

La Granja. Revista de Ciencias de la Vida

ISSN: 1390-3799 ISSN: 1390-8596 sserranov@ups.edu.ec

Universidad Politécnica Salesiana

Ecuador

ABSORCIÓN DE PLOMO DE SUELOS ALTAMENTE CONTAMINADOS EN ESPECIES VEGETATIVAS USADAS PARA CONSUMO ANIMAL Y HUMANO

Coyago, Elena; Bonilla, Sara

ABSORCIÓN DE PLOMO DE SUELOS ALTAMENTE CONTAMINADOS EN ESPECIES VEGETATIVAS USADAS PARA CONSUMO ANIMAL Y HUMANO

La Granja. Revista de Ciencias de la Vida, vol. 23, núm. 1, 2016

Universidad Politécnica Salesiana, Ecuador

Disponible en: https://www.redalyc.org/articulo.oa?id=476051461004

2017. Universidad Politécnica Salesiana 2017. Universidad Politécnica Salesiana

Esta obra está bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivar 4.0 Internacional.

Artículos

ABSORCIÓN DE PLOMO DE SUELOS ALTAMENTE CONTAMINADOS EN ESPECIES VEGETATIVAS USADAS PARA CONSUMO ANIMAL Y HUMANO

LEAD ABSORPTION IN HIGHLY CONTAMINATED SOIL OF VEGETATIVE SPECIES USED FOR ANIMAL AND HUMAN CONSUMPTION

Elena Coyago elena.coyago@hotmail.com *Universidad Politécnica Salesiana, Ecuador* Sara Bonilla sbonilla@ups.edu.ec *Universidad Politécnica Salesiana,, Ecuador*

La Granja. Revista de Ciencias de la Vida, vol. 23, núm. 1, 2016

Universidad Politécnica Salesiana, Ecuador

Recepción: 12 Diciembre 2014 Publicación: 22 Junio 2016

Redalyc: https://www.redalyc.org/articulo.oa?id=476051461004

Resumen: El presente trabajo evaluó la capacidad de absorción de plomo de tres especies vegetativas: Amaranto Hybridus (amaranto), Beta Vulgaris (acelga) y Medicago sativa (alfalfa); las tres especies fueron germinadas en semilleros, usando tierra negra y tierra mezcla, y replantadas en suelos contaminados artificialmente con concentraciones de 2,5, 5 y 10 % de plomo. Con la finalidad de determinar la cantidad absorbida en diferentes tiempos, la evolución de la absorción de plomo en las diferentes especies vegetativas fue medida utilizando la técnica de digestión ácida y cuantificada en un espectrofotómetro de absorción atómica a 0, 20, 30, 45, 60 y 90 días de exposición. La absorción de plomo se vio influenciada directamente por la biomasa generada. El amaranto presentó etapas de desintoxicación, mientras que la alfalfa y acelga presentaron una absorción continua, este factor involucra un problema potencial en seguridad alimentaria ya se evidencia una retención del contaminante en la estructura vegetativa, provocando la contaminación de animales y humanos por consumo directo en zumos o precocidos de estas plantas.

Palabras clave: Contaminación alimentaria, Amaranto, Alfalfa, Acelga, Plomo.

Abstract: This study evaluated the ability of absorbing lead in three vegetative species: Amaranthus hybridus (amaranth), Beta vulgaris (beet) and Medicago sativa (alfalfa); the three species were germinated in seeds with black soil and a soil mix, and were replanted in artificially contaminated soil at concentrations of 2.5, 5 and 10 %. In order to determine the amount of lead absorbed at different times, the evolution of lead absorption in different vegetative species were measured using the acid digestion technique and quantified by an atomic absorption spectrophotometry at 0, 20, 30, 45, 60 and 90 days of exposure. The lead absorption was directly influenced by the generated biomass. Amaranth stages presented detoxification, while the beet and alfalfa showed a continuous absorption, this involves a potential problem in food safety as it retains the contaminant in the vegetative structure, causing contamination of animals and humans by direct consumption in juices or the precooked vegetal.

Keywords: Food contamination, Amaranth, Beets, Alfalfa, Soil, Lead.

1 Introducción

El desarrollo industrial, la urbanización acelerada, la mala disposición de desechos, entre otros, incrementan los nive- les de contaminación de suelo, aire y agua (Roca, 2009). El agua contaminada en muchas ocasiones es utilizada para re- gar cultivos, provocando la acumulación de contaminantes en el suelo, la vegetación y a su vez la inminente contaminación de animales y humanos que reciben el contaminante en forma preconcentrada (OMS, septiembre 2013; Krueger et al., 2013; Dueñas, 2014).

Uno de los mayores contaminantes son los metales pe- sados, los cuales son ampliamente utilizados en la agricultu- ra, minería, fundición, galvanoplastia, refinado de oro, ga- solina, explosivos, entre otros (Gupta et al., 2013; Infante et al., 2013).

Los metales pesados son elementos químicos que po- seen peso atómico entre 63,55 (Cu) y 200,59 (Pb) y en con- centraciones altas pueden ser tóxicos para el suelo, plantas y animales (Rodríguez et al., 2006a,b; Gunnar, 2012).

Asimismo, los metales pesados según su origen pueden clasificarse en: a) Geogénicos: cuando proceden de la ro- ca madre en la que se formó del suelo (Diez et al., 2009) y b) Antropogénicos: cuando proceden de residuos peligro- sos derivados de actividades industriales, agrícolas, mine- ras, residuos sólidos urbanos, entre otros (Falcó y Martí, 2012). Según su función biológica pueden dividirse en: a) Oligoelementos o micronutrientes: requeridos en pequeñas cantidades para que los organismos completen su ciclo vital (Benoit y Stephen, 2010) y b) Sin función biológica cono- cida: donde presentan la propiedad de acumularse en los organismos vivos y pueden resultar altamente tóxicos como Cd, Hg, Pb, Cu, Sb, Bi (Alcalá et al., 2009).

La acumulación de metales pesados en las plantas in- hibe o activa algunos procesos enzimáticos que afectan la productividad (Mayank et al., 2011), dando como resulta- do una posible vía de entrada de estos metales en la cadena alimenticia.

Estudios realizados por (Adesodun et al., 2010; Agudelo et al., 2009; Babula et al., 2012; Chinmayee et al., 2012; DeSouza et al., 2012), entre otros, señalan que los proce- sos de fitorremediación utilizan variedades de plantas que sirven para consumo humano y animal como el maíz (Zea mays) (Suthar et al., 2014), mostaza parda (Brassica jun- cea) (López y Torija, 2006), nabo (Brassica rapa) (Mateo, 2008), amaranto (Amaranthus hybridus) (Salas y Borado- nenko, 2009; Peralta, 2009; Chinmayee et al., 2012), gira- sol (Helianthus annuus) (Flores, 2010), entre otras especies alimenticias.

Específicamente, el plomo es un metal carente de valor biológico, debido a su tamaño y carga puede sustituir al cal-

cio acumulándose en los tejidos óseos (Qaisar et al., 2012; OMS, septiembre 2013), esta absorción dependerá princi- palmente del estado nutricional del individuo, siendo ma- yor cuando la dieta es pobre en calcio, hierro y proteínas (NOM, 2002).

Así, el aumento de poblaciones industrializadas y los procesos de contaminación asociados, se han convertido en una amenaza latente en la producción de alimentos de ori- gen vegetal y animal, el deterioro inminente de la calidad de los mismos y un riesgo potencial para la salud de los humanos (Armas y Castro, 2009). Según varios estudios de sue- los contaminados y plantas alimenticias en las inmediacio- nes de industrias que utilizaban plomo, se encontró que las concentraciones del metal en el suelo fueron alrededor de: 5 906 a 171 mg Pb/kg de suelo en Madrid (Cala y Kunimine, 2003), 24 600 mg Pb/kg de suelo en la India (Fakayode y Chianwa, 2002), 138 mg Pb/kg en hortalizas de la Habana, Cuba (Olivares et al., 2013), 51 000 mg Pb/kg de suelo en Canadá (Salin y Skinner, 1995), 37 600 mg Pb/kg de suelo en El Salvador (Herrera, 2009), 11 113 mg Pb/kg de suelo en la ciudad de Maracay (Carrasquero, 2006). En Ecuador, se ha detectado la presencia de concentraciones de plomo en diferentes cultivos: 8,70 mg Pb/kg en cultivos de café (coffea arábiga) (Garzón, 2006; Betancourt, 2009), 0,24 a 5,36 ppm en suelos de cultivo para banano, cacao, café, palma y plátano (Félix et al., 2012). Así la Organización de las Naciones Unidas para la Agricultura y la Alimentación (FAO, 2010), presentó la preocupación frente al incremento de la contaminación alimentaria involucrando el control en "las materias primas utilizadas, la manipulación y todas las fa- ses de elaboración, transporte, almacenamiento y venta de alimentos" (FAO, 2010).

Debido a estos requerimientos los organismos ecuato- rianos han generado varias normas que ayudan a mante- ner un control de la contaminación en productos alimenti- cios, así se puede mencionar la norma NTE INEN 707:2010 (INEN, 2010), CPE INEN-CODEX CAC/RCP 56 (CPE,

2013; CODEX, 2014), entre otras; estas normas ayudan a buscar alternativas ambientalmente sustentables de regene- ración de suelos que provoquen impactos positivos, benefi- ciando el consumo de productos saludables para los huma- nos y resguardando la seguridad alimentaria.

En vista de la importancia de la contaminación de es- pecies vegetativas con plomo y la poca información existe a cerca del proceso de absorción, este estudio fue llevado a cabo con el objetivo de evaluar la cantidad de plomo ab- sorbida por Amaranthus hybridus (amaranto), Beta vulgaris (acelga) y Medicago sativa (alfalfa) en diferentes tiempos.

Materiales y Métodos

2.1 Selección de especies vegetativas

Previo a la experimentación, se realizó una investigación bibliográfica para seleccionar una muestra control y dos diferentes especies vegetativas alimentarias.

La mayoría de especies investigadas presentaron sus- ceptibilidad en ausencia de agua, por tanto el amaranto fue seleccionado como muestra control dentro del estudio. La Figura 1 señala las semillas de

las dos especies vegetativas que son ampliamente utilizadas como forraje, alimento para humanos, son ricas en nutrientes, están listas para la cosecha en uno o dos meses y además se desarrollan en climas fríos a templados; estos cultivos son de rebrote y de corta duración y presentan resistencia a plagas, sequías y condi- ciones ambientales.

Por tanto la muestra control fue el amaranto (Amarant- hus hybridus) que es una especie usada en procesos de fi- torremediación y una muestra de acelga (Beta vulgaris) y alfalfa (Medicago sativa), que fueron seleccionadas consi- derando los siguientes aspectos: a) Son usadas para consu- mo humano y animal b) Son utilizadas en los procesos de fitorremediación de plomo c) Son resistentes a las condicio- nes ambientales y d) Son resistentes a plagas.

Las semillas certificadas de las especies vegetales selec- cionadas fueron adquiridas en el Instituto Nacional Autó- nomo de Investigaciones Agropecuarias (INIAP), estación Santa Catalina.

Los semilleros fueron construidos utilizando tierra negra sin tratamiento y una mezcla de tierra negra, cascajo y abono orgánico en proporciones 3:1:1 (tierra-mezcla), los cuales fueron sometidos a las mismas condiciones de temperatura y humedad; además albergaron un solo grupo de plantas a estudiar.

Figura 1. Semilleros

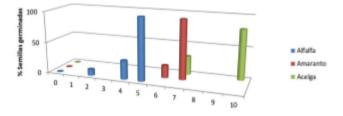


Figura 2. Porcentaje de germinación de semillas en tierra negra.

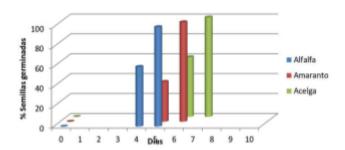


Figura 3. Porcentaje de germinación de semillas en tierra mezcla.

Los semilleros fueron construidos utilizando bolsas plásticas de color negro, necesarias para retener la hume- dad del suelo, provocar la germinación de la semilla y el crecimiento de la planta. Las bolsas estuvieron provistas de orificios necesarios para el drenaje del agua en exceso a una temperatura y humedad ambiental máxima promedio

de 23#C y 90 % y una mínima de 11#C y 41 % respectivamente.

Cada semillero fue construido utilizando 40 bolsas con tres semillas para cada especie como se muestra en la Figu- ra 1, las cuales se mantuvieron dentro del semillero por un lapso de 40 días y en cada uno de ellos se controló la tasa de germinación, crecimiento y mortalidad de las plántulas como se muestra en la Figura 2 y 3.

La adición de agua a los semilleros fue por aspersión, el cual aseguró la humectación uniforme del suelo. Se colocó en el suelo de los semilleros una sola dosis de fertilizan- te comercial, que ayudó a mantener el vigor de las plantas; luego de la germinación de las semillas, se dejó transcurrir 30 días hasta que las plántulas alcancen la madurez para el trasplante.

El análisis de pH en suelos no contaminados se deter- minó utilizando la norma AST D4972 (RECNAT, 2002; ASTM, 2014).

2.3 Trasplante y cuantificación de plomo en especies vegetativas seleccionadas utili-zando la técnica de espectrofotometría de absorción atómica

Las plantas germinadas en semilleros fueron trasplantadas en una matriz homogénea de suelos contaminados con plo- mo, en concentraciones de 2,5, 5 y 10

La cuantificación de plomo correspondió a plantas sin y con exposición de plomo y monitoreadas a 0, 20, 30, 45, 60 y 90 días, dicha cuantificación se llevó a cabo por tripli- cado. Las plantas seleccionadas para la cuantificación fue- ron extraídas del sustrato de forma aleatoria, lavadas para desprender exceso de tierra, secadas a temperatura ambien- te, troceadas en su totalidad y almacenadas en congelación hasta el respectivo análisis.

Cada muestra fue sometida a un proceso de digestión ácida previa cuantificación utilizando la técnica de espec- trofotometría de absorción atómica, empleando el método EPA 3010a, rev. 01, 1992; Standard Methods ed-21-2005, 3500 (EPA, 2005) con un límite de detección de 5 a

125 mg/Kg. El proceso de digestión se realizó en un digestor marca Buchi Scrubber Modelo B414, adicionando 50 mL de ácido nítrico Merck de pureza 69 % con 35 min de tiem- po de digestión, filtrado y aforo a 50 mL con una solución de ácido nítrico al 3 % y posterior lectura en el espectrofo- tómetro de absorción atómica Perkin Elmer 3300.

3 Resultados y discusión

3.1 Germinación de semillas

Los suelos utilizados para la germinación de semillas pre- sentaron valores de pH de 7,1 para tierra negra y 7,5 para tierra-mezcla, tratándose de un suelo calificado como neu- tro y medianamente alcalino según lo expuesto por la norma ASTM D4972.

La germinación en tierra negra reportó valores superio- res al 75 % y tierra mezcla al 100 %, favoreciendo el desa- rrollo de las especies según lo expuesto por Torres et al., (2007), en el que se debe superar el 60 % de germinación para que el desarrollo de las plantas sea óptimo; por otra parte los primeros brotes aparecieron a los 2, 5 y 7 días para alfalfa, amaranto y acelga respectivamente, mientras que para tierra mezcla aparecieron a los 4, 5 y 7 días, estos valo- res concuerdan con estudios de germinación realizados por (Botero, 2009; Torres et al., 2007; Botello, 2014).

Luego de haber transcurrido cuatro semanas, el follaje, grosor, sistema radicular y altura de las plantas germinadas

en tierra mezcla fue mayor que las germinadas en tierra ne- gra, con una altura promedio de 8 y 12 cm respectivamente como se observa en la Figura 4 y 5, este efecto se debió a la adición de abono orgánico contenido en tierra mezcla con- cordando con estudios realizados por (Guanopatín, 2012; Chamizo et al., 2009; Redín, 2009).

Figura 4. Plántulas germinadas en tierra negra, a las cuatro semanas.

Figura 5. Plántulas germinadas en tierra-mezcla, a las cuatro semanas

3.2 Trasplante y cuantificación de plomo en especies vegetativas seleccionadas utili-zando la técnica de espectrofotometría de absorción atómica

El sustrato contaminado con plomo en concentraciones de 2,5, 5 y 10 % como se observa en la Figura 6 y Tabla 1, con- sistió de una mezcla de cenizas de plomo (reciclado de ba- terías automotrices) y tierra cancagua caracterizado por ser un suelo común en el norte y sur de Quito según lo expuesto por Jácome, (2011). El plomo y la cancagua fueron mezcladas hasta obtener un sustrato homogéneo, el mismo que fue colocado en macetas plásticas y el cual reportó valores de pH de 6, que correspondió a suelos moderadamente ácidos según lo expuesto por ASTM, (2014) y NOM, (2002).

Figura 6. Preparación de suelos contaminados con plomo.

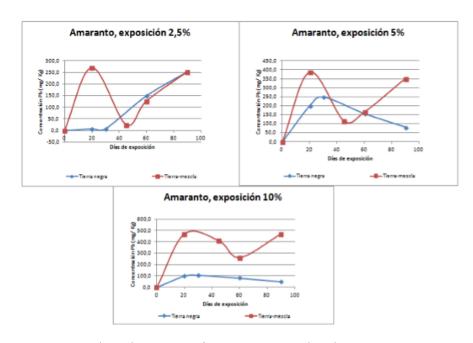


Figura 7. Plántulas germinadas en tierra-mezcla, a las cuatro semanas.

Ítem	Concentración p/p	Masa Pb (g)	Masa tierra (g)	Masa tierra contaminada (g)	pН
Suelo 2,5 % Pb (M1)	2,5	150	5850	6000	6,2 _a
Suelo 5 % Pb (M2)	5	300	5700	6000	6,0 _a
Suelo 10% Pb (M3)	10	600	5400	6000	6,0 _a

Letras subindices diferentes en la Tabla, señalan diferencia significativa.

Tabla 1. Proporciones de mezcla para suelos contaminados.

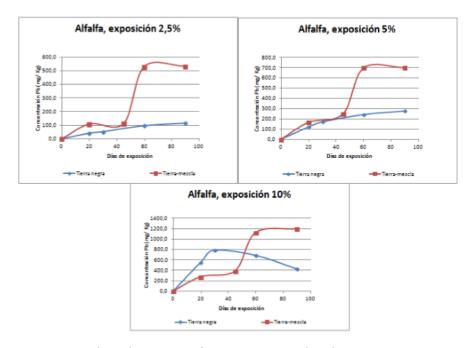


Figura 8. Plántulas germinadas en tierra-mezcla, a las cuatro semanas.

En la Figura 7 se muestra la evolución de absorción de Plomo en plantas de amaranto, el cual presentó un pico de absorción a los 20 días para especies con mayor biomasa o especies germinadas en tierra mezcla y posterior a esta fase

empezó nuevamente la etapa de absorción de contaminante llegando a los 90 días a valores similares a los absorbidos a los 20 días; en especies con menor biomasa o especies germinadas en tierra negra, el efecto inicial de absorción empezó nuevamente la etapa de absorción de contaminante llegando a los 90 días a valores similares a los absorbidos a los 20 días; en especies con menor biomasa o especies germinadas en tierra negra, el efecto inicial de absorción hasta los 20 días se repitió, diferenciándose en la etapa de desorción la cual se prolongó hasta los 90 días, esto pudo deberse a que la capacidad de fotosíntesis en estas especies es menor debido a la baja biomasa existente, y las especies no logran recuperar el poder de absorción de contaminantes generando un proceso de protección como señala Agudelo, et al., (2009).

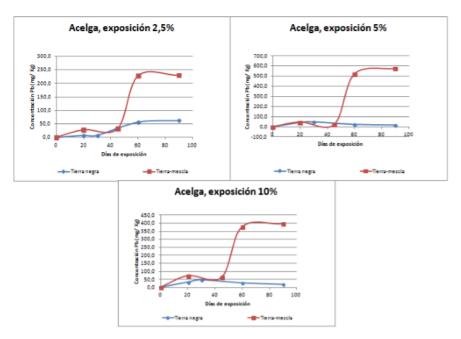


Figura 9. Plántulas germinadas en tierra-mezcla, a las cuatro semanas.

Las plantas germinadas en tierra mezcla presentaron mayor absorción de contaminante que las plantas germina- das en tierra negra, este efecto se debió a la cantidad de biomasa generada por cada especie, quedando comprobado lo expuesto por Agudelo, et al., (2009) y Mahdieh, et al., (2013), que señalan que la absorción de metales pesados en plantas depende de la biomasa que estas contengan, por tan- to a mayor biomasa mayor es el porcentaje de absorción de contaminante.

Además se puede observar que mientras aumenta la concentración de contaminante la capacidad de absorción de plomo es mayor, llegando a valores de absorción de 500

mg/ Kg de materia húmeda, por otra parte mientras se incre- menta la concentración de contaminante el amaranto pre- senta dificultad para desintoxicarse, atrapando grandes can- tidades de plomo en su estructura, por tanto los procesos de desintoxicación de las especies vegetativas se convier- ten en un beneficio para la seguridad alimentaria a expensas de provocar procesos no efectivos de descontaminación de suelos.

La alfalfa expuesta a diferentes concentraciones de con-taminación por plomo como se muestra en la Figura 8, pre- sentó un proceso de absorción paulatino llegando a los 60 días a valores de 1201 mg/Kg de materia húmeda en plantas germinadas en tierra mezcla; este efecto se repite en plantas de acelga como se muestra en la Figura 9, llegando a concentraciones de plomo absorbido de 529 mg/Kg de materia húmeda. La alfalfa y la acelga presentan una transición de absorción de plomo durante un periodo de tiempo y luego continuaron absorbiendo contaminante sin presentar desin-toxicación como ocurrió en el amaranto, además se observó

que las plantas germinadas en tierra negra presentaron un decaimiento de absorción de contaminante luego de llegar a un cierto nivel, mientras que las plantas de alfalfa no pre- sentaron este decaimiento hasta los

90 días, este fenómeno sugiere que puede tratarse de una planta hiperacumuladora ya que el desarrollo de la planta no se ve afectada cuando incrementa el nivel de contaminante como señala Sarvajeet, et al., (2012) y Marrero, et al., (2012).

La diferencia en absorción de plomo en las especies ve- getativas radica en la cantidad de biomasa generada durante la germinación, la cual hace que la planta mantenga el vi- gor durante el proceso de absorción y retención de plomo en la estructura vegetativa, por tanto a mayor cantidad fo- liar mayor cantidad de plomo absorbido según lo expuesto por Mahdieh, et al., (2013); este efecto generaría problemas de contaminación a los seres humanos y animales, ya que el metal pesado es atrapado por el tejido vegetal y permanece en la estructura sin presentar liberación del mismo debido a que el consumo habitual de estas especies en el caso de ani- males es de forma directa, mientras que para los humanos la ingesta es por medio de cocción en el caso del amaran- to, germinados y sumos para la alfalfa y precocidos para la acelga, por tanto la incidencia y acumulación en los huma- nos es inminente.

La alfalfa al igual que el amaranto a medida que incre- mentó la concentración de contaminante presentó valores superiores de absorción, esto pudo deberse a que la estruc- tura vegetativa y fibrosa de la planta facilitó la absorción, mientras que la acelga tiene estructura menos fibrosa difi- cultando el proceso tal como señala Zhou, et al., (2014) y Flores, et al., (2015); por otra parte la alfalfa y la acelga presentaron mayores valores de absorción debido a que son especies que están constantemente generando nuevos bro- tes, los cuales se encuentran absorbiendo continuamente el contaminante.

La Agencia Española de Seguridad Alimentaria y Nutri-ción (AESAN) en el año 2012, presentó un listado de pro-ductos que son susceptibles a la acumulación de metales pe-sados entre ellos se encontró la acelga, sugiriendo que para niños menores de 1 año se mantenga todos los controles del caso, ya que tres ingestas de acelga contaminada (600

mg Pb/ Kg de acelga) en una dieta de 200 g serán sufi- ciente para sobrepasar los 10 mg de Pb/dL de sangre esta- blecido por la OMS. Por tanto es recomendable que previo a etapas de cultivos de especies vegetativas destinadas a con- sumo humano se realice análisis de metales pesados en los suelos de cultivo para evitar problemas de contaminación alimentaria.

4 Conclusiones

La especie Amaranthus hybridus (amaranto) presentó un proceso de desintoxicación de la planta, es decir liberación de plomo de la estructura vegetal, el cual nuevamente fue depositado en el suelo recontaminándolo, esto puede cons- tituir un beneficio para la no contaminación de animales y humanos.

Medicago sativa (alfalfa) y Beta vulgaris (acelga) du- rante el tiempo de estudio (90días) presentaron un proceso de absorción de plomo sin mostrar desintoxicación de la planta, esto sugiere que pueden tratarse

de especies hiper- acumuladoras y potencialmente peligrosas para la seguridad alimentaria.

La adición de abono o nutrientes previo a la germina- ción de las especies, fue un factor determinante para la fito- rremediación, ya que esto ayudó a que las plantas presenten abundante sistema radicular, un mayor crecimiento, fron- dosidad de la planta, mejores características al momento de su trasplante al suelo contaminado generando mayores con- centraciones de absorción de plomo en plantas germinadas en tierra mezcla.

Finalmente, hay que mencionar que ell proceso de fito- rremediación es una técnica relativamente nueva y econó- micamente rentable, especialmente porque se puede traba- jar con especies menores de ciclo corto y que pueden captar gran cantidad de metales pesados depurando el suelo, pero por otro lado la mala disposición de dichas especies podría provocar intoxicaciones severas y afectaciones a la seguridad alimentaria.

Referencias

- Adesodun, J., M. Atayese, T. Abbaje, B. Osadiaye, O. Mafe y A. Soretire. 2010. Phytoremediation Potentials of Sun- flowers (Tithonia diversifolia and Helianthus annuus) for Metals in Soils Contaminated with Zinc and Lead Nitra- tes. Water Air Sail Pollut. 7: 195–201.
- Agudelo, L., K. Macias y A. Suárez. 2009. Fitorremedia- ción: la alternativa para absorber metales pesados de los biosólidos. Red Revista Lasallista. 6: 57–60.
- Alcalá, J., M. Sosa, M. Moreno, R. Juan, Q. C. y C. T. et al.. 2009. Metales pesados en suelo urbano como un indica- dor de la calidad ambiental: Ciudad de Chihuahua, Méxi- co. Argentina: B-Geobotánica y Fitogeografía IADIZA (CONICET). B: 53–69.
- Armas, T. y D. Castro. 2009. Impacto de la contaminación ambiental sobre los cultivos: metales pesados. Ciencia y Tecnología de Alimentos, 17(7): 1-8.
- ASTM. 2014. Standard test method for pH of soils. ASTM D4972, 6.
- Babula, P., V. Adam, L. Havel y R. Kisek. 2012. Cadmium Accumulation by Plants of Brassicaceae Family and Its Connection with Their Primary and Secondary Metabo-lism. En N. Anjun, I. Ahmad, E. Pereira, A. Duarte, S. Umar, & N. Khan. The Plant Family Brassicaceae. Contribution Towards Phytoremediation. Moscú: Edi-torial Board: 71–98.
- Benoit, V. y G. Stephen. 2010. Phytoremediation of chlorinated solvent plus. En A. AECOM Environment, In Situ Remediation of Chlorinated Solvent Plumes. Phi-ladelphia: 1–8.
- Betancourt, O.. 2009. Minería y Contaminación en Ecua- dor. ACD Consulting. 1: 4.
- Botello, N.. 2014. Producción hidropónica de dos varieda- des de acelga (Beta vulgaris var. cicla) con tres solucio- nes nutritivas en el D-5 de la ciudad de El Alto. Univer- sidad Mayor de San Andrés. 1: 1–44.
- Botero, B. 2009. Los germinados: Alimento y medicina natural. Germinados. 6: 1–8.

- Cala, V. y Y. Kunimine. 2003. Distribución de plomo en suelos contaminados en el entorno de una planta de reci- claje de baterías ácidas. Revista Internacional de Con- taminación Ambiental. 9: 109–115.
- Carrasquero, A.. 2006. Determinación de los niveles de contaminación con plomo en los suelos y polvo de las calles de la ciudad de Maracay. Agronomía Tropical. 16: 237–252.
- Chamizo, A., R. Ferrera, M. Gonzáles y C. Ortiz. 2009. Ino- culación de alfalfa con hongos micorrízicos arbusculares y rizobacterias en dos tipos de suelo. TerraLatinoame- ricana. 27(3,9): 197–205.
- Chinmayee, D., B. Mahesh, S. Pradesh y I. Mini. 2012. The Assessment of Phytoremediation Potential of Inva-sive Weed Amaranthus Spinosus L. Appl. Biochem Bio-technol. 10: 1550–1559.
- CODEX. 2014. Programa conjunto FAO/OMS sobre nor- mas alimentarias. Organización de las Naciones Uni- das para la agricultura y la alimentación. Comisión del Codex Alimentarius: 135.
- CPE, I.. 2013. Código de prácticas para la prevención y reducción de la presencia de plomo en los alimentos. (CAC/RCP 56-204, IDT). INEN. CPE INEN-CODEX CAC/RCP 56: 12.
- DeSouza, E., L. Guimaraes, E. Chaves, B. Ribeiro, E. Dos- Santos y E. DaCosta. 2012. Assessing the Tolerance of Castor Bean to Cd and Pb for Phytoremediation Purpo- ses. Biol Trace Elem Res. 8: 93–100.
- Diez, J., P. Kidd y C. Monterroso. 2009. Biodisponibilidad de metales en suelos y acumulación en plantas en el área de Trás-os-Montes (NE Portugal): influencia del material original. España: Sociedad española de la Ciencia del suelo. 17: 313–328.
- Dueñas, J.. 2014. Propuesta de diseño en batch para remo- ción de plomo (III) desde solución acuosa, empleando un material adsorbente cubano. Revista estudiantil nacio- nal de Ingeniería y arquitectura RENIA. 5: 40–44.
- EPA. 2005. Acid digestion of aqueous samples and extracts for total metals for analysis by FLAA or ICP Spectros- copy . Standard methods ed-21. EPA 3010a: 5.
- Fakayode, S. y P. Chianwa. 2002. Heavy metal contami- nation of soil, and bioaccumulation in Guinea grass (Pa- nicum Maximun) around Ikeja Industrial Estate, Lagos, Nigeria. Environmental Geology. 6: 145–150.
- Falcó, G. y J. Martí. 2012. Riesgo tóxico por metales pre- sentes en alimentos. España.
- FAO. 2010. Políticas de seguridad e inocuidad y calidad alimentaria en américa latina y el caribe. Chile: Orga- nización de las Naciones Unidas para la Agricultura y la Alimentación.
- Félix, I., F. Mite, M. Carrillo y M. Pino. 2012. Avances de Investigación del Proyecto Determinación de meta- les contaminantes en cultivos de exportación y su repre- cusión sobre la calidad de los mismos. VII Congreso Ecuatoriano de la Ciencia del Suelo. 8.
- Flores, A.. 2010. Influencia en seis híbridos de girasol (He-lianthus annus), con aplicación de boro, su comporta- miento agronómico y el rendimiento, en la granja experimental E.C.A.A. Quito: Pontificia Universidad Católi- ca del Ecuador. Sede Ibarra.
- Flores, M., S. Hattab, S. Hattab, H. Boussetta, M. Banni y L. Hernández. 2015. Specific mechanisms of tolerance to copper and cadmiun are

- compromised by a limited concentration of glutathione in alfalfa plants. Plant Science. 233: 165–173.
- Garzón, A.. 2006. Informe Plomo y Cadmio en Ecuador. Quito: Ministerio de Ambiente de la República del Ecuador.
- Guanopatín, M. 2012. Aplicación de Biol en el cultivo establecido de Alfalfa (Medicago sativa). Universidad Técnica de Ambato.
- Gunnar, N.. 2012. Metales: propiedades químicas y toxi- cidad. En: enciclopedia de la OIT. España: D-INSHT (Instituto Nacional de Seguridad e Higiene en el Traba- jo).
- Gupta, D., H. Huang y F. Corpas. 2013. Lead tolerance in plantas: strategies for phytoremediation. Environ Sci Pollut Res. 12: 2150–2161.
- Herrera, K.. 2009. Evaluación de la contaminación por plo- mo en suelos del cantón Sitio del Niño Municipio de San Juan Opico departamento de la Libertad. Universidad de El Salvador. Tesis Licenciatura: 129.
- INEN. 2010. Preparados de inicio para la alimentación de lactantes. Norma Técnica Ecuatoriana NTE INEN 707:2010. INEN: 23.
- Infante, C., D. Arco y E. Angulo. 2013. Removal of lead, mercury and nickel using the yeast Saccharomyces cere- visiae. Revista MVZ Córdoba. 10: 4141–4149.
- Jácome, E.. 2011. Perforaciones y estudios del suelo. Uni-dad de Metro Quito. 2.
- Krueger, E., J. Darland, S. Goldyn, R. Swanson, R. Leh- mann, S. Shepardson y et. al.. 2013. Water Leaching of Chelated Pb Complexes from Post-Phytoremediation Biomass. Water Air Soil Pollut. 11: 1614–1618.
- López, E. y E. Torija. 2006. Caracterización y tipificación de mostazas comerciales. Universidad Complutense de Madrid. página 304.
- Mahdieh, M., M. Yazdani y S. Mahdieth. 2013. The high potential of Pelargonium roseum plant for phytoremediation of heavy metals. Environ Monit Assess. 5: 7877–7881.
- Marrero, J., I. Amores y O. Coto. 2012. Fitorremediación, una tecnología que involucra a plantas y microorganis- mos en el saneamiento ambiental. REDALYC. ORG. Red de Revistas Científicas de América Latina, El Cari- be, España y Portugal: 11.
- Mateo, J.. 2008. Prontuario de agricultura: cultivos agríco- las. España: Mundi-Prensa.
- Mayank, V., D. Rohan, K. Devendra y P. Manoj. 2011. Bio- assay as monitoring system for lead phytoremediation th- rough Crinum asiaticum L. Environ Monit Assess. 9: 373–38.
- NOM. 2002. Salud ambiental. Niveles de plomo en sangre y acciones como criterios para proteger la salud de la po-blación expuesta no ocupacionalmente. Norma Oficial Mexicana. NOM-199-SSA1-2000: 20.
- Olivares, S., D. García, L. Lima, I. Saborit, A. Llizo y P. Pé- rez. 2013. Niveles de Cadmio, Plomo, Cobre y Zinc en Hortalizas cultivadas en una zona altamente urbanizada de la ciudad de la Habana, Cuba. Revista Internacional Contaminación Ambiental. 10: 285–294.
- OMS. septiembre 2013. Intoxicación por plomo y salud. Organización Mundial de la Salud. Nota descriptiva N# 379. URL http://www.who.int/mediacentre/factsheets/fs379/es/. Recuperado el 16 de Julio de 2014
- Peralta. 2009. Amaranto y Ataco preguntas y respuestas. Ecuador: Programa Nacional de Leguminosas y Granos Andinos. INIAP: 4.

- Qaisar, M., R. Audil, A. Sehikh, A. Muhammad y B. Muhammad. 2012. Current Status of Toxic Metals Addition to Environment and Its Consequences. En N. Anjun, I. Ahmad, E. Pereira, A. Duarte, S. Umar, & N. Khan, The plant famiy Brassicaceae. Contribution towards Phytoremediationl Moscú: Editorial Board: 35–65.
- RECNAT. 2002. Norma Oficial Mexicana NOM-021- SEMARNAT-2000 que establece las especificaciones de fertilidad, salinidad y clasificación de suelos, estudio, muestreo y análisis. Secretaría de Medio Ambiente y Recursos Naturales. página 85.
- Redín, L.. 2009. Caracterización física, química y nutricio- nal de dos ecotipos de acelga (beta vulgaris L.) cultiva- dos en el Ecuador como un aporte a la actualización de la norma INENN-1749 "Hortalizas frescas, acelga requisitos". Universidad Tecnológica Equinoccional. página 198
- Roca, A.. 2009. Contaminación de suelos por metales pe- sados. Galicia: Centro de Investigaciones Agrarias de Mabegondo. INGACAL.
- Rodríguez J., R. Valdéz, J. Lara, H. Rodríguez, R. Vásquez, R. Magallanes y et. al.. 2006a. Soil nitrogen fertilization effect on phytoextraction of Cd and Pb by tobacco (Nicotiana tabacum) l. Bioremediaton Journal. 10: 105–114.
- Rodríguez, R., A. García y R. Rodríguez. 2006b. Los re- siduos minerometalúrgicos en el medio ambiente. España: Instituto geológico y minero de España: Serie medio ambiente N-11.
- Salas, M. y A. Boradonenko. 2009. Insectos asociados al amaranto amaranthus hupocondriacus L. (amarantha- ceae) en Irapuato, Guanajuato, México. Universidad de Guanajuato. 7: 50–55.
- Salin, E. y C. Skinner. 1995. Determination of lead in soil surrounding a leadacid battery manufacturer. Water Quality Research Journal of Canada. 30: 299–307
- Sarvajeet, G., A. Naser, A. Iqbal, P. Thangavel, G. Sride- vi, A. Pacheco y et. al.. 2012. Metal Hyperaccumula- tion and Tolerance in Alyssum, Arabidopsis and Thlas- pi: An Overview. En N. Anjum, I. Ahmad, E. Pereira, A. Duarte, S. Umar, & N. Khan. The Plant Family Brassicaceae. Contribution Towards Phytoremediation. Moscú Board. 99-137
- Suthar, V., K. Memon y M. Hassa. 2014. EDTA- enhanced phytoremediation of contaminated calcareous soils: heavy metal bioavailability, extractability, and uptake by maize and sesbania. Environ Monit Assess. 12: 3957–3968.
- Torres, P., J. Siva y J. Escobar. 2007. Aplicación agrícola de lodos compostados de plantas de tratamiento de aguas residuales municipales. Livestock Research for Rural Development. 19: 12.
- Zhou, P., F. Yang, X. Ren y B. H. Y. An. 2014. Phytotoxicity of aluminum on root growth and indole-3-a acid accumu- lation and transport in alfalfa roots. Environmental and experimental botany. 104: 1–8.

