

Entreciencias: Diálogos en la Sociedad del

Conocimiento ISSN: 2007-8064

entreciencias@unam.mx

Universidad Nacional Autónoma de México

México

Evaluación de la salud del arbolado urbano a través de imágenes satelitales en Guadalajara, México

Macías-Muro, Alejandra; Martínez-Trinidad, Tomás; Valdez-Lazalde, José René; Romero-Sánchez, Martín Enrique; Vaquera-Huerta, Humberto

Evaluación de la salud del arbolado urbano a través de imágenes satelitales en Guadalajara, México

Entreciencias: Diálogos en la Sociedad del Conocimiento, vol. 10, núm. 24, 2022

Universidad Nacional Autónoma de México, México

Disponible en: https://www.redalyc.org/articulo.oa?id=457669807007

DOI: https://doi.org/10.22201/enesl.20078064e.2022.24.81200

CIENCIAS DE LA SALUD, BIOLÓGICAS Y QUÍMICAS

Evaluación de la salud del arbolado urbano a través de imágenes satelitales en Guadalajara, México

Assessment of urban tree health through satellite imagery in Guadalajara, Mexico

Alejandra Macías-Muro ^a arboristale@gmail.com Colegio de Postgraduados, México

https://orcid.org/0000-0002-2979-6239

Tomás Martínez-Trinidad ^b tomtz@colpos.mx *Colegio de Postgraduados en Ciencias Agrícolas, México*

https://orcid.org/0000-0002-3053-472X

José René Valdez-Lazalde ^c valdez@colpos.mx *Colegio de Postgraduados, México*

https://orcid.org/0000-0003-1888-6914
Martín Enrique Romero-Sánchez d
mromerosanchez@outlook.com

INIFAP, México

https://orcid.org/0000-0002-1682-6603

Humberto Vaquera-Huerta ^e hvaquera@colpos.mx Colegio de Postgraduados, México

Entreciencias: Diálogos en la Sociedad del Conocimiento, vol. 10, núm. 24, 2022

Universidad Nacional Autónoma de México, México

Recepción: 08 Noviembre 2021 Aprobación: 12 Mayo 2022 Publicación: 25 Mayo 2022

DOI: https://doi.org/10.22201/enesl.20078064e.2022.24.81200

Redalyc: https://www.redalyc.org/articulo.oa?id=457669807007

Resumen: Objetivo: evaluar el estado de salud del arbolado de la Zona Metropolitana de Guadalajara, a través de imágenes satelitales multiespectrales *WorldView-2*.

Método: se utilizó el enmascaramiento múltiple y el clasificador de máxima probabilidad (*Maximum likelihood*) para analizar la variación de las bandas espectrales e índices de vegetación. El análisis de clasificación de salud se aplicó en tres máscaras: especies principales, tipo de follaje y arbolado en general. El arbolado se clasificó de acuerdo a su estado de salud en las categorías: sano, regular, pobre y declinación. Se utilizaron 800 árboles como sitios de referencia, los cuales fueron evaluados con la metodología del Servicio Forestal de Estados Unidos de Norteamérica.

Resultados: los fresnos y jacarandas son de las especies que se identificaron con un estado de salud sano. La precisión más alta para condición de salud (33%) se obtuvo mediante la clasificación por tipo de follaje. Se estimó que sólo 24% del arbolado evaluado en 13 854 ha presenta una condición sana o regular de salud.

Limitaciones: considerar la clasificación por pixel en lugar de individuos completos para aumentar la exactitud.

Principales hallazgos: el uso de imágenes satelitales permitió la evaluación del estado de salud del arbolado de la ciudad. La clasificación por tipo de follaje fue la más efectiva, pero se deberá considerar la alta diversidad arbórea existente en zonas urbanas.

Palabras clave: clasificación por máscaras, condición arbórea, índices de vegetación, World View-2.

Abstract: Purpose: To evaluate tree health in the Guadalajara Metropolitan area through WorldView-2 multispectral satellite images.

Methodology: The multiple masking and the maximum likelihood classifier methods were used to analyze variation in the values of spectral bands and vegetation indexies. Health classification analysis was applied using three masks: main species, foliage type, and general trees. Trees were classified according to health condition in the following categories: healthy, regular, poor, and declining. 800 trees were used as reference sites, which were evaluated in situ with the methodology of the US Forest Service.

Results: Ash trees and jacarandas are among the species that were identified with a healthy condition. The highest precision for health condition (33%) was obtained through classification by type of foliage. It was estimated that only 24% of the trees evaluated in 13 854 ha have a healthy or regular condition.

Limitations: To consider the classification by pixels rather than whole individuals to increase accuracy.

Findings: The use of satellite images allowed for the evaluation of health condition of urban trees in the city. The classification by type of foliage was the most effective but the high diversity of trees in the area must be considered.

Keywords: Masking classification, tree condition, vegetation index, World View-2.

INTRODUCCIÓN

El arbolado es un elemento importante de los ecosistemas urbanos, ya que proporciona servicios ecosistémicos que influyen en la calidad de vida de los habitantes y, debido al crecimiento acelerado de las ciudades, la demanda de servicios ecosistémicos está en constante aumento. Por lo que la inclusión de áreas con arbolado con un estado saludable es cada vez más importante en los planes de desarrollo urbano (Abebe y Megento, 2017; Qindong, Like y Hug, 2021). Desafortunadamente, las condiciones de estrés en las que se desarrolla este arbolado son mayores con respecto al entorno natural, por lo tanto, el arbolado urbano presenta una problemática de salud bajo una perspectiva espacial y temporal (Krtalić, Linardić, y Pernar, 2021), de tal manera que la evaluación constante de los árboles es de suma importancia ya que permite establecer objetivos oportunos para la mitigación de condiciones de estrés del arbolado (Guerra-Hernández *et al.*, 2021) y, con ello, reducir los problemas de salud así como posibles situaciones de arbolado de riesgo.

La evaluación de la salud del arbolado, generalmente, se realiza de manera presencial, mediante la ejecución de inventarios del tipo forestal (Krtalić et al., 2021). Sin embargo, las metodologías de evaluación presencial, ya sea a través de la observación y cuantificación de daños en el follaje o por el registro de la presencia de plagas y enfermedades, están limitadas por el tiempo, recursos materiales y humanos de los que disponen los administradores para la gestión del arbolado (Guerra-Hernández et al., 2021; Xulu, Gebreslasie, y Peerbhay, 2019). Por lo tanto, el uso de imágenes satelitales es una alternativa factible para la evaluación del arbolado urbano que ha mostrado ventajas a través del uso de índices de vegetación (Heckel et al., 2020; Zhao et al., 2022). Lo anterior, debido a que la evaluación del contenido de pigmentos fotosintéticos está relacionada directamente con la salud del arbolado, lo que permite tener una variable cuantificable y comparable (Xulu et al., 2019).

La tendencia a la utilización de más de un índice de vegetación en las imágenes de satélite ha crecido debido a la saturación del uso de la banda roja en sitios donde hay mucha vegetación y diferentes especies arbóreas (Lim Kim, y Jin, , 2019), así como a la facilidad para eliminar el efecto recurrente de sombra del arbolado en condiciones urbanas (Zhou et al., 2021). En diferentes estudios se han utilizado variaciones del Índice de Vegetación de Diferencias Normalizadas (NDVI) para identificar y relacionar la evapotranspiración en parques urbanos (Nouri et al., 2020) así como para medir diversidad en bosques (Cazorla et al., 2021), lo que abre la posibilidad de utilizar variaciones del NDVI con fines específicos como es el caso del monitoreo de la condición sanitaria del arbolado urbano.

La evaluación del estado de salud de la vegetación en entornos urbanos a través de imágenes satelitales es compleja debido a la alta diversidad de especies en espacios reducidos, a la fragmentación de las masas arboladas, y a la mezcla de diferentes tipos de coberturas (Heris et al., 2022). Por lo tanto, se ha sugerido la utilización de diversos índices de vegetación además de diferentes técnicas para diferenciar los estratos forestales en ambientes urbanos de forma automática, tales como la clasificación por capas, llamada comúnmente de "enmascaramiento" o análisis multinivel (Bravo-Bello et al., 2020), técnicas de reconocimiento de objetos, y el análisis basado en pixeles individuales (Timilsina, Sharma, y Aryal, 2019). De esta manera se ha logrado solventar parcialmente las dificultades del análisis a través de imágenes satelitales y ha sido posible tener al alcance una tecnología que facilite la creación de políticas de inspección y la planeación de áreas verdes en las ciudades (Flowers, Huang, y Aldana, 2020; Liu et al., 2021); lo cual se ha vuelto una prioridad en los últimos años.

Los bosques urbanos proveen una serie de beneficios ecosistémicos en favor de la calidad de vida de los citadinos, como la reducción del efecto de isla de calor y de la contaminación atmosférica, infiltración de agua de lluvia, reducción de la escorrentía, ahorro de energía eléctrica, así como la generación de sentimientos de bienestar entre la población (Bravo-Bello et al., 2020). Particularmente, las zonas metropolitanas requieren un manejo apropiado de sus áreas verdes urbanas ya que contribuye a mitigar efectos nocivos de la urbanización en la población y fungen como un entorno para diversas actividades al aire libre. Sin embargo, el costo de monitoreo y evaluación de áreas verdes representa retos logísticos y de presupuesto en las ciudades grandes del país. En este sentido, es necesario el desarrollo de métodos fáciles de replicar y de bajo costo. Por lo tanto, la presente investigación tuvo como objetivo principal evaluar el estado de salud del arbolado de la Zona Metropolitana de Guadalajara a través de imágenes multiespectrales WorldView-2 y, de manera particular, establecer las bases para el desarrollo de métodos basados en sensores remotos para este fin.

METODOLOGÍA

Área de estudio

La Zona Metropolitana de Guadalajara (ZMG) se localiza en el estado de Jalisco, México y comprende los municipios de Guadalajara, Zapopan, San Pedro Tlaquepaque, Tonalá, El Salto y Tlajomulco de Zuñiga (figura 1) (20° 40.0092′ N y 103° 23.5092′ O). La ZMG tiene una superficie de 2734.1 km2, con un clima predominante del tipo semicálido semihúmedo. La temperatura media anual es de 21.7°C y tiene una precipitación media anual de 998 mm (Instituto de Información Estadística y Geográfica, 2018)

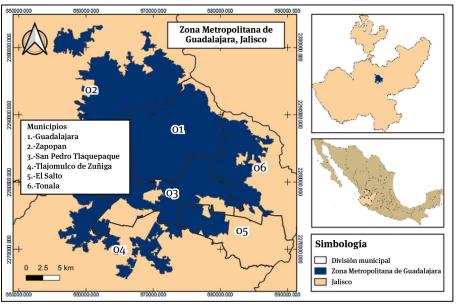


Figura 1. Área de estudio: Zona Metropolitana de Guadalajara Fuente:elaboración propia

Evaluación del arbolado urbano

Durante el periodo de septiembre a noviembre de 2018, se identificaron dentro del área de estudio, 55 áreas verdes públicas con mantenimiento. En cada una de ellas se evalúo el estado de salud de entre 15 y 30 árboles dominantes y codominantes, con un diámetro de copa mayor a tres metros (Pontius *et al.*, 2017). Para la selección de las especies se privilegiaron los criterios de abundancia y presencia. Cada árbol seleccionado se clasificó en alguna de las categorías siguientes: declinación, pobre, regular y sano. Del arbolado evaluado, aproximadamente 85% se utilizó para definir los sitios de entrenamiento para la clasificación de las imágenes y 15 % restante, se reservó para validar la cartografía de salud del arbolado que se generó en una etapa posterior.

Para cada árbol seleccionado se midió y registró la altura total, diámetro a 1.30 m, diámetro de la copa, estado de salud, así como una

caracterización de los daños de cada individuo, ya fueran mecánicos o causados por plagas y enfermedades (Krtalić *et al.*, 2021). También se registró la ubicación geográfica de cada árbol con un GPS Garmin, con error de 3 metros y se tomaron fotografías del individuo para posterior referencia. Los árboles medidos, fueron identificados posteriormente en las imágenes *WorldView-2* para ser utilizados como sitios de entrenamiento y validación de la clasificación y, a partir de éstos, clasificar el estado de salud de los árboles no medidos en campo.

Imágenes satelitales

Las imágenes *WorldView-2* utilizadas en el estudio fueron tomadas el 16 de octubre de 2017, tienen una resolución espacial de 0.46 m en la banda pancromática y 1.85 m en las bandas espectrales (cuadro 1). Cubren una superficie de aproximadamente 65 976.33 ha.

Cuadro 1. Características de las imágenes satelitales WorldView-2 utilizadas en la clasificación

Bandas espectrales	Banda	Resolución espectral	Resolución espacial
Pancromática		400-800 nm	o.46 m en el nadir
Coastal	B1	400-450 nm	
Blue	B2	450-510 nm	
Green	В3	510-580 nm	
Yellow	B4	585-625 nm	1 %5 m on al nadir
Red	B5	630-690 nm	1.85 m en el nadir
Red Edge	В6	705-745 nm	
NIR 1	В7	770-895 nm	
NIR 2	В8	860-1040 nm	

Fuente: elaboración propia

Pre-procesamiento de imágenes WorldView-2

Las imágenes utilizadas fueron previamente ortorectificadas por el proveedor. A partir del formato inicial se realizó un ajuste radiométrico con el programa Idrisi versión 18.21, utilizando los parámetros para el propósito definido por *DigitalGlobe* (Kuester, 2017). Posteriormente, se aplicó el proceso *pansharpen* para incrementar la resolución de las imágenes multiespectrales con el método *Intensity Hiu Saturation* [HIU por sus siglas en inglés] (figura 2) (Berila y Isufi, 2021; Li *et al.*, 2022).

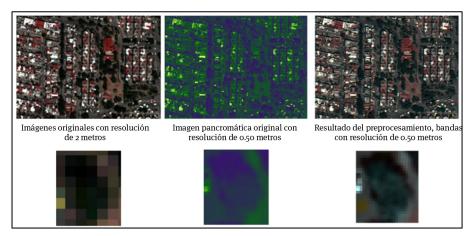


Figura 2. Aplicación de proceso pansharpen con el método Intensity Hiu Saturation de imágenes WorldView 2 utilizadas para la clasificación

Definición de sitios de entrenamiento

Con el objetivo de reconocer cada árbol en la imagen, se utilizaron métodos de segmentación y clasificación orientados a objetos en ambientes urbanos (Li et al., 2022), la cual consiste en la agrupación de pixeles por su valor de reflectancia. Para realizar esta tarea, se utilizó la herramienta Segmentation del software TerrSet GIS. Para la aplicación de la segmentación se crearon dos tipos de imágenes compuestas: a) Bandas azul, verde y rojo (235) y b) Bandas: azul, verde e infrarrojo (237), además de definir segmentos de 10 m2. Se utilizó la herramienta SegTrain del software Idrisi versión 18.21 software Package (Ogassawara y Cota, 2019) para seleccionar los sitios de entrenamiento en el área de estudio.

Índices de vegetación

Los índices de vegetación son combinaciones de las bandas espectrales registradas en el sensor del satélite y están diseñados para resaltar una propiedad específica de las masas arboladas (Xulu *et al.*, 2019). Los índices de vegetación utilizados en el presente estudio se calcularon con las herramientas del programa Idrisi versión 18.21 (cuadro 2) y fueron seleccionados partir de estudios previos (Pontius *et al.*, 2017).

Cuadro 2. Índices de vegetación utilizados para la clasificación de imágenes

Índices	Formula	Autores
NDVI	$(B_7 - B_5) / (B_7 + B_5)$	(Ruiz Hidalgo et al., 2019)
NDVI2	(B8 - B6) / (B8 + B6)	
NDVI3	$(B8 - B_4) / (B8 + B_4)$	(Nousi et al. 2000)
NDVI4	(B6 - B1) / (B6 + B1)	(Nouri et al., 2020)
NDVI5	(B6 - B5) / (B6 + B5)	
DVI	B7 -B5	
Greennes	-0.273B2 -0.217B3 -0.551B5 + B130.772B7 + 0.073(B6-1) -0.165(B6-2)	(Bajocco et al., 2019)

Clasificación de la salud del arbolado en las imágenes

El estado de salud de los árboles se evaluó a partir de la estructura y transparencia de su copa, así como de los daños y defectos observados en cada individuo (Callow, May y Johnstone, 2018). Es relevante mencionar que, al inicio, únicamente se clasificó la salud del arbolado de las especies principales, separando las coberturas de no vegetación y de vegetación de porte bajo, como pasto y arbustos. Para esto se utilizó la técnica de enmascaramiento múltiple que consiste en la clasificación y eliminación secuenciada de coberturas que no son de interés para el estudio, dejando únicamente las coberturas objetivo de la investigación (McDonald et al., 2021; Ruiz et al., 2019). En cada fase de la clasificación se definieron clases dicotómicas, las cuales se separaron a partir de las características observadas en las bandas y la comparación de los índices de vegetación. Al final, la salud del arbolado se evaluó bajo tres enfoques: a) sin diferenciación de especies, b) por especie, y c) por tipo de follaje: perennifolios y caducifolios, los cuales se compararon para identificar el de mayor exactitud (figura 3).

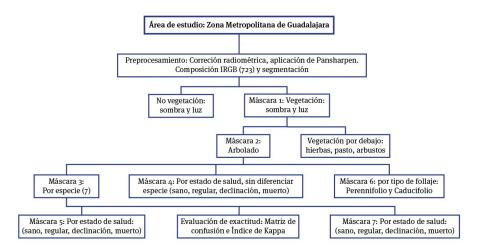


Figura 3.

Diagrama de metodología utilizada en la clasificación por máscaras múltiples, donde se señalan las clases en los que se clasificaron las imágenes para la definición de estado de salud Fuente: elaboración propia

> En el primer enmascaramiento se clasificó la imagen en vegetación con sombra, vegetación con luz, no vegetación con sombra y no vegetación con luz, y se eliminaron las coberturas de no vegetación; para ello se utilizaron las imágenes compuestas IRBG y RBG. En la segunda mascara se utilizaron los índices de vegetación, con los cuales se clasificaron zonas de arbolado y se eliminaron las zonas de vegetación de bajo porte, como: arbustos, hierbas y pasto (Bravo-Bello et al., 2020; Zhou et al., 2021). Cabe destacar que, tanto para la primera como para la segunda mascara de clasificación, se utilizaron los sitios de entrenamiento seleccionados a partir de la herramienta SegTrain del software Idrisi versión 18.21. A partir de la tercera mascara se utilizaron como sitios de entrenamiento polígonos con radio de tres metros generados a partir del arbolado medido y se compararon los valores de cada una de las bandas y de los índices, seleccionando las variables que visiblemente señalaban una diferenciación más significativa entre clases. En la tercera mascara se clasificaron siete categorías: 1) casuarina (Casuarina equisetifolia), 2) eucalipto (Eucalyptus camaldulensis), 3) ficus (Ficus benjamina), 4) fresno (Fraxinus uhdei), 5) jacaranda (Jacaranda mimosifolia), 6) palmera (Syagrus romanzoffiana) y (Washingtonia robusta) y 7) otros, dentro del cual se incluyeron individuos de las especies aguacate (Persea americana), árbol de las orquídeas (Bahuinia variegata), grevilea (Grevilea robusta), guayabo (Psidium guajava), majahua (Hibiscus elatus), mango (Mangifera indica) y tabachín (Delonix regia).

> En la máscara cuatro se clasificó el estado de salud de los árboles, sin distinción de especies, utilizando las categorías: declinación, pobre, regular y sano (figura 4). En la máscara cinco, se separó cada especie y se clasificó por separado el estado de salud; posteriormente se aplicó la herramienta de *mosaic* Idrisi versión 18.21 para unir los valores de salud en una sola capa. En la máscara seis se clasificó el arbolado por tipo de follaje (caducifolios y perennifolios) para posteriormente en la

máscara siete clasificar a cada grupo de especies por estado de salud de forma individual. Se tomó en cuenta esta opción debido a que las imágenes satelitales se tomaron en el mes de octubre, que es el inicio del otoño y comienza a existir un cambio en el follaje (debido a la fenología) que facilita su diferenciación. Para todos los procesamientos se utilizó el método de Máxima verosimilitud como algoritmo de clasificación, asumiendo normalidad de los datos y asignando categorías a cada píxel de acuerdo con la probabilidad que tiene de entrar a una clase o a otra, seleccionando la categoría de mayor probabilidad (Timilsina *et al.*, 2019). Finalmente, para la validación, se seleccionaron al azar 150 árboles de diferentes especies y categorías de estado de salud conocido y se aplicó el cálculo de matriz de confusión e Índice de Kappa.

RESULTADOS Y DISCUSIÓN

Arbolado urbano

Se evaluaron 950 árboles en total, entre ellos las principales especies registradas fueron: fresno (*Fraxinus uhdei* Wenz.), eucalipto (*Eucalyptus camaldulensis* Dehnh.), ficus (*Ficus benjamina* L.), casuarina (*Casuarina equisetifolia* L.), palmera de cocos plumosa (*Syagrus romanzoffiana* Cham.), palmera washingtonia (*Washingtonia robusta* Wendl.) y jacaranda (*Jacaranda mimosifolia* D. Don.) (cuadro 3).

Cuadro 3. Número de árboles, por especie y estado de salud, utilizados como sitios de entrenamiento y validación para la clasificación del arbolado por estado de salud

	Estado de salud				
Especie	Declinación	Pobre	Regular	Sano	Total
Casuarina equisetifolia	3	59	131	9	202
Eucaliptus camaldulensis	4	67	37	1	109
Ficus benjamina	1	42	86	14	143
Fraxinus uhdei	3	77	130	25	235
Jacaranda mimosifolia	1	14	72	42	129
Palmeras	0	9	50	41	100
Otros	3	3	16	10	32
	15	271	522	142	950

Fuente: elaboración propia

La superficie del área de estudio identificada con cobertura vegetal fue de 27 778.50 ha (42.1% del total), de la cual 49.87% (13 853.87 ha) correspondió a arbolado y 50.13% (13 924.63 ha) a plantas de porte bajo. Por tipo de follaje, se calculó que 15.20% del arbolado fue de follaje caducifolio y 84.80% de follaje perennifolio. De las especies clasificadas, 29.04% fueron casuarinas, 28.52% ficus, 8.38% jacarandas, 1.17% eucaliptos, 0.83% palmeras, 0.48% fresnos y 31.59% arbolado de otras especies. Visualmente fue posible determinar que la zona considerada como centro del municipio de Guadalajara tiene una

distribución mayor de arbolado a diferencia de las zonas localizadas en la periferia de la ciudad. Sin embargo, el arbolado presente en la zona centro se distribuye de forma fraccionada, a diferencia de las zonas en la periferia, donde se observa un mayor número de parques y jardines compactos, como es el caso del municipio de Zapopán. Esta condición es muy común en el desarrollo de las ciudades alrededor de todo el mundo y se debe a la deficiente planeación que provoca el crecimiento desordenado de las ciudades (Berila e Isufi, 2021; Liu *et al.*, 2021).

Estado de salud del arbolado

La categoría clasificada como "otros", que incluye las especies que no se consideraron como principales, obtuvo el mayor porcentaje de arbolado sano (18.72%), seguida de los fresnos y las jacarandas con 9% y 8% respectivamente. En la categoría de arbolado con estado de salud regular, la jacaranda tuvo el mayor porcentaje con 65.16%, las palmeras y ficus se clasificaron con 40.98% y 39.70% respectivamente (cuadro 4). Las especies con mayor porcentaje de arbolado clasificado como pobre y declinación fueron las casuarinas con 99% y los eucaliptos con 93.89%.

El arbolado con follaje caducifolio presentó el mayor porcentaje de arbolado sano, con 12.65%; mientras que el arbolado con follaje perennifolio tuvo 5.25%. Por otro lado, en el arbolado con follaje perennifolio se clasificó un mayor porcentaje de arbolado pobre con 78.11%. A partir de este resultado, fue posible determinar que el arbolado de la Zona Metropolitana de Guadalajara se clasifica, en su mayoría, como arbolado de pobre a declinación.

Cuadro 4. Superficie (ha) de arbolado clasificado por estado de salud

	Estado de salud				
Arbolado	Declinación	Pobre	Regular	Sano	Total
Casuarina	3 491.11	492.18	16.65	22.97	4 022.91
Eucalipto	152.06	-	9.89	-	161.95
Ficus	2 157.95	224.57	1 568.34	-	3 950.85
Fresno	0.42	56.59	3.93	5.71	66.65
Jacaranda	317.11	0.07	756.20	87.08	1 160.46
Palmera	37.13	30.42	46.90	-	114.45
Otros	67.60	3 332.20	157.31	819.49	4 376.60
Tipo de follaje					
Caducifolio	20.49	1 050.99	768.24	266.54	2 106.26
Perennifolio	285.47	9 175.64	1 670.31	616.19	11 747.61
TOTAL					13 853.87

Fuente: elaboración propia

Clasificación por máscaras

En cada etapa del enmascaramiento se utilizaron diferentes variables para clasificar las clases de vegetación o estado de salud del arbolado. En el caso de la máscara 1 se utilizó la composición IRBG (Bandas 723) para separar la vegetación de todo lo que no lo fuera; sin embargo, a partir de la máscara 2 se seleccionaron por sus valores las variables a utilizar. En primer lugar, se utilizó el índice NDVI, pero no mostró utilidad para diferenciar los tipos de vegetación, por lo que se probó con los índices DVI y NDVI4, así como el uso de las bandas 7, 6 y 8 (figura 4).

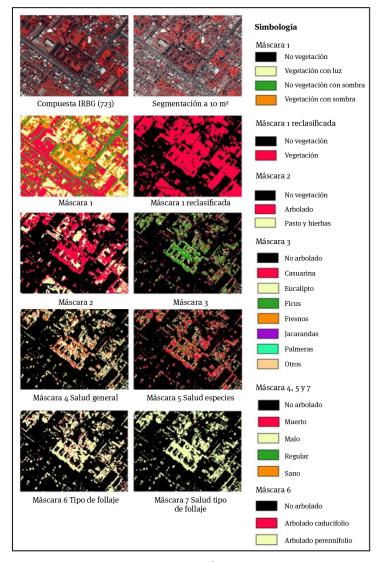


Figura 4.

Resultados parciales de la clasificación por máscaras

Fuente: elaboración propia

Después de comparar los valores de las distintas variables fue posible determinar en cuales se diferenciaban mejor las clases para posteriormente utilizarlas en la clasificación. Se encontraron variables en común para la identificación de salud en las bandas 6,7 y 8 y los índices NDVI3 y NDVI4 (cuadro 5).

Cuadro 5. Variables seleccionadas para la clasificación de cada máscara

Mascara	Clases	Variables seleccionadas	
1	Vegetación y no vegetación	Bandas: 2, 3, 5 y 7	
2	Arbolado, plantas de porte bajo	Bandas: 7, 6 y 8. Índices:	
3	Especies	DVI y NDVI4	
4	Estado de salud	Bandas: 7 y 8. Índice NDVI3	
5	Estado de salud		
6	Tipo de follaje: Perennifolias y caducifolias	Bandas: 7, 6 y 8. Índices: NDVI3 y NDVI4	
7	Estado de salud		

Validación de la clasificación

El método de clasificación de la salud del arbolado que obtuvo mayor exactitud total fue el de la clasificación por tipo de follaje con 33%, seguido del método de clasificación de salud sin diferenciación de especies con 22.66% (cuadro 6). El método que tuvo menor precisión fue la clasificación de salud por especies con 9%.

Cuadro 6. Comparación de valores de validación de matrices de confusión correspondientes a las máscaras 3, 4, 5, 6 y 7

	Error de	Error de	Precisión	Índice de	
	comisión	omisión	total	Kappa	
Mascara 3			0.0933%	-0.03	
Casuarina	84%	84%			
Eucalipto	0	100%			
Ficus	89%	70%			
Fresno	О	100%			
Jacaranda	88%	100%			
Palmeras	О	О			
Otros	94%	83%			
Mascara 4	5.000 (1)	2000	0.2266%	0.00006	
Declinación	94%	0			
Pobre	71%	46%			
Regular	47%	87%			
Sano	93%	97%			
Mascara 5			0.0933%	0.02	
Declinación	99%	0			
Pobre	95%	85%			
Regular	56%	91%			
Sano	100%	100%			
Mascara 6			47.33%	0.02	
Caducifolio	42%	89%			
Perennifolio	44%	22%			
Mascara 7	•		33%	0.07	
Declinación	66%	0	. -		
Pobre	О	22%			
Regular	43%	79%			
Sano	75%	97%			

Los análisis mostraron que es posible mapear e identificar el arbolado urbano a través de imágenes satelitales, separando las áreas de vegetación con las de no vegetación, por medio de la técnica de enmascaramiento múltiple, sumado a la diferenciación entre áreas sombreadas y áreas con luz. Trabajos previos han reportado valores de precisión más altos para la evaluación de salud del arbolado urbano en otras ciudades (Guerra-Hernández et al., 2021; Krtalić et al., 2021; Timilsina et al., 2019). Sin embargo, en estos casos no presentaron una alta diversidad de árboles como en el área de estudio; lo que es provocado tanto por el clima como por la extensa selección de especies instaladas por la población. Por ejemplo, se reporta que tan sólo para la Colonia Chapalita, perteneciente al municipio de Zapopán, hay un total de 149 especies (Chávez, 2015) por lo que, será importante considerar más especies representativas tanto en áreas públicas como privadas. Adicional al alto número de especies presentes, otro elemento que contribuye en la precisión es el traslape de copas de los árboles de las diferentes especies, provocando la mezcla de valores por píxel como en el caso para arbolado en otras ciudades (Bravo-Bello et al., 2020; Timilsina et al., 2019).

Se han reportado previamente efectos similares en la clasificación por especie, por lo que se considera que la clasificación por tipo de follaje para el monitoreo de salud es una opción con buena precisión para evaluar arbolado urbano (Krtalić *et al.*, 2021). Además, para la identificación de especies se ha sugerido el análisis multitemporal y el uso de diversos tipos de plataformas como Landsat, Quick Bird, y Airborne Lidar, con el objetivo de analizar diferentes especies arbóreas en sus distintos estados fenológicos (Hartling *et al.*, 2019).

Un factor adicional por considerar para mejorar la exactitud de la clasificación es la escala. En el sistema utilizado se realizó la clasificación utilizando individuos completos como sitios de referencia, los cuáles abarcaban pixeles con un rango amplio de valores. Mientras que la clasificación se realiza a nivel pixel, por lo que causa sesgos en la evaluación de la exactitud de la clasificación (matriz de confusión) para detectar arbolado catalogado con algún problema de salud. (Heckel et al., 2020). Por otro lado, el estrés en el arbolado tiene diferentes formas de manifestarse, la disminución de pigmentos fotosintéticos de los árboles es una de las principales características medibles (Gupta y Pandey, 2021), junto a la observación de la condición de copa (Callow et al., 2018). Cabe destacar que, en el caso del presente estudio, el NDVI utilizado por la mayoría de los estudios de vegetación en áreas naturales, no resultó efectivo para el análisis del arbolado urbano, mientras que la adecuación de este índice utilizando otras bandas de las imágenes WorldView-2 como B1, B4, B6 y B8, dieron un mejor resultado en los índices NDVI3 y NDVI4. Una línea de investigación posterior y complementaria del presente trabajo será la evaluación de imágenes multitemporales para disminuir el efecto de la condición fenológica estacional en la clasificación del estado de salud del arbolado urbano.

CONCLUSIONES

La evaluación de la salud del arbolado urbano a través de imágenes satelitales es posible con adecuaciones al Índice de Vegetación de Diferencias Normalizadas (NDVI) utilizando otras bandas espectrales (NDVI3 y NDVI4). Los resultados de este estudio sugieren que la identificación de la salud del arbolado urbano requiere de un análisis que considere la diversidad de especies entre tipos de áreas arboladas. Debido a la alta diversidad de especies arbóreas, la clasificación con base en el tipo de follaje mostró un mejor resultado. De manera general, el método utilizado en este trabajo mostró resultados favorables para evaluar el estado de salud del arbolado urbano. Los resultados de la aplicación del método evaluado son de importancia para el diseño de estrategias para manejo de áreas urbanas en zonas metropolitanas. Además, los resultados sugieren que es importante considerar la escala, la diversidad de especies y el traslape de copa entre los árboles para futuras investigaciones. En este sentido, será necesario realizar mayor investigación sobre la aplicación de sensores remotos para la evaluación de la condición del arbolado urbano adicionando diferentes sensores, tanto activos como pasivos, para la mejora de los métodos de monitoreo existentes.

Agradecimientos

Se agradece al Conacyt por su apoyo en la realización de los estudios de posgrado de la primera autora; así como el apoyo del Fideicomiso para la Administración del Programa de Desarrollo Forestal del Estado de Jalisco (Fiprodefo) por la autorización del uso de las imágenes utilizadas para el estudio.

REFERENCIAS

- Abebe, M. T., y Megento, T. L. (2017). Urban green space development using GIS-based multi-criteria analysis in Addis Ababa metropolis. *Applied Geomatics*, 9(4), 247-261. https://doi.org/10.1007/s12518-017-0198-7
- Bajocco, S., Ferrara, C., Alivernini, A., Bascietto, M., y Ricotta, C. (2019). Remotely-sensed phenology of Italian forests: Going beyond the species. *International Journal of Applied Earth Observation and Geoinformation*, 74, 314-321.https://doi.org/10.1016/j.jag.2018.10.003
- Berila, A., e Isufi, F. (2021). Two Decades (2000-2020) Measuring Urban Sprawl Using GIS, RS and Landscape Metrics: A Case Study of Municipality of Prishtina (Kosovo). *Journal of Ecological Engineering*, 22(6), 114-115. https://doi.org/10.12911/22998993/137070
- Bravo-Bello, J. C., Martinez-Trinidad, T., Valdez-Lazalde, J. R., Romero-Sanchez, M. E., y Martinez-Trinidad, S. (2020). Analyzing Potential Tree-Planting Sites and Tree Coverage in Mexico City Using Satellite Imagery. Forests, 11(4), 423. https://doi.org/10.3390/f11040423
- Callow, D., May, P. y Johnstone, D.M. (2018). Tree vitality assessment in urban landscapes. *Forests*, *9*(5), 1-7. DOI: 10.3390//f9050279

- Cazorla, B. P., Cabello, J., Peñas, J., Garcillán, P. P., Reyes, A., y Alcaraz-Segura, D. (2021). Incorporating Ecosystem Functional Diversity into Geographic Conservation Priorities Using Remotely Sensed Ecosystem Functional Types. *Ecosystems*, 24(3), 548-564. https://doi.org/10.1007/s 10021-020-00533-4
- Chávez, A. J. M. (2015). *Chapalita, Ciudad Jardín, Árboles y arbustos*. Guadalajara, México: Residentes de Chapalita A.C.
- Flowers, B., Huang, K.T., y Aldana, G. O. (2020). Analysis of the Habitat Fragmentation of Ecosystems in Belize Using Landscape Metrics. *Sustainability*, 12(7), 3024. https://doi.org/10.3390/su12073024
- Guerra-Hernández, J., Díaz-Varela, R. A., Ávarez-González, J. G., y Rodríguez-González, P. M. (2021). Assessing a novel modelling approach with high resolution UAV imagery for monitoring health status in priority riparian forests. *Forest Ecosystems*, 8(1). https://doi.org/10.1186/s40663-021-003 42-8
- Gupta, S. K., y Pandey, A. C. (2021). Spectral aspects for monitoring forest health in extreme season using multispectral imagery. *Egyptian Journal of Remote Sensing and Space Science*, 24(3), 579-586. https://doi.org/10.10 16/j.ejrs.2021.07.001
- Hartling, S., Sagan, V., Sidike, P., Maimaitijiang, M., y Carron, J. (2019). Urban tree species classification using a worldview-2/3 and liDAR data fusion approach and deep learning. *Sensors (Switzerland)*, 19(6), 1-23. https://doi.org/10.3390/s19061284
- Heckel, K., Urban, M., Schratz, P., Mahecha, M. D., y Schmullius, C. (2020). Predicting Forest Cover in Distinct Ecosystems: The Potential of Multi-Source Sentinel-1 and -2 Data Fusion. *Remote Sensing*, 12(2), 302. https://doi.org/10.3390/rs12020302
- Heris, M. P., Bagstad, K. J., Troy, A. R., y O'neil-Dunne, J. P. M. (2022). Assessing the Accuracy and Potential for Improvement of the National Land Cover Database's Tree Canopy Cover Dataset in Urban Areas of the Conterminous United States. *Remote Sensing*, 14(5). https://doi.org/10.3390/rs14051219
- Instituto de Información Estadística y Geográfica (IIEG). (2018). Guadalajara diagnóstico del municipio [archivo pdf]. México. Gobierno del Estado de Jalisco. Recuperado de https://iieg.gob.mx/ns/wp-content/uploads/201 9/06/Guadalajara.pdf
- Krtalić, A., Linardić, D., y Pernar, R. (2021). Framework for spatial and temporal monitoring of urban forest and vegetation conditions: Case study Zagreb, Croatia. *Sustainability (Switzerland)*, 13(11). https://doi.org/10.3390/su13116055
- Kuester, M. (2017). Absolute radiometric calibration:2016v0. Digital Globe. Recuperado de www.digitalglobe.com
- Li, S., Dao, V., Kumar, M., Nguyen, P., y Banerjee, T. (2022). Mapping the wildland-urban interface in California using remote sensing data. *Scientific Reports*, 12(1), 1-12. https://doi.org/10.1038/s41598-022-09707-7
- Lim, J., Kim, K. M., y Jin, R. (2019). Tree species classification using hyperion and sentinel-2 data with machine learning in South Korea and China. *ISPRS International Journal of Geo-Information*, 8(3). https://doi.org/10.3390/ijgi8030150

- Liu, S., Zhang, X., Feng, Y., Xie, H., Jiang, L., y Lei, Z. (2021). Spatiotemporal dynamics of urban green space influenced by rapid urbanization and land use policies in Shanghai. *Forests*, *12*(4). https://doi.org/10.3390/f12040 476
- McDonald, R. I., Biswas, T., Sachar, C., Housman, I., Boucher, T. M., Balk, D., Nowak, D., Spotswood, E., Stanley, C. K., y Leyk, S. (2021). The tree cover and temperature disparity in US urbanized areas: Quantifying the association with income across 5,723 communities. *PLoS ONE*, *16*, 1-27. https://doi.org/10.1371/journal.pone.0249715
- Nouri, H., Nagler, P., Chavoshi Borujeni, S., Barreto Munez, A., Alaghmand, S., Noori, B., Galindo, A., y Didan, K. (2020). Effect of spatial resolution of satellite images on estimating the greenness and evapotranspiration of urban green spaces. *Hydrological Processes*, *34*(15), 3183-3199. https://doi.org/10.1002/hyp.13790
- Ogassawara, J. F. y Cota, L.J.O. (2019). Geomática aplicada a drenagem urbana. *Revista Brasileira de Geomática, 7*(1), 42-60. DOI: 10.3895/rbgeo.v7n1.7817
- Pontius, J., Hanavan, R., Hallett R., Cook, B.D. y Corp, L.A. (2017). High spatial resolution spectral unmixing for mapping ash species across a complex urban environment. *Remote Sensing of Environment, 199*, 360-369. DOI: 10.1016/j.rse.2017.07.027
- Qindong, F., Like, L., y Hu, L. (2021). Gradient analysis of landscape pattern in the core area of the "zhengzhou and kaifeng integration" at the landscape level. *Anais Da Academia Brasileira de Ciencias*, 93(1), 1-10. https://doi.org/10.1590/0001-3765202120181159
- Ruiz Hidalgo, D., Bacca Cortés, B., y Caicedo Bravo, E. (2019). A Tool for Analysis of Spectral Indices for Remote Sensing of Vegetation and Crops Using Hyperspectral Images. *Entre Ciencia e Ingeniería*, 13(26), 51-58. h ttps://doi.org/10.31908/19098367.1161
- Timilsina, S., Sharma, S. K., y Aryal, J. (2019). Mapping Urban Trees Within Cadastral Parcels Using an Object-Based Convolutional Neural Network. *ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences*, 4(5/W2), 111-117. https://doi.org/10.5194/isprs-annals-IV-5-W2-111-2019
- Xulu, S., Gebreslasie, M. T., y Peerbhay, K. Y. (2019). Remote sensing of forest health and vitality: a South African perspective. *Southern Forests*, 81(2), 91-102. https://doi.org/10.2989/20702620.2018.1512787
- Zhao, H., Zhu, T., Wang, S., y Lindley, S. (2022). Study on the changes of urban green space with remote sensing data: A comparison of Nanjing and greater Manchester. *Polish Journal of Environmental Studies*, 31(1), 461-474. https://doi.org/10.15244/pjoes/138208
- Zhou, T., Fu, H., Sun, C., y Wang, S. (2021). Shadow detection and compensation from remote sensing images under complex urban conditions. *Remote Sensing*, 13(4), 1-27. https://doi.org/10.3390/rs1304 0699

Notas de autor

 Maestra en Ciencias por el Posgrado en Ciencias Forestales del Colegio de Postgraduados, Actualmente labora en consultoría

técnica en los temas de arboricultura y geomática aplicada a la dasonomía urbana.

Últimas publicaciones:

Flores-Garnica, J.G. y Macías-Muro, A. (2017). Selección de ancho de banda para la estimación de densidad kernel de incendios forestales. *Revista Chapingo serie Ciencias Forestales y del Ambiente*, 24(3), 313-327. DOI: 10.5154/r.chscfa.2017.12.074

b Ph.D. por la Universidad de Texas A&M, Profesor Investigador Titular del Posgrado en Ciencias Forestales del Colegio de Postgraduados. Línea de investigación: Arboricultura y Dasonomía Urbana. SNI I.

Últimas publicaciones:

Morales-Gallegos, L.M., Martínez-Trinidad, T., y Mohedano-Caballero, L. (2021). El espacio ocioso urbano como alternativa para la creación de áreas verdes en Texcoco. *Revista Cubana de Ciencias Forestales*, 9(3), 423-439. https://cfores.upr.edu.cu/index.php/cfores/article/view/714/html

Martínez-Trinidad, T., Hernández-López, P., López-López, S.F., y Mohedano-Caballero, L. (2021). Diversidad, estructura y servicios ecosistémicos del arbolado en cuatro parques de Texcoco mediante i-Tree Eco. *Revista Mexicana de Ciencias Forestales, 12*(67), 202-223. DOI: https://doi.org/10.29298/rmcf.v12i67.880

Saavedra-Romero, L., Martínez-Trinidad, T., Alvarado-Rosales, D., Hernández-de la Rosa, P., y Villa Castillo, J. (2021). Damaging agents and tree's health condition in an urban forest. *Open journal of Forestry, 11*(3), 238-253. DOI: 10.4236/ojf.2021.113016

c Ph.D. por la Universidad Estatal de Colorado, Profesor Investigador Titular del Posgrado en Ciencias Forestales del Colegio de Postgraduados. Línea de investigación: Geomática y Manejo forestal. SNI I

Últimas publicaciones:

Reyes-García, O., Vaquera-Huerta, H., Rendón-Sánchez, G., y Valdez-Lazalde, J.R. (2021). Estimación de riesgo de ocurrencia de heladas aplicando teoría de valores extremos. *Tecnología y Ciencias del Agua, 12*(6), 328-362. https://doi.org/10.24850/j-tyca-202 1-06-08

Carrillo, G., Andrade, J.L., Valdez-Lazalde, J.R., Reyes, C., y Hernández-Stefanoni, J.L. (2021). Characterizing spatial and temporal deforestation and its effects on Surface urban heat islands in a tropical city using Landsat time series. *Landscape and Urban Planning*, 217(4), 1-13. https://doi.org/10.1016/j.landurbplan.2021.104280

Ortiz, A., Valdez-Lazalde, J.R., Ángeles-Pérez, G., De los Santos-Posadas, H.M., Scheider, L., y Aguirre-Salgado, C.A. (2021). Sinergia de datos espectrales Landsat, climáticos y LiDAR para el mapeo de biomasa aérea en selvas medianas de la península de Yucatán, México. *Revista Chapingo serie Ciencias Forestales y del Ambiente*, 27(3), 383-400. DOI: 10.5154/r.rchscfa.2020.08.050

d Ph.D. por la Universidad de Trent, Investigador del CENID-COMEF del Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias. Línea de investigación: Sistemas de Información Geográfica y Sensores Remotos, SNI I

Últimas publicaciones:

Velasco-Bautista, E., Romero-Sánchez, M.E., Meza-Juárez, D., y Pérez-Miranda, R. (2021). Assessment of the effect of six methods of analysis and different simple sizes for biomass estimation in grasslands of the state of Puebla, Mexico. *Land*, *10*(11), 1194. https://doi.org/10.3390/land10111194

Correa-Díaz, A., Romero-Sánchez, M.E., y Villanueva-Diaz, J. (2021) The greening effect characterized by the normal difference vegetation index was not coupled with phenological trends and tree growth rates in eight protected mountains of central Mexico. *Forest Ecology and Management,* 469(2), 119402. https://doi.org/10.1016/j.foreco.20 21.119402

Bravo-B., C., Martínez-Trinidad, T., Romero-Sánchez, M.E., Valdez-Lazalde, J.R., y Benavides-Meza, H. (2020). The analytic hierarchy process for selection of suitable trees for Mexico City. *iForest-Biogeosciences and Forestry*, 13(6), 541-547. https://doi.org/10.3832/ifor3481-013

e Ph.D. por la Universidad de Tulane, Profesor Investigador Titular del Posgrado en Estadística del Colegio de Postgraduados. Línea de investigación: Bioestadística, SNI I.

Últimas publicaciones:

Reyes-García, O., Vaquera-Huerta, H., Rendón-Sánzhez, G., y Valdez-Lazalde, J.R. (2021). Estimación de riesgo de ocurrencia de heladas aplicando teoría de valores extremos. *Tecnología y Ciencias del Agua, 12*(6), 328-362. https://doi.org/10.24850/j-tyca-202 1-06-08

Rangel, A., Santacruz, A., Córdova-Téllez, L., García-Rodrígeuz, J.G., Cervantes-Ortiz, F., Vaquera-Huerta, H., y Cuenca-Salgado, J.A. (2021). Adaptación y selección de maíces nativos en la región del bajío de México por su caracterización morfológica. *Revista Fitotecnia Mexicana*, 44(2), 241. https://revfitotecnia.mx/index.php/RFM/article/view/870

Muñoz, C., Vaquera-Huerta, H., Gallegos-Sánchez, J., Becerril-Pérez, C.M., Tarango-Arambula, L.A., Bravo, A. y Cortez-Romero, C. (2021). Influence of FecGE mutation on the reproductive variables of Pelibuey ewes in the anestrus period. *Tropical Animal Health and Production*, 53(2), 328. https://doi.org/10.1007/s11250-021-02755-7

tomtz@colpos.mx

Información adicional

Paginación electrónica : e24.81200

