskeviCiené and Dagiené (2018),
decomposition involves breaking down a problem into parts (sub-problems) that are
easier to manage, while abstraction entails identifying essential elements of a problem
or process, which involves suppressing details and making general statements
summarizing particular examples. Furthermore, these two skills are present in many
CT operational definitions (Bubica & Boljat, 2021; Juskeviciene & Dagiene, 2018;
Lafuente Martinez et al., 2022; Martins-Pacheco et al, 2020; Otero Avila et al., 2019;
Selby & Woollard, 2013; Shute et al., 2017).

Unsurprisingly, the most commonly assessed CT components are algorithms,
abstraction, and decomposition (Martins-Pacheco et al., 2020), which closely aligns
with the AT conception by Stephens and Kadijevich (2020). In fact, in the study
conducted by Lafuente Martinez et al. (2022), the researchers aimed to validate a test
for assessing CT in adults, avoiding technology (or automation). However, their CFA
results suggest a simpler CT concept, governed by a single ability associated with
recognizing and expressing routines to address problems or tasks, akin to systematic,
step-by-step instructions—essentially, AT.

The distinction between AT and CT remains to be clarified in current scientific literature.
Nonetheless, this study adopts Stephens and Kadijevich's (2020) perspective,
emphasizing that the primary difference lies in automation. Specifically, AT excludes
broader aspects of technology use and social implications (Navas-Lopez, 2024). The
study also focuses on abstraction and decomposition as integral components of AT.

Algorithmic thinking and Computational thinking assessments

According to Bubica and Boljat (2021), “to evaluate CT, it is necessary to find evidence
of a deeper understanding of a CT-relevant problem solved by a pupil, that is, to
find evidence of understanding how the pupil created their coded solution” (p. 428).
Grover (2017) recommends the use of open-ended questions for making “systems of
assessments’ to assess AT.

Bacelo and Gomez-Chacon (2023) emphasize the significance of unplugged activities
for observing students' skills and behaviors, and identifying patterns that can reveal
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strengths and weaknesses in AT learning, as shown by Lehmann (2023). Empirical
data suggests that students engaged in unplugged activities demonstrate marked
improvements in CT skills compared to those in plugged activities (Kirgali & Ozdener,
2023). Unplugged activities are generally effective in fostering CT skills (Chen et al,
2023), making them essential components in AT assessment instruments to identify
patterns that reveal strengths and weaknesses.

There is a common tendency to assess AT and CT through small problem-solving
tasks, often using binary criteria like ‘'solved/unsolved’ or ‘correct/incorrect’ without
detailed rubrics for each problem. Examples can be found across different age groups:
young children (Kanaki & Kalogiannakis, 2022), K-12 education (OQomori et al., 2019;
Ortega et al, 2021), and adults (Lafuente Martinez et al,, 2022). Conversely, there are
proposals to qualitatively assess CT using unplugged complex problems, focusing on
students' cognitive processes (Lehmann, 2023).

In addition, Bubica and Boljat (2021) suggest adapting problem difficulty to students
level, because assessments for AT and CT vary in effectiveness for different learners
(Grover, 2017). Therefore, an effective AT assessment should include unplugged,
preferably open-ended problems adjusted to students' expected levels to identify
cognitive processes better.

Validity of CT/AT instruments through factor analysis

According to Lafuente Martinez et al. (2022), assessments designed to measure CT in
adults, as discussed in the literature, often lack substantiated evidence concerning
crucial validity aspects, particularly the internal structure and test content. Some
studies validate CT instruments, which include the AT construct, through factor
analysis, but they have problems with psychometric properties, such as those of
Ortega Ruipérez and Asensio Brouard (2021), Bubica and Boljat (2021) and Sung (2022).

Ortega Ruiperez and Asensio Brouard (2021) shift the focus of CT assessment towards
problem-solving to measure the performance of cognitive processes, moving away
from computer programming and software design. Their research aims to validate an
instrument for assessing CT through problem-solving in students aged 14-16 using
CFA. However, the instrument exhibits low factor loadings, including one negative.
By emphasizing problem-solving outside the realm of computer programming, this
instrument aligns more closely with the interpretation of AT by Stephens and Kadijevich
(2020), as it removes automation from CT. Nevertheless, its results are pretty poor, as
the conducted CFA only identifies two independent factors: problem representation
and problem-solving.

Bubica and Boljat (2021) applied an exploratory factor analysis for a CT instrument,
special for the Croatian basic education curriculum, with a mix of simple answer
questions and open-ended problems in students aged 11-12. AT evaluation criteria
focus on sequencing, conditionals, and cycles. However, the factor loadings are low,
and the grouping of the tasks (items) according to the factor analysis is strangely
overloaded towards one factor.

Sung (2022) conducted a validation through CFA for two measurements to assess CT
in young children aged 5 and 6 years. It has certain limitations, including the weak
factor loadings of specific items, suboptimal internal consistency in subfactors, and
low internal reliability. Furthermore, Sung (2022) reflects that “young children who are
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still cognitively developing and lack specific high-level thinking skills seem to be at
a stage before CT's major higher-order thinking functions are subdivided” (p. 12992).
This may be the same problem in Bubica and Boljat's (2021) study results.

Lafuente Martinez et al. (2022) performed a CFA for a CT instrument for adults (average
23.58 years), and they did not find multidimensionality in their evidence, thus failing to
confirm the assumption of difference between CT and AT.

Other CFA studies focus on CT instruments with strong psychometric properties, but
they primarily assess disposition toward CT rather than problem-solving abilities.
For instance, Tsai et al. (2022) used CFA to validate their 19-item questionnaire,
demonstrating good item reliability, internal consistency, and construct validity in
measuring CT disposition. Their developmental model highlighted that decomposition
and abstraction are key predictors of AT, evaluation, and generalization, suggesting
their critical role in CT development.

So, there is a lack of CFA-specialized studies on AT published in the last five years,
independent of CT, focused solely on problem solving, and on university/college
undergraduate students (young adults).

Rubric for algorithmic thinking

According to Bubica and Boljat (2021), algorithmic solutions are always difficult to
evaluate because "in the process of creating a model of evidence, itis crucial to explore
all possible evidence of a pupil's knowledge without losing sight of the different ways
in which it could be expressed within the context and the requirements of the task
itself" (p. 442). Therefore, one way to assess students performance objectively and
methodically is through a rubric (Chowdhury, 2019).

Furthermore, it is highly recommended to construct rubrics to assess students
learning, cognitive development, or skills, based on Bloom's taxonomy of educational
objectives (Moreira Gois et al., 2023; Noor et al, 2023). This taxonomy of educational
objectives includes Knowledge (knowing), understanding, application, analysis,
synthesis, and evaluation (Bloom & Krathwohl, 1956).

Although some more or less precise recent operational definitions have been
proposed for AT (JuskevicCiene & Dagiene, 2018; Lafuente Martinez et al., 2022; Park &
Jun, 2023), these do not include a specific (or general) rubric to assess performance
levels for each of the components or factors these operational definitions claim to
compose the AT construct.

The only rubric to measure AT development found, independent of CT, based on open-
ended problem solving for undergraduate students, is that by Navas-Lopez's (2021)
master thesis. This study has a correlational scope and does not include construct
validation for the rubric.

Navas-Lopez (2021) proposed two operationalizations for AT: One operationalization
is for a beginner's AT level, and the other is for an expert's AT level. In the skills list
that composes a beginner's AT, the educational objectives of Knowledge (knowing),
understanding and application (execution) of algorithms have been included. Table
1 shows the latent variables (components or factors) and observable variables of the
operationalization for a beginner's AT, according to this proposal, and Figure 1 shows
the corresponding structural model.
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Table 1

Generic operationalization of a beginner’s algorithmic thinking

already identified.

Components (factors) Sub-components (observable variables) Code
Identifies inputs input
Problem analysis Makes a useful graphic or diagram draw
Identifies outputs output
Decomposition of the problem into , ,
Identifies the sub-problems that compose the problem idsub
sub-problems
Implements a solution to the identified sub-problems solsub
Construction of a correct algorithm : . .
Integrates the different partial solutions to solve the complete )
that solves the problem intsub
problem
Identification of normal and special | Identifies normal cases norm
cases Identifies special or extreme cases extre
Represents the execution flow.
In the case of using pseudocode, this includes indentation and
nesting of control structures such as if-then-else, do-while, for- a
ow
Construction of a formal each, etc.).
efeliskisizen for e elgeidiin In the case of flowcharts, the flow must be represented in an
that solves the problem unambiguous way.
Uses appropriate symbology and syntactic rules (such as diamonds
for conditional branches in flowcharts or “reserved words" in syn
pseudocode).
Effectively executes an algorithm given its representation run
. . Executes an algorithm that is considered potentially correct in order
Executing an algorithm
to check normal and special cases, and look for the causes of errors err

Note. Translation of Table 3.3 from Navas-Lopez (2021, p. 60)

Figure 1

Structural model of a beginner's algorithmic thinking operationalization

exe err

solsub

intsub

Note. Own elaboration from factors and observable variables from Table 1.
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Navas-Lopez (2021) explains that he primarily used the definition provided by Futschek
(2006) due to its wide referencing in multiple publications on AT and CT. However, he
supplemented his operational definition with the definition by Grozdev and Terzieva
(2015), particularly concerning problem decomposition, the relationship between
sub-problems, and the formalization of algorithm representation. Finally, the notion of
algorithm debugging from Sadykova and Usolzev (2018) was incorporated.

This proposal also incorporates the components outlined by Stephens and
Kadijevich (2020); Abstraction in problem analysis and identification of sub-problems,
decomposition explicitly, and algorithmization, as understood by Lehmann (2023).

Navas-Lopez (2021) also developed a generic analytic rubric to assess a beginner's AT
levelfrom its factors for a given problem, following the steps of Mertler's (2001) scoring
rubric design and the template presented by Cebrian de la Serna and Monedero Moya
(2014). Table 2 shows the detailed rubric.

Table 2
Generic analytic rubric to assess a beginner's algorithmic thinking level.
Variable Indicators / Evidence
Does not identify Defines/uses other | Defines/uses Defines/uses Defines/uses input
any input variable variable(s) as input | some correctinput | some correct input | variables correctly
input [0%] variables [10%] variable(s) with variable(s) but not [100%]
some incorrect input | all [50%]
variable(s) [25%]
Does not make any | Makes a diagram or | Makes a diagram Makes a diagram Makes a drawing or
diagram or drawing | drawing that is not or drawing with the | or drawing where diagram where the
[0%] useful for identifying | potential to identify | you can identify important variables
draw important variables | important variables | some important can be identified
[10%] but without being variables but not [100%]
identified [30%] all of those that
such representation
allows [70%]
Does not identify Defines/uses Defines/uses some | Defines/uses some | Correctly defines/
any output variable | another variable(s) correct output correct output uses output
output | [0%] as output variables | variable(s) with variable(s) but not variables [100%]
[10%] some incorrect all [50%]
one(s) [25%]
Does not identify Identifies only some | Identifies half of the | Identifies almost all | Identifies all the
idsub any of the sub- of the sub-problems | sub-problems [50%] | the sub-problems sub-problems
problems [0%] [25%] [75%] [100%]
Does not attempt Attempts but does Solves some of Solves most of Solves all of the
colsub to solve any of the not correctly solve | the sub-problems the sub-problems sub-problems
sub-problems [0%] | any of the sub- correctly [50%] correctly [80%l correctly [100%]
problems [5%]
Does not attempt Solves or attempts | Solves or attempts | Solves or attempts | Solves or attempts
to solve any of the to solve only one of | to solve some to solve most of the | to solve all the sub-
intsub sub-problems [0%] | the sub-problems sub-problems sub-problems and problems in the
[5%] in isolation orin one of them is not correct order [100%]
incorrect order [50%] | in the correct order
[80%]
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Variable

Indicators / Evidence

norm Does not attempt to | Solves or attempts | Solves or attempts | Solves or attempts | Solves or attempts
resolve the problem | to solve but does to solve but does to solve and to solve and
[0%] not declare at any not declare for all explicitly declares explicitly declares
time that the input input variables that | for all input variables | for all input variables
variables must have | they must have that they must have | which must have
the correct value correct value and the correct value or | correct value and
and type [10%] type [50%] type, but not both type [100%]
conditions [75%]
extre Does not attempt to | Solves or attempts | Solves or attempts | Solves or attempts | Solve or attempts
solve the problem to solve without to solve considering | to solve considering | to solve considering
[0%] considering the some of the most of the possible | all possible extreme
extreme cases extreme cases extreme cases cases derived from
derived from the derived from the derived from the the input variables
input variables [5%] | input variables [60%] | input variables [80%] | [100%]
or if there is only one extreme case:
Does not attempt to | Solves or attempts Identifies but does Attempts but fails to | Solves the problem
solve the problem to solve the not attempt to solve | solve the extreme considering the
[0%] problem but does the extreme case of | case of the problem | extreme case [100%]
not consider the the problem [25%] [50%]
extreme case [5%]
flow Does not attempt to | Attempts to Attempts to solve Solves or attempts | Solves or attempts
solve the problem solve but does respecting the to solve using to solve respecting
[0%] not respect the sequencing but the necessary the sequencing and
sequencing and does not use any structures, but using the necessary
does not use any selection or iteration | without respecting | structures, with
selection or iteration | structure being the indentation their appropriate
structure being necessary [ 40%] in case of using indentation in
necessary (5%l pseudocode, or case of using
without making the | pseudocode, or with
execution flow clear | their clear execution
in case of using a flow in case of using
flowchart [60%] a flowchart [100%]
syn Does not attempt to | Attempts to solve Attempts to solve Solves or attempts | Solves or attempts

solve the problem
[0%]

but does not use
typical flowchart
symbology, or does
not use minimum
pseudocode
reserved words,
such as If, Then,
Else, End, Print, etc.
[10%]

using partially
correct flowchart
symbology, or
partially clear
pseudocode [40%]

to solve using
mostly correct
flowchart
symbology, or
mostly clear
pseudocode [80%]

to solve using
correct flowchart
symbology, or
completely clear
pseudocode [100%]

Cuadernos de Investigacion Educativa | Vol. 15 No. 2 | 2024 | DOI: https://doi.org/10.18861/cied.2024.15.2




combination of combinations of combinations of
values of the input

variables [10%]

values of the input
variables [40%]
identifying how

values of the input
variables without

to cover the main
combinations [75%]

Variable Indicators / Evidence
exe Does not execute Executes the Executes the Executes the Correctly executes
the algorithm [0%] algorithm making algorithm making algorithm making a | the algorithm based
many errors, mainly | few errors, mainly single error related | on its representation
related to the calculation of to the calculation [100%]
execution flow [10%] | operations and of operations and
less related to the not related to the
execution flow [50%] | execution flow [80%]
err Does not execute Executes the Executes the Executes by hand Executes the
the algorithm [0%] algorithm by algorithm by the algorithm algorithm by
hand only for a hand for some for various hand for the main

combinations of
values of the input
variables [100%]

Note. Translation of Table 3.4 from Navas-Lopez (2021, pp. 61-65).

Navas-Lopez (2021) also developed two specific rubrics for the two problems, the
solution of which is an algorithm contained in the instrument used (p2 and p4). These
two rubrics are versions derived from the one presented in Table 2 but adjusted
to the particularities of both problems. Besides, both problems do not include the
execution of the resulting algorithm due to time restrictions during the administration
of the instrument, so they do not consider the component “Executing an algorithm”
(from Table 1), that is, the exe and err variables. One of the problems did not require
a graphic or diagram to be analyzed and solved, so it does not include the draw
variable. So, observable variables assessed for problem p2 are: p2. input, p2.output,
p2.idsub, p2.solsub, p2.intsub, p2.norm, p2.extre, p2flow, p2.syn; and for problem p4
are: pd4.input, p4.draw, p4.output, p4.idsub, p4.solsub, p4.intsub, p4.norm, p4.extre,
p4.flow, p4.syn.

This research aims to construct validation for the specific rubrics applied by Navas-
Lopez (2021) as part of his operational definition for assessing AT in undergraduate
students. Specifically, this construct validation will be carried out through CFA applied
to several models proposed by the researcher based on the grouping of the measured
variables for the two problems in the original measurement instrument.

Method

Problems p2 and p4, extracted from the instrument developed by Navas-Lopez
(2021), were administered to a sample of 88 undergraduate students enrolled in three
academic programs offered by the School of Mathematics at the University of El
Salvador. The participants, aged 17 to 33 (M: 20.88 years, SD: 2.509 years), included 41
women (46.59%), 46 men (52.27%), and 1 participant who did not report their gender.
The overall grades of the subjects ranged from 6.70 to 9.43 on a scale of 0.00 to 10.00
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(M: 7.64, SD: 0.57). The total student population at the time of data collection was 256,
and a convenience sampling approach was employed during regular face-to-face
class sessions across different academic years (first year, second year, and third year).
The researcher verbally communicated the instructions for solving the problems, after
which students individually solved them on paper, with the option to ask questions for
clarification.

The translation of Navas-Lopez's (2021) problem p2 is:

Aschoolserving students from seventh to ninth grade organizes a trip every two
months, including visits to a museum and a theater performance. The school
principal has established a rule that one responsible adult must accompany
every 15 students for each trip. Additionally, it is mandated that each trip be
organized by a different teacher, with rotating responsibilities. Consequently,
each teacher may go several months (or even years) without organizing a trip,
and when it is their turn again, they may not remember the steps to follow.
Develop a simple algorithm that allows any organizer reading it to calculate the
cost of the trip (to determine how much each student should contribute). (p. 70)

The translation of Navas-Lopez's (2021) problem p4 is:

As you know, most buses entering our country for use in public transportation
have their original seats removed and replaced with others that have less space
between them to increase capacity and reduce comfort.

The company ‘Tight Fit Inc! specializes in providing this modification service
to public transportation companies when they ‘bring in a new bus' (which we
already know is not only used but also discarded in other countries).

Write an algorithm for the operational manager (the head of the workers) to
perform the task of calculating how many seats should be installed and the
distance between them. Assume that the original seats have already been
removed, and the ‘new’ ones are in a nearby warehouse, already assembled
and ready to be installed. Since the company is dedicated to this, it has an
almost unlimited supply of ‘new' seats. (p. 71)

To assess the students' procedures, the researcher employed the dedicated rubrics
for these problems outlined by Navas-Lopez (2021, pp. 77-98). Scores on a scale
from 0 to 100 were assigned to the variables: p2.input, p2.output, p2.idsub, p2.solsub,
p2.intsub, p2.norm, p2.extre, p2flow, p2.syn, p4.input, p4.draw, p4.output, p4.idsub,
p4.solsub, p4.intsub, p4.norm, p4.extre, p4.flow, p4.syn.

These 19 observable variables have been grouped in four different ways to construct
the models for evaluation. The first group of models includes all 19 variables separately
(p2&p4). The second group of models includes only the variables related to the first
problem (p2). The third group of models includes only the variables related to the
second problem (p4). Finally, the fourth group of models comprises intermediate
variables obtained from the average of the corresponding variables in both problems
(p2+p4), as follows:

input:= (p2.input + p4.input)/2
draw:= p4.draw

output:= (p2.output + pg.output)/2
idsub:= (p2.idsub + p4.idsub)/2
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solsub:= (p2.solsub + p4.solsub)/2
intsub:= (p2.intsub + p4.intsub)/2
norm:= (p2.norm + p4.norm)/2
extre:= (p2.extre + pg.extre)/2
flow:= (p2.flow + p4.flow)/2

syn:= (p2.syn + p4.syn)/2

To assess the feasibility of conducting factor analysis on these four ways of grouping
the observable variables, the researcher performs a data adequacy analysis. For
assessing reliability, the Cronbach's alpha coefficient was utilized, and to evaluate
construct validity,a CFAwas applied to the models described in Table 3. Allcalculations

were carried out using R language, version 4.3.2.

Table 3
Conformation of the evaluated factorial models

Modelname | Factors (components) Observed variables included

pP2&p4_4c¢ Analysis p2.input, p4.input, p4.draw, p2.output, p4.output
Construction p2.idsub, p4.idsub, p2.solsub, p4.solsub,

p2.intsub, p4.intsub

Cases p2.norm, p4.norm, p2.extre, p4.extre
Representation p2.flow, p4.flow, p2.syn, p4.syn

p2&p4_5¢C Analysis p2.input, p4.input, p4.draw, p2.output, p4.output
Decomposition p2.idsub, p4.idsub
Solution p2.solsub, p4.solsub, p2.intsub, p4.intsub
Cases p2.norm, p4.norm, p2.extre, p4.extre
Representation p2.flow, p4.flow, p2.syn, p4.syn

p2_2c F1* p2.input, p2.output, p2.idsub, p2.solsub, p2.intsub
F2™ p2.norm, p2.extre, p2.flow, p2.syn

p2_4c Analysis p2.input, p2.output
Construction p2.idsub, p2.solsub, p2.intsub
Cases p2.norm, p2.extre
Representation p2.flow, p2.syn

p2_5C Analysis p2.input, p2.output
Decomposition p2.idsub
Solution p2.solsub, p2.intsub
Cases p2.norm, p2.extre
Representation p2.flow, p2.syn

p4_4c Analysis p4.input, p4.draw, p4.output
Construction p4.idsub, p4.solsub, p4.intsub
Cases p4.norm, p4.extre
Representation p4.flow, p4.syn
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Model name | Factors (components) Observed variables included
p4_5C Analysis p4.input, p4.draw, p4.output
Decomposition p4.idsub
Solution p4.solsub, p4.intsub
Cases p4.norm, p4.extre
Representation p4.flow, p4.syn
p2+p4_2C F1* input, draw, output, idsub, solsub, intsub
F2™ norm, extre, flow, syn
p2+p4_4C Analysis input, draw, output
Construction idsub, solsub, intsub
Cases norm, extre
Representation flow, syn
p2+p4_5C Analysis input, draw, output
Decomposition idsub
Solution solsub, intsub
Cases norm, extre
Representation flow, syn

Note. "General solution, "*Particular cases and representation.

To evaluate the different models, the absolute fit indices chi-square (Xz), relative chi-
square (XQ/df), RMSEA, SRMR, and the incremental fit indices TLI, CFI, NFI, and GFl
were used. The evaluation was based on the respective cut-off values recommended
by Jordan Muifos (2021) and Moss (2016), as presented in Table 4.

Table 4

Indices’ cut-off values for Confirmatory Factor Analysis

Indices
2 2
X's X /df RMSEA SRMR TLI CFlI NFI GFI
p-value
Sample size < 100 20.05 <5 <0.05 <0.09 >0.9 >0.95 >0.95 >0.89
Sample size > 100 20.05 <5 <0.05 <0.08 >0.9 >0.95 >0.95 >0.93

Note. Own elaboration based on criteria from Jordan Muifios (2021) and Moss (2016).

Results

Ofthe 88 students, 82 attempted to solve problem p2 (6 did not attempt), 76 attempted
to solve problem p4 (12 did not attempt), and 70 attempted to solve both problems.
Everyone attempts to solve at least one problem. Cronbach's Alpha for problem p2 was
0.84, for problem p4 was 0.85, and for both problems (all data) was 0.88. Anderson-
Darling test was applied to determine normality, and results showed no one observed
variable are normal.
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Kaiser-Meyer-Olkin measure was computed to assess the adequacy of the data for
conducting a factor analysis. Additionally, Bartlett's test of sphericity was employed to
determine whether there was sufficient correlation among the variables to proceed
with a factoranalysis. The scree test was also utilized to calculate the minimum number
of recommended factors. This test defined the two-component models. The results
presented in Table 5 reveal that there was a significant relationship among observable
variables within four model groupings, supporting the feasibility of conducting a CFA.

Table 5
Results of data adequacy analysis for studied model groupings

. ; Suggested amount of factors by
Model grouping KMO Bartlett's y2 df p-value
scree test
P2&p4 0.80 1012.4250 171 1.843e-119 5
Only p2 0.86 359.1103 36 6.814e-55 2
Only p4 0.78 346.5154 45 3.690e-48 3
P2+p4 0.87 465.5423 45 2.901e-71 2

For CFA, the WLSMV estimator (weighted least squares with robust standard errors
and mean- and variance-adjusted test statistics) was used, following Brown's (2006)
recommendations for ordinal, non-normal observable variables.

Corresponding indices were calculated for all models. Table 6 displays the calculated
indices. All models achieve good values for incremental fit indices. However, models
p2&p4_4¢c and p2&p4_5c fail in all absolute fit indices. Models p2_2c and p2+p4_2c do
not successfully meet all absolute fit indices. For models p2_5c, p4_5c, and p2+p4_5c,
all directly based on operationalization in Table 1, it was impossible to compute
standard errors in CFA. Since standard errors represent how closely the model's
parameter estimates approximate the true population parameters (Brown, 2006), all
models with 5 components (factors) must be discarded.
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Table 6

Results from the CFA conducted

Model X2 df | p-value | x¥df | RMSEA | SRMR TLI CFI NFI GFI
P28&p4_4C 174913 | 146 <0.001" 11.080" 0.355" 0.366" 0.951 0.959 0.955 0.957
p2&p4_5¢ 1713.21 | 142 <0.001" 12,064 0357 0.362 0.951 0.959 0.956 0.958
p2_2¢c 44910 | 26 0.012" 1727 0.095" 0.093" 0.997 0.998 0.995 0.995
p2_4c 17725 | 21 0.666 0.844 0.000 0.057 1.000 1.000 0.008 0.098
p2_5c"" 17301 | 17 0.434 1.018 0.015 0.057 1.000 1.000 0.998 0.998
P4-4¢C 31441 | 29 0.345 1.084 0.034 0.071 1.000 1.000 0.996 0.997
p4_5C” 27218 | 25 0.345 1.089 0.034 0.069 1.000 1.000 0.997 0.997
p2+p4._2C 47184 | 34 0.066 1.388 0.067" 0.064 0.998 0.098 0.993 0.995
p2+p4_4c 17630 | 29 0.951 0.608 0.000 0.041 1.000 1.000 0.998 0.998
p2+p4_5C** 16.014 | 25 0.914 0.641 0.000 0.040 1.000 1.000 0.998 0.998
Note. ‘Does not meet according to cut-off values in Table 4.
“*Could not compute standard errors.
Only last three models with 4 components (factors) has very good psychometric
properties. They are very similar to operationalization in Table 1, but in these models,
decomposition-related observed variables (p2.idsub and p4.idsub) are placed together
with algorithm-construction-related variables (p2.solsub, p2.intsub, p4.solsub and
p4.intsub) inside the same factor. The factor loadings of these three models are shown
in Table 7.
Table 7
Factor loadings of observed variables in viable four-component models
Component (factor) Variable p2_4c p4_4c Variable p2+p4_4c
Problem analysis (requires abstraction): p2.input 0.67
: input 0.67
Identify just-needed inputs and outputs. | P4input 071
Make a useful graphic or diagram. p4draw 027 draw 044
p2.output 0.85
output 0.88
p4.output 0.85
Construction of a correct algorithm that p2.idsub 0.94
, idsub 0.93
solves the problem: p4.idsub 0.95
Identify the sub-problems that compose | p2.solsub 0.93
. . solsub 0.94
the problem (also requires abstraction). | p4.solsub 0.94
Implement a solution to the identified
sub-problems.
p2.intsub 0.98
Integrate the different partial solutions to intsub 0.94
solve the complete problem.
p4.intsub 0.01
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Component (factor) Variable p2_4c p4_4c Variable p2+p4_4cC
Identification of algorithm's input cases: p2.norm 0.88
norm 0.89
Identify normal cases p4.norm 0.98
2.ext 0.61
Identify special or extreme cases p=exTe extre 0.69
p4.extre 0.08
Formal representation: p2.flow 0.85
flow 0.86
Represent the execution flow. p4flow 0.85
2. 0.98
Use appropriate symbology and p2syn ° syn 0.89
syntactic rules. P4.syn 1.00

Figure 2 displays the structural equation modelling (SEM) diagram for the p2+p4_4c
model, depicting factor loadings, residuals, and covariances between factors.
Notably, only one-factor loading is relatively weak and pertains to the variable “draw.”

Conversely, all other factor loadings exhibit reasonably high values.

Figure 2

SEM diagram for validated model p2+p4_4c with four components for AT
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Discussion and conclusion

Grading consistency can be challenging, but rubrics serve as a standard scoring tool
to reduce inconsistencies and assess students' work more efficiently and transparently
(Chowdhury, 2019). Rubrics are crucial for evaluating complex cognitive skills like AT.
Although analytic rubrics can slow down the scoring process because they require
examining multiple skills individually (Mertler, 2001), their detailed analysis is valuable
for understanding and developing AT (Lehmann, 2023).

Constructing reliable open-ended problems to assess AT is challenging due to the
relation between problem complexity and students' prior experience. Thus, several
considerations are essential: using a standard complexity metric for algorithms (Kayam
et al,, 2016), employing a general rubric for assessing CT activities (Otero Avila et al,
2019), and adapting problem complexity to students' levels (Bubica & Boljat, 2021).

The lack of consensus on the differences between CT and AT hinders the development
of a standard rubric for AT. For instance, Bubica and Boljat's (2021) and Ortega Ruipérez
and Asensio Brouard's (2021) interpretations of CT align with Stephens and Kadijevich's
(2020) interpretation of AT. These diverse interpretations complicate the validation of
their operational definitions.

Despite these difficulties, the design, construction, and construct validation of an
assessment rubric for AT represent a valuable effort. Evaluating CT (Poulakis & Politis,
2021) and AT (Stephens & Kadijevich, 2020) remains an urgent concern for educational
researchers. Therefore, any endeavor to advance towards a comprehensive operational
definition of AT with both content and construct validity must be greatly appreciated.

In this study, the CFA conducted on undergraduate students (aged 17-33) led to
an operational definition for AT composed of four components: Problem analysis,
algorithm construction, input cases identification, and algorithm representation (as
shown in Table 7). This result is confirmed by the good psychometric properties of the
three four-factor models, with the two problems considered separately, p2_4c and
p4_4c, and with the averaged results from both problems, p2+p4_4c (see Table 6).

These results provide more detail than the two-factor model (problem representation
and problem-solving) by Ortega Ruipéerez and Asensio Brouard (2021) for adolescents
and the unifactorial model by Lafuente Martinez et al. (2022) for adults. However,
comparability with Bubica and Boljat (2021) and Sung (2022) is limited, as both focus
on children, and their models' factor loadings and psychometric properties are
unsatisfactory. This may be due to children's ongoing cognitive development, as Sung
(2022) notes. Indeed, higher-order thinking skills, such as complex problem-solving,
develop as children transition to adolescence (Creiff et al,, 2015).

However, there are significant limitations to consider. The sample size of 88 subjects
is relatively small, potentially limiting the generalizability of the results. Moreover,
the use of convenience sampling introduces bias, making it unclear if the sample
represents all undergraduate students. These limitations underscore the need for
cautious interpretation and highlight the necessity for future studies with larger, more
diverse samples to validate these findings.

Furthermore, Navas-Lopez's (2021) operational definition for AT lacks complete
construct validation, particularly regarding the “running” component (see Table
1). Future research should address this by employing larger samples and using
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a comprehensive instrument (including a broader rubric) that evaluates a range of
problems, akin to p2 and p4, for grading the initial 10 variables, alongside proposed
algorithms for the run and err variables (see Table 2).

In conclusion, while this study advances toward a detailed operational definition of AT,
the sample size and sampling method constraints must be acknowledged. Continued
research is crucial to strengthen the reliability and applicability of these findings,
thereby facilitating the development of robust assessment tools for AT.
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