

Población y Salud en Mesoamérica

ISSN: 1659-0201
revista.ccp@ucr.ac.cr
Universidad de Costa Rica

Costa Rica

Consiglio, Ezequiel; Freytes, Carlos; Facal, Leandro; Dus Santos, María Josè; Radgtky Caffera, Magdalena; Mozgovoj, Marina; Robledo, Iris Celeste; Pilloff, Marcela; Fernández Souto, Adriana; Pedrosa, Juan Seroprevalencia de anticuerpos contra SARS-CoV-2 entre adultos de un municipio del conurbano bonaerense, República Argentina Población y Salud en Mesoamérica, vol. 21, núm. 1, 2023, Julio-Diciembre, pp. 1-16 Universidad de Costa Rica San José, Costa Rica

DOI: https://doi.org/10.15517/psm.v21i1.53436

Disponible en: https://www.redalyc.org/articulo.oa?id=44675503001

- Número completo
- Más información del artículo
- Página de la revista en redalyc.org

Sistema de Información Científica Redalyc

Red de Revistas Científicas de América Latina y el Caribe, España y Portugal Proyecto académico sin fines de lucro, desarrollado bajo la iniciativa de acceso

Seroprevalencia de anticuerpos contra SARS-CoV-2 entre adultos de un municipio del conurbano bonaerense, República Argentina

Ezequiel Consiglio, Carlos Freytes, Leandro Facal, María José Dus Santos, Magdalena Ragatky Caffera, Marina Mozgovoj, Iris Celeste Robledo, Marcela Pilloff, Adriana Fernández Souto y Juan Pedrosa

Cómo citar este artículo:

Consiglio, E., Freytes, C., Facal, L., Dus Santos, M. J., Ragatky Caffera, M., Mozgovoj, M., Robledo, I. C., Pilloff, M., Fernández Souto, A. y Pedrosa, J. (2023). Seroprevalencia de anticuerpos contra SARS-CoV-2 entre adultos de un municipio del conurbano bonaerense, República Argentina. *Población y Salud en Mesoamérica, 21*(1). https://doi.org/10.15517/psm.v21i1.53436

ISSN-1659-0201 http://ccp.ucr.ac.cr/revista/ Revista electrónica semestral <u>Centro Centroamericano de Población</u> Universidad de Costa Rica

Seroprevalencia de anticuerpos contra SARS-CoV-2 entre adultos de un municipio del conurbano bonaerense, República Argentina

Seroprevalence of antibodies against SARS-Cov-2 among adults from a municipality in the Buenos Aires suburbs, República Argentina

Ezequiel Consiglio¹, Carlos Freytes², Leandro Facal³, María José Dus Santos⁴, Magdalena Radgtky Caffera⁵, Marina Mozgovoj⁶, Iris Celeste Robledo⁷, Marcela Pilloff ⁸, Adriana Fernández Souto⁹, Juan Pedrosa¹⁰

Resumen

Objetivo: determinar la seroprevalencia de anticuerpos contra SARS-CoV-2. **Metodología:** para ello, entre el 21 de noviembre y el 12 de diciembre del año 2020, se desarrolló un estudio transversal en 1182 muestras de residentes de un municipio bonaerense en la Provincia de Buenos Aires, Argentina. Se midió IgG por ELISA en muestras obtenidas vía digitopunción. **Resultados:** la prevalencia general fue del 12,2 % (n = 144; IC95 %: 10,3 – 14,0) con un cociente 1:3,8 entre la incidencia acumulada y la observación en nuestro estudio; en mujeres fue del 13,0 % (IC95 %: 10,2 – 15,7) y en hombres, del 10,5 % (IC95 %: 7,6 – 13,3) (p = 0.21). Las prevalencias en grupos etarios fueron las siguientes: 18 a 30 años, del 17,8 % (IC95 %: 12,0 – 23,6); 31 a 60 años, del 12,2 % (IC95 %: 9,3 – 15,1) y 61 años o más, del 9,9 % (IC95 %: 6.9 - 13.9) (p = 0.02). Las prevalencias según los terciles socioeconómicos (por Necesidades Básicas Insatisfechas) fueron para el Tercil I (mejor tercil): 7,7 % (IC95 %: 4,7 – 10,7); el Tercil II: 12.5 % (IC95 %: 8,7 – 16,4); y el Tercil III: 15,2 % (IC95 %: 11,6 – 18,8) (p = 0.002). **Conclusiones:** también hubo diferencias entre las localidades de dicho municipio y entre variables clínicas autorrefenciadas. Se detectaron 12 muestras positivas para IgM: el 1 % del total y el 8,3 % respecto de los casos IgG-positivos. Los estudios de seroprevalencia resultan útiles y podrían contribuir a modelizaciones matemáticas más ajustadas.

Palabras clave: COVID-19, seroprevalencia, estudio transversal.

Abstract

Objective: determine the prevalence of anti-bodies against SARS-CoV-2. **Method:** between November twenty-one and December twelve of two thousand and twenty year, a cross-sectional study was carried out in 1182 samples from residents of a Buenos Aires town in the Province of Buenos Aires, Argentina. IgG was measured by ELISA in samples obtained by acupressure. **Results:** the global prevalence was 12.2 % (n = 144; 95 % Cl: 10.3 - 14.0) with a ratio of 1: 3.8, between cumulative incidence and observational values. Prevalence in women and men were 13.0 % (95 % Cl: 10.2 - 15.7) and 10.5 % (95 % Cl: 7.6 - 13.3), respectively (p = 0.21). By age, the observed values were: 17.8 % (95 % Cl: 12.0 - 23.6) in 18 and 30 years old group; 12.2 % (95 % Cl: 9.3 - 15.1) in 31 to 60 years old group, 9.9 % (95 % Cl: 6.9 - 13.9) in people over 61 years old (p = 0.02). According the socioeconomic tertiles (for Unsatisfied Basic Needs) the prevalence values were 7.7 % (95 % Cl: 4.7 - 10.7) for Tertile I (best tertile), 12.5 % (95 % Cl: 8.7 - 16.4) for Tertile II, and 15.2 % (95 % Cl: 11.6 - 18.8) for Tertile III (p = 0.002). **Conclusion:** there were also differences between the neighbourhoods and between self-reported clinical

 $^{^1\,} Universidad\ Nacional\ de\ Hurlingham,\ Provincia\ de\ Buenos\ Aires,\ ARGENTINA,\ ezequiel. consiglio@unahur.edu.ar$

² Universidad Nacional de Hurlingham, Provincia de Buenos Aires, ARGENTINA, carlos.freytes@unahur.edu.ar

³ Universidad Nacional de Hurlingham, Provincia de Buenos Aires, ARGENTINA, leandro.facal@unahur.edu.ar

⁴ Universidad Nacional de Hurlingham, Provincia de Buenos Aires, ARGENTINA, maria.dussantos@unahur.edu.ar

⁵ Municipio de Hurlingham, Provincia de Buenos Aires, ARGENTINA, maquirc@gmial.com

⁶ Universidad Nacional de Hurlingham, Provincia de Buenos Aires, ARGENTINA, marina.mozgovoj@unahur.edu.ar

⁷ Municipio de Hurlingham, Provincia de Buenos Aires, ARGENTINA, robledoiris@hotmail.com

⁸ Universidad Nacional de Hurlingham, Provincia de Buenos Aires, ARGENTINA, marcela.pilloff@unahur.edu.ar

⁹ Universidad Nacional de Hurlingham, Provincia de Buenos Aires, ARGENTINA, adriana.fernandez.souto@unahur.edu.ar

¹⁰ Universidad Nacional de Hurlingham, Provincia de Buenos Aires, ARGENTINA, juan.pedrosa@unahur.edu.ar

variables. Specific IgM antibodies were detected in 12 samples, which represented 1% of the total. Seroprevalence studies provide useful information that can be apllied to fit modeling.

Keywords: COVID-19, seropravelence, cross sectional study.

Recibido: 13 dic, 2022 | Corregido: 10 may, 2023 | Aceptado: 15 may, 2023

1. Introducción

El 11 de marzo de 2020, la Organización Mundial de la Salud (OMS) caracterizó como pandémica la circulación de una nueva cepa viral de la familia *Coronoviridae*, el SARS-CoV-2 (*Severe Acute Respiratory Syndrome Coronavirus 2*), agente responsable de COVID-19 (*coronavirus disease* 2019; Huang et al., 2020; Organización Panamericana de la Salud [OPS], 2020).

COVID-19 se trasmite por vía aerógena y por otras vías, y su importancia epidemiológica está discutida (Gao et al., 2021; Sanyal, 2020). Clínicamente se propuso una clasificación inicial para casos severos y no severos que fue desagregándose en leves, moderados, severos y críticos; luego, se admitió la categoría de asintomático (Guan et al., 2020). Se han postulado proporciones muy variables de estos casos asintomáticos, debido al método, la población o el diseño con que se evaluó su presencia (Espejo et al., 2020; Gao et al., 2021; Oran y Topol, 2020).

La capacidad de transmisión de los casos asintomáticos, desde el punto de vista epidemiológico, y la posibilidad de que tengan repercusión clínica aumentaron el interés por ellos. El desarrollo de técnicas poco invasivas para registrar la disponibilidad de anticuerpos IgM e IgG contra SARS-CoV-2 permite establecer el contacto previo con el virus, favoreciendo la obtención y el análisis de muestras a gran escala en estudios de seroprevalencia de base poblacional (Havers et al., 2020; Pollán et al., 2020).

El objetivo principal de este estudio fue establecer la prevalencia de infección por SARS-CoV-2 en un marco poblacional amplio y considerando algunas subpoblaciones.

2. Referente teórico

La preocupación por diagnosticar casos de infección asintomática por SARS-CoV-2 mediante la detección de anticuerpos IgG se vio estimulada por la existencia de técnicas poco invasivas, tal como oportunamente se mencionó, y por la necesidad de establecer el impacto real de la pandemia.

Si bien, se plantearon algunas características potencialmente limitantes de los estudios de seroprevalencia a causa del perfil de fiabilidad de los métodos y la prevalencia real existente entre la población estudiada (Biggeri et al., 2020), estos estudios se fueron desarrollando de manera amplia, identificándose, al menos, más de 240 de ellos en un lapso realmente breve (Rostami et al., 2021a).

Además del conocimiento de la totalidad del impacto de la pandemia, y a pesar de las limitaciones de diagnóstico (Moradi et al., 2020), se ha descrito la importancia de monitorear las intervenciones, por ejemplo, los efectos del cierre de los espacios de habitual circulación de la sociedad (Mattern et al., 2020). Incluso, han surgido estudios enfocados en subgrupos poblacionales, como trabajadores de la salud, o en el comportamiento de la respuesta inmune a la infección (Pérez-Olmeda et al., 2022) y su asociación con factores medioambientales sociales, como el nivel socioeconómico, o naturales, como el clima y la geografía (Rostami et al., 2021), que quizás expliquen las diferencias en los valores de prevalencia.

3. Materiales y métodos

3.1 Enfoque y población en estudio

Se realizó un estudio transversal, de base poblacional, con personas mayores de 18 años, residentes del municipio Hurlingham, ubicado en el segundo cordón del conurbano bonaerense e integrante del Área Metropolitana Buenos Aires (AMBA; capital de la República Argentina, con 40 municipios adyacentes repartidos en tres áreas o cordones, el primero de mayor proximidad a la capital).

La muestra se obtuvo mediante un procedimiento polietápico estratificado por conglomerados. La estratificación se basó en el porcentaje de hogares con Necesidades Básicas Insatisfechas (NBI) a nivel de radio censal, según los últimos datos disponibles correspondientes al Censo Nacional de 2010 (población general de 181 241 habitantes; Instituto Nacional de Estadísticas y Censos [INDEC], 2015). Para un cierto intervalo de confianza, la estimación del muestreo por conglomerados requirió ajustar el tamaño de la muestra, por los efectos del diseño dada la posible correlación intraclase entre unidades pertenecientes al mismo conglomerado, utilizando los siguientes parámetros: nivel de precisión de la estimación +/- 3 %; tasa de prevalencia estimada 35 %; efecto de diseño estimado 2; 10 casos por punto muestral. Así, resultó una cantidad de 1300 casos distribuidos en 130 puntos muestrales (Naciones Unidas, 2009; Sullivan et al., 2009).

En cuanto al reclutamiento, se dividió al municipio en cinco zonas que incluían tres áreas de relevamiento cada una, en función de la contigüidad de los radios censales seleccionados en la muestra. Dentro de cada radio, se identificaron *manzanas* (espacios delimitados por calles en todos sus lados) correspondientes a los puntos muestrales y en cada una se buscó realizar 10 testeos. La selección del domicilio de inicio fue aleatoria. En caso de falta de respuesta, se intentó incluir un hogar hasta dos veces más. Una vez incluido un hogar, se saltearon los dos domicilios siguientes. Si se completaba la vuelta sin obtener las muestras previstas, se acudió a una manzana lindera respetando el mismo radio censal.

Por último, en cada domicilio se aleatorizó un adulto sobre la cantidad total de mayores de 18 años (criterio de inclusión) a partir de un ordenamiento etario descendente; si la persona no estaba, se pasaba a la siguiente, y si la asignación correspondía a la de menor edad y estaba ausente, se pasaba directamente a la de mayor edad.

3.2 Técnicas de recolección

Se consideró caso al resultado de anticuerpos IgG-positivo e IgM-positivo mediante una técnica cualitativa y semicuantitativa de ensayo inmunoenzimático (ELISA), heterogéneo, no competitivo (SEROKIT COVID AR IgG ® y COVID AR IgM ®), en suero o plasma.

El método fue desarrollado y validado por la Fundación Instituto Leloir, CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas, de la República Argentina), Universidad Nacional de San Martín y Laboratorio Lemos S.R.L, de la República Argentina, y aprobado por la ANMAT (Administración Nacional de Medicamentos, Alimentos y Tecnología Médica), con una sensibilidad estimada del 75 % a los 7 días desde el inicio de síntomas y del 95 % desde las 3 semanas, y una especificidad del 100 % (República Argentina, 2020).

El ensayo se llevó a cabo según las recomendaciones del fabricante. Las diluciones de las muestras se sembraron en los pocillos de las placas sensibilizadas con el antígeno y se incubaron a 37 °C durante una hora. Luego de lavar las placas, se agregó una dilución de un anticuerpo monoclonal anti-IgG humana conjugado con peroxidasa. A continuación, se incubó a 37 °C durante 30 minutos más, se realizaron seis lavados y se añadió el sustrato cromogénico que se incubó 30 minutos a 37 °C en la oscuridad. Esta incubación da como resultado la aparición de un color azul cuya intensidad es proporcional a la concentración y la afinidad de los anticuerpos IgG contra el virus SARS-CoV-2 presentes en la muestra. La reacción enzimática se detuvo al agregar ácido sulfúrico y se midió la absorbancia a 562 nm.

Los grupos de trabajo de campo fueron coordinados con un profesional de enfermería y una promotora o un promotor de la salud del municipio, más estudiantes avanzados de Enfermería de la Universidad Nacional de Hurlingham (UNAHUR), encargados de tareas logísticas. El estudio se efectuó durante días laborables consecutivos, excepto por inclemencias climáticas, en horario diurno matinal. La capacitación fue en la UNAHUR. Después de obtener el consentimiento informado, se extrajo 1 ml de sangre por digitopunción, lo cual se almacenó en viales refrigerados entre 2 °C y 8 °C. Se procedió a los análisis dentro de las 72 h, en la Unidad COVID de la UNAHUR, creada con ocasión de la pandemia e incorporada a la red de laboratorios para diagnóstico de coronavirus de la Provincia de Buenos Aires. El proyecto respetó las normas del Acta de Helsinki y fue aprobado por el Comité Universitario de Bioética de la Universidad Nacional de Hurlingham.

3.3 Procesamiento y análisis

Se aplicó una encuesta a la misma persona de quien se recogió la muestra, con la cual se recolectaron datos de los otros residentes del hogar. En el caso de adultos, se indagó el género autopercibido (femenino/masculino/otro), la edad (en años), si salían a trabajar, si convivían con algún trabajador del sector salud, si había desempleados o jubilados. Respecto a los menores, además del género y la edad, se preguntó sobre su inscripción escolar y nivel, si continuaban o no con actividades escolares durante la pandemia, y si contaban con dispositivos digitales. Se evaluó si el hogar recibía alguna ayuda estatal.

Asimismo, en referencia a los aspectos clínico-epidemiológicos se consultaron los antecedentes de enfermedad por COVID-19 en algún miembro del hogar y si hubo personas testeadas previamente (RTqPCR [Real Time Polymerse Chain Reaction] para SARS-CoV-2) y su resultado; también, el padecimiento de síntomas desde principios de marzo de 2020 y al momento de la encuesta, específicamente, temperatura (>37,8 °C); tos seca; cansancio, molestias y/o dolores musculares; dolor de garganta; dificultad para respirar o falta de aire o incapacidad para hablar o moverse; dolor de cabeza; pérdida del olfato; pérdida del gusto; erupciones; dolor abdominal o diarrea; conjuntivitis. En caso de constatación sintomática, el sistema local de salud intervenía basándose en un protocolo asistencial.

Las muestras obtenidas se testearon para IgG. Las que resultaron positivas fueron sometidas para detección de IgM. Los resultados se comunicaron al sistema de salud local que informó el resultado a las personas examinadas.

Se estimaron las prevalencias generales por género, por grupos etarios, por localidad y por áreas, de acuerdo con niveles de NBI (Tercil I: 2,8 % de hogares; Tercil II: 5,5 % de hogares; Tercil III: 13,8 % de hogares); y de igual forma para variables de antecedentes epidemiológicos. Las variables cuantitativas se analizaron a través de estimación de media aritmética y desvío estándar de la muestra; las variables cualitativas, mediante proporciones. Las prevalencias para todas las variables en estudio fueron calculadas con Intervalo de Confianza de 95 % (IC 95%), y con un nivel de significación de 0.05, según el estadístico de Wald. Para los análisis se utilizó el paquete estadístico STATA 16.1 (Statacorp LLC).

4. Resultados

El estudio se desarrolló entre el 21 de noviembre y el 12 de diciembre de 2020. Se obtuvieron 1182 muestras (90,9 % de las estimadas). La población analizada presentó las características que se sintetizan en la Tabla 1. Entre ellas, destacan una proporción mayoritaria de mujeres (67 %), una edad promedio de 50,2 años, una representación importante de mayores de 61 años (35,9 %) y una alta presencia de jubilados (46 %). También se observó un 8,6 % de hogares donde residía algún trabajador del sector salud y un 18,6% de hogares que recibían algún tipo de subsidio estatal.

La seroprevalencia general, calculada por la presencia de 144 casos de IgG positiva, fue del 12,2 % (IC 95% [10.3, 14.0]). Entre las mujeres, fue del 13,0 % (IC 95% [10.2, 15.7]) y entre los hombres, del 10,5 % (IC 95% [7.6, 13.3]), sin evidencia de diferencias significativas (p = 0.21). Las prevalencias por grupos etarios fueron las siguientes: 18 a 30 años, 17,8 % (IC 95% [12.0, 23.6]); 31 a 60 años, 12,2 % (IC 95% [9.3, 15.1]); 61 años o más, 9,9 % (IC 95% [6.9, 13.9]). Entre el grupo más joven y el grupo de 61 años o más se observó una diferencia significativa (p = 0.02).

Asimismo, se estimaron las prevalencias para las tres localidades del municipio; en Hurlingham hubo un 8,6 % (IC 95% [5.6, 11.6]); en Villa Santos Tesei, un 14,1 % (IC 95% [10.1, 18.0]); y en William Morris, un 14,4 % (IC 95% [9.8, 17.0]); las diferencias entre la primera localidad y las demás fueron significativas (p

= 0,03). Por último, las prevalencias según los terciles socioeconómicos fueron para el Tercil I del 7,7 % (IC 95% [4.7, 10.7]); Tercil II, del 12,5 % (IC 95% [8.7, 16.4]); Tercil III, del 15,2 % (IC 95% [11.6, 18.8]), con diferencias significativas entre los terciles I y III (p = 0,002); ver Tabla 2. No resaltaron diferencias en cuanto a hogares donde vivían personal de salud o personas que salían a trabajar.

De los 144 casos IgG-positivos, 32 refirieron una RTqPCR previa, y de estos, 27 reportaron haber tenido síntomas (cociente 1:3,1); los antecedentes de algún residente en el hogar con síntomas y el antecedente de alguien en el hogar con enfermedad por COVID-19 fueron significativos (p = >0,0001 en todos los casos); esto se describe en la Tabla 3.

Hubo 12 muestras positivas para IgM, correspondientes al 1 % del total de la muestra y al 8,3 % respecto de casos IgG-positivos (en un solo caso fue imposible realizar debido a muestra escasa). Ocurrieron 17 fallecimientos en el período del estudio, 14 de los cuales se dieron en hogares con pruebas IgG negativas. De esos 17 casos referidos, seis se atribuyeron a COVID-19 y dos no sabían o no contestaron esta pregunta. De los seis causados por COVID-19, dos sucedieron en hogares con un testeo IgG-positivo.

5. Discusión

La prevalencia general del 12,2 % se determinó en un municipio cuya incidencia acumulada, al momento del cierre del estudio, era del 3,6 % (6936 casos sobre una población proyectada de 194 190, según el promedio para 2020 y 2021; Dirección provincial de estadísticas de la Provincia de Buenos Aires, 2016; Municipio de Hurlingham, 2020), con un cociente de casos seroprevalentes de 1:3,8 respecto de los casos diagnosticados mediante RTqPCR, y una evolución aproximada de unos 8 meses desde el primer caso; valor cercano a la mediana ajustada del 10,6 % de prevalencia en la región (Intercuartil 25 %-75 %: 3,0-46,5 %), estimada mediante un metanálisis (Bobrovitz N. et al., 2021).

Los estudios de base poblacional en la República Argentina son escasos. La prevalencia calculada en un barrio con alta vulnerabilidad social en la Ciudad Autónoma de Buenos Aires (CABA) fue del 53,4 % (IC 95% [52.8, 54.1]) para una incidencia acumulada del 5,9 %, con un cociente entre infecciones seroprevalentes e incidencia acumulada cercano a 9 inmediatamente después de un período de brote en junio de 2020 (Figar et al., 2021). En la provincia de Santa Fe, región central de Argentina, la prevalencia global fue del 8,8 % (4,8 % entre asintomáticos y 12,9 % entre oligosintomáticos) entre principios de julio y fines de noviembre del mismo año (Rodeles et al., 2021). Un reporte gubernamental, apenas anterior a nuestro trabajo, señaló un 10,1 % de prevalencia en CABA (Dirección General de Estadística y Censos, 2020).

Esta disparidad se ha evidenciado entre países de la región y, aun, dentro de ellos. En Brasil, se observaron prevalencias de IgG positivo desde un 8,3 % (IC 95% [7.2, 9.4]; Borges et al., 2020) hasta un 40,4 % (IC 95% [35.6,45.3]; Silva et al., 2020), con poco tiempo de diferencia. La misma heterogeneidad se demostró mediante un estudio en diferentes puntos de su territorio (Hallal et al., 2020). Por su parte, en Nueva León, México, la seroprevalencia fue del 27,1 % (IC 95% [25.8, 28.4]), con valores ascendentes

entre agosto y noviembre de 2020: 11,9 % y 31,9 %, respectivamente. Mientras tanto, en República Dominicana, se informó un 5,4 % en los inicios de la diseminación del virus (Paulino-Ramirez et al., 2020); y en Lima, por métodos combinados, alcanzó un 25,2 % (IC 95% [22.5, 28.2]; Reyes-Vega et al., 2021).

Estas diferencias, estimamos, pueden deberse a las características de las poblaciones incluidas, a condiciones epidemiológicas propias o al momento en la evolución de la pandemia, fenómenos ya descritos con la gripe española, ligados a diferencias en las medidas de control (Sattenspiel, 2011; Zhang et al., 2010), características demográficas (Chandra et al., 2013; Nunes et al., 2018) o, en buena proporción, sin motivos aparentes (Chowell et al., 2014).

El estudio tuvo una representación mayor de mujeres (67 % versus 51,8 % en el censo 2010; INDEC, 2015), lo cual indica su mayor presencia en domicilio durante el horario del estudio; aunque no se observaron diferencias en la prevalencia por géneros. Esto mismo podría aplicarse a la alta proporción de mayores de 61 años (por datos censales, constituyen un 21,1 %); aun así, la mayor seroprevalencia se observó entre los más jóvenes (18-30 años), similar a la incidencia acumulada en el país (Gobierno de la Provincia de Buenos Aires, 2020).

Las diferencias de seroprevalencia entre terciles por NBI coinciden con la vulnerabilidad manifiesta en los *barrios populares* (Dirección General de Estadística y Censos, 2020) y, de manera relativa, con otros trabajos (Borges et al., 2020; Hallal et al., 2020). La trasmisión de un agente por vía aerógena se relaciona con las características de la vivienda: el hacinamiento (condición NBI) favorece el contacto dentro del domicilio; la disponibilidad limitada de agua potable dificulta las prácticas de higiene intensificadas en pandemia (Figar et al., 2021). Un 18,6 % de nuestra muestra percibía algún tipo de ayuda económica estatal. Estos datos se inscriben en las características estructurales de Latinoamérica y el Caribe (LAC), región más desigual del planeta (Ferre, 2016).

Igualmente, cabe destacar que, si bien existe poca información sobre el impacto de la infección por SARS-CoV-2 según niveles socioeconómicos, algunas investigaciones han registrado hallazgos equivalentes a nuestro trabajo: una mayor prevalencia en las poblaciones más vulnerables socialmente (Reyes-Vega et al., 2021; Shaw et al., 2021), sobre todo, a causa del hacinamiento, que suele ser un indicador de vulnerabilidad social (Coelho et al., 2022). En ese sentido, es posible interpretar que la infección por SARS-CoV-2, la aparición de COVID-19 y un peor pronóstico de esta enfermedad emergente impactan en la expresión más dramática de los determinantes sociales de la salud, profundizando desigualdades.

Se considera que los estudios de seroprevalencia para SARS-CoV-2 pueden favorecer la observación de casos asintomáticos u oligosintomáticos, debido a ello proponemos que se pongan en marcha con prontitud a fin de detectar casos y establecer indicadores rápidos para orientar y monitorear intervenciones de base comunitaria. Esto, junto con indicadores no convencionales que han resultado eficaces (Alvarez et al., 2021), como los llamados telefónicos de alarma provenientes de áreas con casos *in situ* que revelan circulación de gérmenes, antes de ser cuantificados mediante sistemas de vigilancia epidemiológica.

Aunque se ha descrito la disminución de anticuerpos IgG a lo largo del tiempo, sigue siendo controversial tanto el momento en que esto sucede, como la cuantía del fenómeno (Post et al., 2020). Este y otros interrogantes mantienen la importancia de los estudios de seroprevalencia tal como se concluye en los metanálisis de Bobrovitzl et al. (2021) y de Rostmi et al. (2021). En especial, la presencia de reinfecciones y mutación de cepas de SARS-CoV-2 (Nguyen et al. 2022) permitirían evaluar la utilidad de este tipo de estudios en el futuro para identificar la correlación de la inmunidad con la aparición de casos y su gravedad.

6. Conclusiones

Hemos observado más casos de infecciones por SARS-CoV-2 documentados por anticuerpos IgG que casos clínicos diagnosticados por PCR objetivados mediante incidencia acumulada (3,8 %) con un cociente 3,2:1, respectivamente, lo cual ratifica la importancia de casos asintomáticos.

Las diferencias estadísticamente significativas entre poblaciones de territorios con mayor proporción de hogares con NBI dan cuenta de la injerencia de la condición de vulnerabilidad social respecto a una mayor exposición al virus SARS-CoV-2, probablemente, por un estado de hacinamiento y, en poblaciones más jóvenes, por mayor dificultad en intervenciones de autocuidado.

Este estudio tuvo una sobrerrepresentación de mujeres en contraste con los datos censales del municipio, quizás por la propia dinámica diurna de su desarrollo, hecho que debe ser tenido en cuenta en este tipo de investigaciones. No se evaluó población pediátrica, lo cual hubiese brindado un panorama más amplio de la situación. En esa línea, sería recomendable acompañar este tipo de trabajos con estudios anidados de carácter cualitativo para examinar las conductas de cuidado hacia el interior de los hogares.

Los estudios de seroprevalencia pueden favorecer el monitoreo de la evolución de pandemias o epidemias causadas por gérmenes de comportamiento similar al SARS-CoV-2, junto con indicadores no convencionales. Ejemplo de esto último son los llamados telefónicos provenientes de poblaciones en las que la aparición de casos moviliza la búsqueda de información antes de que se diagnostiquen y se incluyan en sistemas de vigilancia. Asimismo, sería provechoso analizar su aplicación en personas vacunadas.

7. Agradecimientos

Deseamos agradecer muy especialmente a la Dra. Andrea Gamarnik y a su grupo de trabajo en la Fundación Instituto Leloir, por su extraordinaria ayuda que posibilitó este estudio.

8. Referencias

- Alvarez, E., Obando, D., Crespo, S., Garcia, E., Kreplak, N., & Marsico, F. (2021). Estimating COVID-19 cases and outbreaks on-stream through phone calls. *R Soc Open Sci*, 8(3), 202312. https://doi.org/10.1098/rsos.202312
- Biggeri, A., Forni, S., & Braga, M (2020). The risk of over-diagnosis in serological testing. Implications for communications strategies. *Epidemiol Prev.*, 44(5-6 Suppl 2), 184-92. https://doi.org/10.19191/ep20.5-6.s2.117
- Bobrovitz, N., Arora, R., K., Cao, C., Boucher, E., Liu, M., Donnici, C., Yanes-Lane, M., Whelan, M., Perlman-Arrow, S., Chen, J., Rahim, H., Ilincic, N., Segal, M., Duarte, N., Van Wyk, J., Yan, T., Atmaja, A., Rocco, S., ... Cheng, M.P. (2021). Global seroprevalence of SARS-CoV-2 antibodies: A systematic review and meta-analysis. *PLoS One*, *16*(6), e0252617. https://doi.org/10.1371/journal.pone.0252617
- Borges, L. P., Martins, A.F., Melo, M.S., Oliveira MGB, Neto, J.M.R., Dósea, M.B., Cabral, B.C.M., Menezes, R.F., Santos, A.A., Matos, I.L.S., Borges, P. Ch., Santos, K. A. dos, Ribeiro, A. A., Menendez, A. I. M., Serafini, M. R., Walker, C. B., Quintans, J., Lucindo, J. A., Araújo, A., A, de S., & Souza, D. R. V. de. (2020). Seroprevalence of SARS-CoV-2 IgM and IgG antibodies in an asymptomatic population in Sergipe, Brazil. *Rev Panam Salud Publica*, 44, e108. https://doi.org/10.26633/RPSP.2020.108
- Chandra, S., Kassens-Noor, E., Kuljanin, G., & Vertalka, J (2013). A geographic analysis of population density thresholds in the influenza pandemic of 1918-19. *Int J Health Geogr*, 12(9). https://doi.org/10.1186/1476-072x-12-9
- Chowell, G., Erkoreka, A., Viboud, C., & Echeverri-Dávila, B (2014). Spatial-temporal excess mortality patterns of the 1918-1919 influenza pandemic in Spain. *BMC Infect Dis*, *5*(14), 371. https://doi.org/10.1186/1471-2334-14-371
- Coelho, L.E., Luz, P.M., Pires, D.C., Jalil, E.M., Perazzo, H., Torres, T.S., Cardoso, S.W., Peixoto, E.M., Nazer, S., Massad, E., Silveira, M.F., Barros, F.C., Vasconcelos, A.T.R., Costa, C.A.M., Amancio, R.T., Villela, D.A.M., Pereira, T., Goedert, G.T., ... Struchiner, C.J. (2022). Prevalence and predictors of anti-SARS-CoV-2 serology in a highly vulnerable population of Rio de Janeiro: A population-based serosurvey. *Lancet Reg Health Am.*, 15, 100338. doi: 10.1016/j.lana.2022.100338
- Dirección General de Estadística y Censos. (2020). *Informe de Resultados 1501 del 4 de noviembre. Encuesta de seroprevalencia de COVID-19*. https://buff.ly/3sEnVXD
- Dirección provincial de estadísticas de la Provincia de Buenos Aires. (2016). *Proyecciones de población por Municipio provincia de Buenos Aires 2010-2025*. http://www.estadistica.ec.gba.gov.ar/dpe/images/Proyecciones x municipio 2010-2025.pdf

- Espejo, A.P., Akgun, Y., Al Mana, A.F., Tjendra, Y., Millan, N.C., Gomez-Fernandez, C., & Cray, C (2020). Review of Current Advances in Serologic Testing for COVID-19. *Am J Clin Pathol*, *154*(3), 293-304. https://doi.org/10.1093/ajcp/aqaa112
- Ferre, J.C. (2016). Economic Inequalities in Latin America at the Base of Adverse Health Indicators. *Int J Health Serv*, 46(3), 501-22. https://doi.org/10.1177/0020731416653428
- Figar, S., Pagotto, V., Luna, L., Salto, J., Wagner Manslau, M., Mistchenko, A.S., Gamarnik, A., Gómez Saldaño, A.N., & González Bernaldo de Quirós, F. (2021). Severe acute respiratory syndrome coronoavirus 2 seroepidemiology study in argentinian slum. *Medicina (Buenos Aires)*, 81(2), 135-42.
- Gao, Z., Xu, Y., Sin, Ch., Wang, X., Guo, Y., Qiu, S., & Ma, K. (2021). A systematic review of asymptomatic infections with COVID-19. *Journal of Microbiology Immunology Infection*, *54*(1), 12-6. https://doi.org/10.1016/j.jmii.2020.05.001
- Gobierno de la Provincia de Buenos Aires. (2020). *Boletín Epidemiológico del 13/12/20 al 19/12/20 Semana 51*. http://www.ms.gba.gov.ar/sitios/media/files/2020/12/Bolet%C3%ADn-EPI-51.pdf
- Guan, W., Ni, Z., Hu, Y., Liang, W., Ou, Ch., He, J., Liu, L., Shan, H., Lei, Ch., Hui, D.S.C., Du, B., Li, L., Zeng, G., Yuen, K., Chen, R, Tang, Ch., Wang, T., Chen, P., ... Zhong, N. for the China Medical Treatment Expert Group for Covid-19 (2020). Clinical Characteristics of Coronavirus Disease 2019 in China. *N Engl J Med*, 382, 1708-20. https://doi.org/10.1016%2Fj.jemermed.2020.04.004
- Hallal, P.C., Hartwig, F.P., Horta, B.L., Silveira, M.F., Struchiner, C.J., Vidaletti, L.P., Neumann, N.A., Pellanda, L.C., Dellagostin, O.A., Burattini, M.N., Victora, G.D., Menezes, A.M.B., Barros, F.C., Barros, A.J.D., & Victora, C.G. (2020). SARS-CoV-2 antibody prevalence in Brazil: results from two successive nationwide serological household surveys. *Lancet Glob Health*, *8*(11), e1390-e1398. https://doi.org/10.1016/S2214-109X(20)30387-9
- Havers, F.P., Reed, C., Lim, T., Montgomery, J.M., Klena, J.D., Hall, A.J., Fry, A.M., Cannon, D.L., Chiang, C.F., Gibbons, A., Krapiunaya, I., Morales-Betoulle, M., Roguski, K., Rasheed, M.A.U., Freeman, B., Lester, S., Mills, L., Carroll, D.S., Owen, S.M., Johnson, J.A., Semenova, V., Blackmore, C., ... Thornburg, N.J. (2020). Seroprevalence of Antibodies to SARS-CoV-2 in 10 Sites in the United States. *JAMA Intern Med*, *21*. https://doi.org/10.1001/jamainternmed.2020.4130
- Huang, Ch., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y., Zhang, L., Fan, G., Xu, J., Gu, X., Cheng, Z., Yu, T., Xia, J., Wei, Y., Wu, W., Xie, X., Yin, W., Li, H., ... Cao, B. (2020). Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. *Lancet*, *395*(10223), 497–506. https://doi.org/10.1016/s0140-6736(20)30183-5
- Instituto Nacional de Estadísticas y Censos. (2015). *Censo Nacional de Población, Hogares y Viviendas 2010*. https://redatam.indec.gob.ar/argbin/RpWebEngine.exe/PortalAction?BASE=CPV2010B
- Mattern, J., Vauloup-Fellous, Ch., Zakaria, H., Benachi, A., Carrara, J., Letourneau, A., Bourgeois-Nicolaos, N., De Luca, D., Doucet-Populaire, F., & Vivantil, A.J. (2020). Post lockdown COVID-19 seroprevalence and circulation at the time of delivery, France. *PLoS ONE*, *15*(10), e0240782, https://doi.org/10.1371/journal.pone.0240782

- Moradi, G., Mostafavi, E., & Haghdoost, A.A. (2020). The Urgency of Conducting Serological Studies for COVID-19. J Res Health Sci, 20(2), e00479. https://doi.org/10.34172%2Fjrhs.2020.14
- Municipio de Hurlingham. (2020). *Parte coronavirus 14/12/2020*. https://www.hurlingham.gob.ar/covid19-informes/parte-coronavirus-09-12-2020-2/
- Naciones Unidas. (2009). *Diseño de muestras para encuestas en hogares. Directrices prácticas* (Serie F N° 98). https://doi.org/10.18356/dbb0403c-es
- Nguyen, N.N., Houhamdi, L., Hoang, V.T., Delerce, J., Delorme, L., Colson, P., Brouqui, P., Fournier, P.E., Raoult, D., & Gautret, P. (2022). SARS-CoV-2 reinfection and COVID-19 severity. *Emerg Microbes Infect*, 11(1), 894-901. https://doi.org/10.1080%2F22221751.2022.2052358
- Nunes, B., Silva, S., Rodrigues, A., Roquette, R., Batista, I., & Rebelo-de-Andrade, H. (2018). The 1918-1919 Influenza Pandemic in Portugal: A Regional Analysis of Death Impact. *Am J Epidemiol*, *187*(12), 2541-49. https://doi.org/10.1093%2Faje%2Fkwy164
- Oran, D.P. & Topol, E.J. (2020). Prevalence of Asymptomatic SARS-CoV-2 Infection. A Narrative Review. *Ann Intern Med*, *173*(5), 362-367. https://doi.org/10.7326/m20-3012
- Organización Panamericana de la Salud. (2020, 11 de marzo). La OMS caracteriza a COVID-19 como una pandemia. *Organización Panamericana de la Salud-Noticias*. https://www.paho.org/es/noticias/11-3-2020-oms-caracteriza-covid-19-como-pandemia
- Paulino-Ramirez, R., Báez, A. A., Vallejo Degaudenzi, A., & Tapia, L. (2020), Seroprevalence of Specific Antibodies against SARS-CoV-2 from Hotspot Communities in the Dominican Republic. *Am. J. Trop. Med. Hyg*, 103(6), 2343–6. https://doi.org/10.4269/ajtmh.20-0907
- Pérez-Olmeda, M., Saugar, J.M., Fernández-García, A., Pérez-Gómez, B., Pollán, M., Avellón, A., Pastor-Barriuso, R., Fernández-de Larrea, N., Martín, M., Cruz, I., Sanmartín, J.L., Fedele, G., Paniagua, J.L., Muñoz-Montalvo, J.F., Blanco, F., Yotti, R., Oteo-Iglesias, J., & ENE-COVID Study Group. (2022). Evolution of antibodies against SARS-CoV-2 over seven months: Experience of the nationwide seroprevalence ENE-COVID study in Spain. *J Clin Virol.*, 149, 105130. https://doi.org/10.1016/j.jcv.2022.105130
- Pollán, M., Pérez-Gómez, B., Pastor-Barriuso, R., Oteo, J., Hernán, M.A., Pérez-Olmeda, M., Sanmartín, J.L., Fernández-García, A., Cruz, I., Fernández de Larrea, N., Molina, M., Rodríguez-Cabrera, F., Martín, M., Merino-Amador, P., León Paniagua, J., Muñoz-Montalvo, J.F., Blanco, F., Yotti, R., & ENE-COVID Study Group. (2020). Prevalence of SARS-CoV-2 in Spain (ENE-COVID): a nationwide, population-based seroepidemiological study. *Lancet*, 396(20), 535-44. https://doi.org/10.1016/s0140-6736(20)31483-5
- Post, N., Eddy, D., Huntley, C., van Schalkwyk, M.C.I., Shrotri, M., Leeman, D., Rigby, S., Williams. S.V., Bermingham, W.H., Kellam, P., Maher, J., Shields, A.M., Amirthalingam, G., Peacock, S.J., & Ismail, S.A. (2020). Antibody response to SARS-CoV-2 infection in humans: A systematic review. *PLoS One*, *15*(12), e0244126. https://doi.org/10.1371/journal.pone.0244126
- República Argentina. (2020, 08 de noviembre). Reactivos COVID-19. *Plan ANMAT Federal*. https://www.argentina.gob.ar/noticias/reactivos-covid-19

- Reyes-Vega, M.F., Soto-Cabezas, M.G., Cárdenas, F., Martel, K.S., Valle, A., Valverde, J., Vidal-Anzardo, M., Falcón, M.E., Munayco, C.V. & Peru COVID-19 Working Group. (2021). SARS-CoV-2 prevalence associated to low socioeconomic status and overcrowding in an LMIC megacity: A population-based seroepidemiological survey in Lima, Peru. *EClinicalMedicine*, *34*, 100801. https://doi.org/10.1016/j.eclinm.2021.100801
- Rodeles, L.M., Peverengo, L.M., Benítez, R., Benzaquen, N., Serravalle, P., Long, A.K., Ferreira, V., Benitez, A.D., Zunino, L., Lizarraga, C., & Vicco, M.H. (2021). Seroprevalence of anti-SARS-CoV-2 IgG in asymptomatic and pauci-symptomatic people over a 5 month survey in Argentina. *Rev Panam Salud Publica*, 45, e66. https://doi.org/10.26633/RPSP.2021.66
- Rostami, A., Sepidarkish, M., Leeflang, M.M.G., Riahi, S.M., Nourollahpour Shiadeh, M., Esfandyari, S., Mokdad, A.H., Hotez, P.J., & Gasser, R.B. (2021). SARS-CoV-2 seroprevalence worldwide: a systematic review and meta-analysis. *Clinical Microbiology and Infection*, *27*(3), 331-340. https://doi.org/10.1016/j.cmi.2020.10.020
- Rostami, A., Sepidarkish, M., Fazlzadeh, A., Mokdad, A.H., Sattarnezhad, A., Esfandyari, S., Riahi, S.M., Mollalo, A., Dooki, M.E., Bayani, M., Nazemipour, M., Mansournia, M.A., Hotez, P.J., & Gasser, R.B. (2021a). Update on SARS-CoV-2 seroprevalence: regional and worldwide. *Clin Microbiol Infect*, *27*(12), 1762-71. https://doi.org/10.1016/j.cmi.2021.09.019
- Sanyal, S. (2020). How SARS-CoV-2 (COVID-19) spreads within infected hosts what we know so far. Emerging Topics in Life Sciences, 4, 383–90. https://doi.org/10.1042/ETLS20200165
- Sattenspiel, L. (2011). Regional patterns of mortality during the 1918 influenza pandemic in Newfoundland. *Vaccine*, *29*(Suppl. 2), B33-7. https://doi.org/10.1042/ETLS20200165
- Shaw, J.A., Meiring, M., Cummins, T., Chegou, N.N., Claassen, C., Du Plessis, N., Flinn, M., Hiemstra, A., Kleynhans, L., Leukes, V., Loxton, A.G., MacDonald, C., Mtala, N., Reuter, H., Simon, D., Stanley, K., Tromp, G., Preiser, W., Malherbe, S.T., & Walzl, G. (2021). Higher SARS-CoV-2 seroprevalence in workers with lower socioeconomic status in Cape Town, South Africa. *PLoS One*, *16*(2), e0247852. https://doi.org/10.1371/journal.pone.0247852
- Silva, A.A.M.D., Lima-Neto, L.G., Azevedo, C.M.P.E.S, Costa, L.M.M.D., Bragança, M.L.B.M., Barros Filho, A.K.D., Wittlin, B.B., Souza, B.F., Oliveira, B.L.C.A., Carvalho, C.A., Thomaz, E.B.A.F, Simões-Neto, E.A., Leite Júnior, J.F., Cosme, L.M.S.S., Campos, M.A.G., Queiroz, R.C.S., Costa, S.S., Carvalho, V.A., Simões, V.M.F., Alves, M.T.S.S.B.E., & Santos, A.M.D. (2020). Population-based seroprevalence of SARS-CoV-2 and the herd immunity threshold in Maranhão. *Rev Saude Publica*, *54*, 131. https://doi.org/10.11606/s1518-8787.2020054003278
- Silva, A.P., Aguirre, M.F., Ballejo, C., Marro, M.J., Gamarnik, A., Vargas, G., Pifano, M., Varela, T., Garcia, E., Lawrynowicz, A., Uez, O.C., & Pagano, I. (2020). Seroprevalencia de infección por SARS-CoV-2 en personal de salud de la Región Sanitaria VIII, provincia de Buenos Aires, Argentina. *Rev Argent Salud Publica*, *12*(Supl. 1), e14.
- Sullivan, K.M., Dean, A., & Soe, M.M. (2009). OpenEpi: A Web-based Epidemiologic and Statistical Calculator for Public Health. *Public Health Rep*, 124(3), 471-4. https://doi.org/10.1177%2F003335490912400320

Zhang, S., Yan, P., Winchester, B., & Wang, J. (2010). Transmissibility of the 1918 pandemic influenza in Montreal and Winnipeg of Canada. *Influenza Other Respir Viruses*, *4*(1), 27-31. https://doi.org/10.1111/j.1750-2659.2009.00117.x

9. Anexos

Tabla 1

Características sociodemográficas de la población estudiada. Números absolutos (n=), porcentajes (%), DE (Desvío Estándar)

porcentajes (%), DE (Desvío Estándar)		
Sexo (n = 1182)	Femenino: 67 % (n = 792)	
	Masculino: 33 % (n = 390)	
Edad: media (± DE) (n = 1181)	50.2 años (15.6)	
Rangos etarios	18-30 años: 14,3 % (n = 169)	
	31-60 años: 49,8 % (n = 588)	
	>61 años: 35,9 % (n = 424)	
Convivientes: media (± DE); (rango)	2.9 (1.6); (1-22)	
Adultos: media (± DE)	2.2 (1.1)	
Menores: media (± DE)	1.7 (1.1)	
Cantidad de convivientes		
1 2 3 4 >5	19.2 % 28.0 % 21.9 % 15.8 % 15.1 %	
Localidad de los habitantes		
Hurlingham Villa Santos Tesei William Morris	30.5 % 34.9 % 34.6 %	
Población (total y porcentaje) por terciles (por rango de NBI)		
I (2,5 % de hogares con NBI) II (5,5 % de hogares con NBI) III (13.8 % de hogares con NBI)	28.5 % (n = 337) 33.0 % (n = 390) 38.4 % (n = 454)	
Porcentaje de hogares donde reside algún trabajador del sector salud	8.2 %	
Porcentaje de hogares con miembros que trabajan fuera del hogar	56 %	
Porcentaje de hogares con algún jubilado	46 %	
Porcentaje de hogares que reciben ayuda del Estado	18.6 %	

Tabla 2

Prevalencias de IgG contra SARS-CoV-2; prevalencia general; prevalencia por sexo, por localidad y por NBI.

Porcentaje (%) con IC 95%

Forcentaje (%) con ic 95%		
General (IC 95%)	12.1 % [10.2, 13.9]	
Por sexo (IC 95%)		
en mujeres	12.9 % [10.1, 15.6]	
en hombres	10.5 % [7.6, 13.4]*	
Por localidad (IC 95%)		
Hurlingham	8.6 % [5.6, 11.6]	
Villa Santos Tesei	14.1 % [10.1, 18.0]**	
William Morris	13.4 % [9.8, 17.0]	
De acuerdo con porcentajes de hogares con NBI		
Tercil 1	7.7 % [4.7, 10.7]	
Tercil 2	12.5 % [8.7, 16.4]***	
Tercil 3	15.2 % [11.6, 18.8]	
Por rangos etarios (años de edad)		
18-30	17.8 % [12.0, 23.6]	
31-60	12.2 % [9.3, 15.1]	
>61	9.9 % [6.9, 13.9]****	

Nota: Estadísticamente significativo p<0.05; NS no significativo; *NS; **Test de Wald = 0.03; ***Test de Wald = 0.02; ****Test de Wald = 0.02.

Tabla 3

Antecedentes clínicos (testeos previos y síntomas previos) y epidemiológicos referidos (hogares con sintomáticos y con testeos positivos)

(n = 1182)

	lgG-positivos (n = 144)	lgG-negativos (n = 1038)
No refiere testeo previo	112	948
Refiere testeo previo	32	90
Refiere RTqPCR positivo previo	27	23
Refiere RTqPCR negativo previo	5	67*
Personas que refieren síntomas previos	35	67
Personas que no refieren síntomas previos	109	971*
Hogares con alguien sintomático	51	108
Hogares sin nadie sintomático	93	930*
Hogares con alguien con RTqPCR-positivo	45	47
Hogares sin alguien con RTqPCR-positivo	99	991*

Nota: Estadísticamente significativo p<0.05; NS no significativo; *p = >0.0001.

en Mesoamérica

¿Quiere publicar en la revista?

Ingrese aquí

O escríbanos:

revista.ccp@ucr.ac.cr

Electrónica

20 años de liderazgo

Revista Indexada

Enlace Award, 2007

POPULATION INSTITUTE Global Media Awards Excellence in Population Reporting

Población y Salud en Mesoamérica (PSM) es la revista electrónica que cambió el paradigma en el área de las publicaciones científicas electrónicas de la UCR. Logros tales como haber sido la primera en obtener sello editorial como revista electrónica la posicionan como una de las más visionarias.

Revista PSM es la letra delta mayúscula, el cambio y el futuro.

Indexada en los catálogos más prestigiosos. Para conocer la lista completa de índices, ingrese aquí.

Revista Población y Salud en Mesoamérica -

Centro Centroamericano de Población Universidad de Costa Rica

