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Abstract 

 

Objective: To evaluate a group of features in a 

myoelectric pattern recognition algorithm to 

differentiate between five angular positions of the 

wrist during flexion-extension movements. 

Materials and Methods: An experimental 

configuration was made to capture the EMG and 

wrist joint angle related to flexion-extension 

movements. After that, a myoelectric pattern 

recognition algorithm based on a multilayer 

perceptron artificial neural network (ANN) was 

implemented. Three different groups were used: 

Time domain characteristics, autoregressive (AR) 

model parameters, and representation of time 

frequency using Wavelet transform (WT). Results 

and Discussion: The experimental results of 10 

healthy subjects indicate that the coefficients of the 

AR models offer the best parameters for 

classification, with a differentiation rate of 78 % for 

the five angular positions studied. The combination 

of frequency and time frequency resulted in a 

differentiation rate that reached 82 %. Conclusions: 

An algorithm based on pattern recognition of EMG 

signals was used to carry out a comparative study 

of groups of features that allow for the 

differentiation of the angular position of the wrist 

in terms of flexion-extension movements. The 

method has the potential for application in the field 

of rehabilitation engineering to detect the user’s 

movement intent. 

 

 

 

 

 

 

Keywords: Movement intent, 

electromyography signals, pattern recognition, 

machine learning techniques, artificial neural 

networks. 

 

Resumen 

 

Objetivo: evaluar un grupo de características en un 

algoritmo de reconocimiento de patrones 

mioeléctricos para discriminar cinco posiciones 

angulares de la muñeca durante los movimientos de 

flexoextensión. Materiales y métodos: se realizó 

una configuración experimental para adquirir EMG 

y ángulo articular de la muñeca, relacionado con 

los movimientos de flexión-extensión. Después de 

eso, se implementó un algoritmo de 

reconocimiento de patrones mioeléctricos basado 

en una red neuronal artificial de perceptrón 

multicapa (ANN). Se emplearon tres grupos 

diferentes: características de dominio de tiempo, 

parámetros de modelos autorregresivos (AR) y 

representación de frecuencia de tiempo usando la 

transformación Wavelet (WT). Resultados y 

discusión: los resultados experimentales de 10 

sujetos sanos indican que los coeficientes de los 

modelos AR ofrecen los mejores parámetros para 

la clasificación, alcanzando una tasa de 

discriminación del 78 % en cinco posiciones 

angulares estudiadas. La combinación de 

frecuencia y frecuencia de tiempo proporcionó una 

tasa de discriminación que alcanzó el 82 %. 

Conclusiones: se ha realizado un estudio 

comparativo de grupos de características que 

permiten discriminar la posición angular, a nivel 

del movimiento de flexo-extensión de la muñeca, 

mediante un algoritmo basado en reconocimiento 

de patrones de las señales EMG. El método tiene 

potencial aplicación en el ámbito de la ingeniería 

de rehabilitación, para la detección de la 

intencionalidad de movimiento del usuario. 

 

 

Palabras clave: intencionalidad de 

movimiento, señales de electromiografía, 

reconocimiento de patrones, técnicas de 

aprendizaje automático, redes neuronales 

artificiales. 
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Introduction 

 

Motion intent detection is a process focused on determining a user’s voluntary command, 

primarily for the control of external systems. Said detection could be achieved based on 

bioelectric signals such as the signals captured through electromyography (EMG). EMG 

analysis can be used in applications such as the diagnosis and analysis of anomalies related 

to alterations in the way movement is made, which allows for the detection of the presence 

of pathologies, and also in applications for the control of robots and exoskeletons [1].  

 

In this way, EMG signal processing is a useful tool for the detection of movement intent 

through the recording of action potentials produced by the activation of skeletal muscles, 

where the EMG signal is made up of consecutive discharges known as motor unit action 

potentials (MUAPs) [2], [3]. The EMG signal is the result of the sum of overlapping MUAPs; 

therefore, it can be broken down into the activity of each of them [4]. A non-invasive 

technique in which electrodes are placed on the surface of the skin, known as surface 

electromyography (sEMG), is preferred to record this type of signals [3]. sEMG is a safe 

technique, given that it does not require the electrode to be inserted into the skin and muscle 

and it provides information on the electrical activity of the muscle; however, the sEMG signal 

can record information from multiple muscles, show interferences from other biopotentials 

(ECG, EOG, etc.), among other drawbacks [1]. sEMG signals have different applications 

such as ergonomic assessment, neuromuscular diagnosis, commands for the control of 

prosthetic and assistive devices that have human-machine interaction (HMI), and indication 

of muscle fatigue [5], [6]. 

 

Pattern recognition-based myoelectric control has emerged as a promising alternative in 

rehabilitation systems. These systems support their classification theory on the extraction of 

information on the possible movement intent from the acquisition of surface myoelectric 

signals. The performance efficiency of the pattern recognition and classification algorithms 

lies in the implementation of three modules, which consist of pre-processing, feature 

extraction, and pattern classification. 

 

The feature extraction stage is important for classification systems because raw sEMG 

signals cannot be used directly in applications such as, for example, machine control [7]. 

Some of these feature extraction techniques include the representation of sEMG signals as 

frequency through the Discrete Fourier Transform (TDF) or as time-frequency through the 

Discrete Wavelet Transform (DWT) [8]. The sEMG signal analysis can also be performed in 

the time domain, using the root mean square (RMS) value, zero crossings (ZC), and the 

normalized energy of the signal in a specific time interval [9]. The ZC technique that counts 

the time in which the signal changes sign is among the most widely used and has been used 

as a feature of pattern recognition algorithms used for assistive device movement control 
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techniques [9], [10]. The autoregressive (AR) prediction model, which describes each sample 

of the EMG signal as a linear combination of the previous samples, has been used as a tool 

to improve the performance of the pattern recognition algorithm based on myoelectric control 

[11]. It is relevant for DWT because it removes unwanted interferences and provides 

information simultaneously in the time and frequency domains [12], and has been used with 

good results to classify intramuscular sEMG signals to differentiate normal signals in patients 

with amyotrophic lateral sclerosis or with myopathies. In this case, the coefficients generated 

by the DWT are characterized by statistical functions [8]. 

 

Despite the different strategies for feature extraction, the issue on which ones to use is a 

question that remains unanswered. Among the strategies to select the type of features to be 

used to represent the EMG signal against a classification system, we can find even the most 

basic steps, which include dismissing characteristics with large amounts of missing data, little 

variance in their distribution or eliminating those with high correlation values between two 

characteristics to avoid information redundancy. At the same time, the classification model 

has to be used to determine which features are the most appropriate for the purpose of the 

study [13], [14]. However, the selection may change depending on the classification system 

and the problem to be tackled [15], [16]. 

 

After performing feature extraction, signals are represented in a feature vector aiming for a 

classification stage [17], [18]. To perform this task, different applications use techniques such 

as linear discriminant analysis (LDA), logistic regression, k-nearest neighbors (k-NN), up to 

computationally demanding methods such as support vector machines (SVM) and artificial 

neural networks (ANN) [19]. Among the classification methods explored are ANNs, which 

are mathematical models inspired by the functional aspects of brain structures [20] and allow 

for their implementation in hardware and embedded platforms for their simple structure [20]. 

 

Research on EMG signal processing techniques–on the detection of movement intent for its 

different application areas, which include rehabilitation, myoelectric control, and diagnosis–

show that some studies aimed at the detection of hand movement focus on pronation, 

supination, flexion and extension movements [9]–[12]. Few works have been implemented 

on the range of motion of the wrist joint. This approach could be a useful tool that provides 

information on specific movements as given by the different angles in the range of motion of 

the wrist when performing the flexion-extension movement. The information on the 

estimation of the articular range of motion of the wrist from sEMG can be used to implement 

proportional myoelectric control schemes in applications ranging from assistance to motor 

rehabilitation [21], [22].  

 

This work presents the results obtained in a comparative study on the use of different groups 

of features based on the domain they were obtained: time, frequency, and time-frequency. In 

this way, it was determined which one of them works best to identify the flexion-extension 
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angle using machine learning tools. For said tools, multilayer perceptron artificial neural 

networks were used, as well as vector support machines, which were all focused on the 

classification of 5 angular positions at the wrist level, given that they are two of the most 

widely used techniques for this type of task. 

 

Methodology 

 

The methodology used is based on the analysis of the signals obtained for the study and the 

classification made to obtain the angular positions of the wrist. Figure 1 shows the block 

diagram of the methodology. Three important processes are carried out: preprocessing, 

feature extraction and a final classification stage based on machine learning techniques. 

 

Equipment and Materials  

 

The protocol requires the acquisition of sEMG signals and of the joint range of motion for 

the flexion-extension movement of the wrist. Signal acquisition is performed using 

ADInstruments’ 8-channel Powerlab 8/30 biosignal acquisition system and the Labchart 

acquisition software. In addition, the SG65 electrogoniometer from Biometrics, which 

provides an analog signal proportional to the joint range of motion, was used to obtain the 

joint range of motion information. Taking into account that the frequency range of the sEMG 

signal is between 20 Hz and 500 Hz [23], the sampling frequency of the signals was 2 kHz. 

The sEMG signals are filtered within the band of interest in Labchart (bandpass filter 

between 20 Hz and 500 Hz). 

 

Database 

 

The database was built with the sEMG signals taken from a selected group of ten healthy 

people, aged between 20 and 25 years, who voluntarily participated in the data collection. 

The acquisition was performed following the SENIAM guidelines [24], with a bipolar 

placement of the electrodes on the right forearm, on the muscles involved in the flexion-

extension movement of the hand (figure 2). Each subject performed two repetitions, 

completing a total of 20 acquisitions. During each repetition, the subject held an angular 

position of the wrist joint. Five different positions were performed from maximum flexion 

(85°) to maximum extension (-70°), covering the entire range of motion of the wrist joint 

(figure 3). During acquisition, a total of six channels were recorded for each subject, the first 

corresponding to an electrogoniometer, which produced a voltage output at a specific angle, 

and the remaining five electrodes corresponding to information from the sEMG. 
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Preprocessing 

 

The signals acquired with a 500 Hz bandwidth underwent a preprocessing stage before the 

feature extraction. Filters additional to those implemented in the acquisition equipment were 

not used to take better advantage of the bandwidth in the search for features in the obtained 

frequency range. 

 

First, signal normalization was performed to correct variations in signal amplitude for the 

different tests performed by each patient [25]. The procedure for this standardization was 

developed based on the scale. Equation (1) shows how normalization was calculated, making 

the signals range from -1 to 1: 

 

 
𝑥𝑁 =

𝑎 + (𝑥 − 𝑥𝑚𝑖𝑛)(𝑏 − 𝑎)

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛
, 𝑎 = −1 ;  𝑏 = 1, (1) 

 

where xN is the normalized version of x, from its minimum xmin and maximum xmax, ensuring 

that the normalized signal is within the interval [-1,1].  

 

After normalization, segmentation was performed, a vital process for a pattern recognition 

system in which the sEMG signal is taken and divided into time windows from which the 

features will be extracted. In this way, the signal must be divided into segments with a length 

of 200 ms to 300 ms, which allows for movements to be identified and relevant features to 

be extracted [26], [27]. For this study, this segmentation was performed at 250 ms, with 500 

samples per window and with a 50 % overlap.  

 

  
Figure 1. Block diagram of the methodology used 

Source: Own elaboration 
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Figure 2. Electrode placement for the acquisition of EMG signals 

Source: Own elaboration 

 

Feature Extraction  

 

As mentioned, the purpose of this work is to compare three different groups of features in 

the process of classifying wrist flexion-extension angles. To accomplish this, features 

extracted in the time domain are analyzed first, then features obtained through an 

autoregressive model, and finally, features in the time-frequency domain. 

Time Domain Features 

 

Features in the time domain are the most frequently used for myoelectric classification, given 

that they do not need a transformation because they are based on the amplitude of the signal 

[28]. This type of features is widely used because they are simple to obtain and have a low 

computational cost [15], [22], [29]. To this effect, the features used in this work were: i) the 

root mean square (RMS) value, calculated through expression (2), ii) the mean absolute value 

(MAV), obtained through (3), iii) the number of zero crossings, which was calculated by 

means of (4), iv) the integral of the signal through the calculation of (5), and v) the signal 

power, which is obtained through the use of (6).  
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Figure 3. Angular positions of the wrist joint performed 

Source: Own elaboration 

 

Root mean square: 

 

Multiple studies in literature have mathematically modeled the EMG signal as a random 

process [30]. The RMS value provides the best probability of estimating the EMG amplitude 

during muscle contractions under conditions of constant force and fatigue-free contraction 

[30]. Its value is used to quantify the electrical signal since it is the reflection of the 

physiological activity in the motor units 

 

 
𝑅𝑀𝑆 = √

1

𝑀
∑ 𝑥𝑚

2𝑀
𝑚=1 , (2) 

 

where M is the number of samples of signal x and xm is the value of signal x at time instant 

m. 

 

Mean absolute value: 

 

It is estimated from the sum of the absolute values and the measurement of the contraction 

levels of the sEMG signal, representing the contractile force of the muscle [31]. 

 

 𝑀𝐴𝑉 =
1

𝑀
∑ |𝑥𝑚|𝑀

𝑚=1 , (3) 

 

as in expression (2), M is the number of samples of signal x and xm is the value of signal x at 

time instant m and the operator |.| represents absolute value. 
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Zero crossings (ZC): 

 

Zero crossings count the number of times the signal passes through the zero line, that is, how 

many times has it gone from a negative value to a positive value and vice versa. The threshold 

is added to reduce the effect of noise [32]. 

 

 
𝑍𝐶(𝑥) = {

1, 𝑖𝑓 (𝑥𝑚 > 0 ˄ 𝑥𝑚+1 < 0)˅(𝑥𝑚 < 0 ˄ 𝑥𝑚+1 < 0)

0, 𝑜𝑡ℎ𝑒𝑟 𝑐𝑎𝑠𝑒𝑠
 (4) 

 

xm is the value of signal x at time instant m. 

 

Integral of the signal (IEMG): 

 

It is the sum of the absolute value of the sEMG signal amplitude. It is normally used to 

indicate the onset of muscle contraction in clinical applications. It is related to the trigger 

point of the signal sequence [33] 

 

 𝐼𝐸𝑀𝐺 = ∑ |𝑥𝑚|𝑀
𝑚=1 , (5) 

 

as in previous expressions, M is the number of samples of signal x and xm is the value of 

signal x at time instant m. 

 

Signal power: 

 

This value is obtained by adding the power of the interval of the signal under study [30], using 
the expression: 

 

 

𝐸𝑥 = ∑ |𝑥𝑚|2

𝑀

𝑚=1

 (6) 

where M is the number of samples of signal x and xm is the value of signal x at time instant 

m. 

 

After extracting this group of features, each signal window is represented by a five-value 

vector given by the features described above. Since each angular position was measured 

simultaneously by five electrodes, each one of these positions will then be represented by a 

vector of 25 features for this particular group. 
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Features Extracted from the Parameters of an Autoregressive Model 

 

The modeling of a time series can be determined through parameters that represent said 

signal. Thus, it has been reported in literature that the amplitude of an EMG signal is 

stochastic in nature and can be represented by an autoregressive (AR) model. AR models are 

widely used in pattern recognition from sEMG signals [15], [29]. In this type of model, the 

coefficients are used as a prediction model that describe each sample xi of the sEMG signal 

as a linear combination of previous samples plus a residual wi [34] and is represented by: 

 

 𝑥𝑖 = 𝛴𝑘=1
𝑛 𝑎𝑘𝑥𝑖−𝑘 + 𝑤𝑖  

(7) 

 

where 𝑎k is the k-th coefficient of the AR model, n is the order of the model, and w is Gaussian 

residual noise. A sixth order model was used for this work because previous studies have 

shown that this type of model is best suited for the representation of sEMG signals [34] and 

[35]. The Levinson-Durbin recursion was used to calculate the coefficients using the 

autocorrelation sequence according to [36]. Upon completion, a vector of seven values is 

obtained, which represents the signal window. This process was performed for each electrode 

used in the acquisition. 

 

Time Frequency Domain Features 

 

In order to use the signal representation in terms of both time and frequency, this type of 

technique has been used in recent decades since Englehart’s work [37]. One of the most 

widely used forms is DWT, where the signal is broken down through filters and analyzed in 

different frequency bands with different resolutions that provide approximation and detail 

information in the time and frequency domains simultaneously. 

 

The calculation of the discrete wavelet transform is an implementation of the wavelet 

transform using a discrete set for scales and translations, obeying defined rules, and 

decomposing a signal x[n] into a set of mutually orthogonal wavelets. The calculation process 

to obtain the decomposition of a signal x[n] through the DWT is analogous to the use of a 

filter bank [38] (see figure 4); for this purpose, we can represent this decomposition as:  

 

 𝑢𝑘[𝑛] = ∑ ℎ𝑘,1[2𝑘+1𝑛 − 𝑚]𝑥[𝑚]∞
𝑚=−∞    0 ≤ k ≤ L-1 (8) 

 

where uk[u] is each of the decompositions of input signal x[n], h1,1[n] is the scaled and 

displaced mother wavelet, and L is the number of decomposition levels. In this case, the 

signals used as bank input were each of the windows previously described in the 
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preprocessing subsection. The structure of the filter bank is comprised by a dyadic tree with 

two filters, a low-pass one and a high-pass one, and a subsampling by two in each branch, 

according to the number of filters used. For this case, three levels and a daubechies4 mother 

wavelet were used, based on the values and parameters recorded in the literature [28], [36], 

[39]. Likewise, as reported in these works, the mean, standard deviation, and power values 

were calculated and used as features for each level obtained. There is a vector of 12 features 

for each electrode used in the acquisition for this group of features. 

 

  
Figure 4. Filter banks to attain signal decomposition using a three-level DWT. 

HP: High pass, LP: Low pass 

Source: Own elaboration 

 

Classification 

This stage of the methodology describes the models used to classify the five classes 

represented by each of the proposed angles. As such, it is necessary to describe first some 

details of the data used for model training. Table 1 summarizes the number of features for 

each group used, showing the size of each entry for every case. Another important factor is 

the number of instances or patterns, given the process to obtain features. This number is given 

for each of the windows obtained, for each of the repetitions per person (20 in total); for each 

one of the angular positions, approximately 80 windows were obtained from which the 

features were extracted. In other words, there are a total of 1600 instances per position, which 

is an approximation because each subject did not hold the exact position in terms of 

milliseconds during the acquisition process. 
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Table 1. Total number of parameters for each group of features 

Groups of Features 
Total Number of 

Features 

(Entries) Group Feature Amount 

Time Domain 

RMS 1 

25 
MAV 1 
INT 1 

POW 1 
ZC 1 

Autoregressive 
Model 

Parameters 
Sixth order AR coefficients 7 35 

Time-Frequency 
Domain 

Mean for each uk[n] 4 
60 Standard deviation for each uk[n] 4 

Power for each uk[n] 4 
Source: Own elaboration 

 

The cross-validation method was used for model training using four groups (k-folds) for this 

purpose [40], [41]. In this way, each group was the result of combining the features of five 

subjects for the five wrist positions, resulting in a total of 6000 instances for training and 

2000 instances for model validation. Also, trainings were implemented with each group of 

features as well as with combinations of the groups to observe the differences, obtaining a 

total of seven classification scenarios. 

 

The measures used to compare the groups of features and the models used for the 

classification were based on the classification rate given that there are five classes: 70°, 35°, 

0°, -43°, -85 ° (figure 3). All computational experiments were performed in the Matlab© 

software through its digital signal processing and machine learning toolboxes. 

Artificial Neural Networks 

There are different artificial neural network models according to their architecture and 

training mode. For this work, multilayer perceptron (MLP) was chosen to perform the 

classification task due to its capabilities to establish relationships between input-output 

vectors in a supervised learning procedure, which in turn is due to its ability to learn complex 

nonlinear patterns by adjusting its synaptic weights that link artificial neurons with nonlinear 

activation functions [41].  
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MLP models have shown good results in the classification of sEMG signals, which is why 

they have been chosen to perform the task of position differentiation [19], [42]. In this work, 

a two-layer architecture was chosen: a hidden one and an output one. The number of inputs 

is established by the group of features to be used in training (table 1); the number of neurons 

in the hidden layer was found through experimentation, varying from one to ten neurons, and 

the number of neurons in the output is determined by the five angular positions of the wrist. 

Figure 5 shows the model used for classification, where all connections between neurons are 

forward connections. The activation functions of neurons were hyperbolic tangent in the 

hidden layer and a softmax function in the output layer. 

 

The training algorithm is resilient backpropagation [43], which shows a higher speed due to 

its modification based on the sign of the gradient. The maximum number of training epochs 

was set to 800, with a root mean square error as a cost function because its convergence was 

found through experimentation. Among the training stoppage criteria, the maximum number 

of epochs, a training error of zero, and premature stoppage were considered, with an 

observation window of 250 iterations.  

 

 

 
Figure 5. Neural network model used for classification 

Source: Own elaboration 

 

Support Vector Machines 

 

This machine learning technique, used for pattern recognition and classification, is a 

development of statistical learning theory [44]. Vector support machines, as it was mentioned 

in the introduction, have been used to work in conjunction with sEMG signals. Their main 
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function is in the differentiation stage, mainly in the detection of neuromuscular pathologies 

[19], [36], [45]–[48]. In this case, the parameter adjustment of the SVM models was 

performed in a similar way as done with neural networks. Four folds as those described above 

were also used, again performing cross-validation between the different features and five 

classes. Taking into account that this technique, by nature, has a binary classification [36], it 

was necessary to establish a multiclass SVM, which would evaluate one class against all the 

others.  

 

Initially, SVM models were developed for a classification given by a linear function [44], 

[48], and it is for this reason that it is necessary to perform a non-linear transformation 

through a kernel function. So, said transformation allows the SVM to perform a linear 

classification of a data set that originally did not have this characteristic. The kernel function 

projects data from a low dimension space to a larger dimension space, and it is in said new 

space that the initial formulation of the model is used with a linear two-class classification 

[49]. For this work, the following kernel functions were used: radial base function (RBF), 

polynomial, and quadratic, given that the basic linear function of the SVM yielded poor 

results. All these non-linear kernels allow for faster training, which facilitates the 

convergence of the algorithm, and also for the obtainment of a similarity between input 

vectors and their combinations and the suppression of as many support vector multipliers as 

possible, thus minimizing the number of support vectors required for classification. 

Results  

The three groups of characteristics, as well as combinations between them, were used in the 

classification using the MLP and SVM models. Table 2 summarizes all the results in terms 

of classification rates for each of the characteristic groups used, as well as for the 

combinations implemented. In the case of neural network classification, the best result of 

each of the four validations was used to calculate the mean and standard deviation shown in 

the table. Also, the maximum number of neurons in the hidden layer (N) is recorded to 

determine the size of the model. Also reported for the SVM classification, are the average 

values of the cross-validation of four groups and the type of kernel with which the results 

were obtained. 

 

Given that, in the case of the MLP models, experiments were performed one hundred times 

to evaluate the behavior against the initialization of the synaptic weights, figure 6 shows box 

plots for those one hundred results with the different architectures (two to ten neurons) for 

the best of the four validations used, using the features in the time domain as input. Likewise, 

figure 7 shows the best results obtained when the combination of the groups of features given 

by the AR model and the time-frequency domain is used. 
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It is possible to see that the best results were obtained by combining the features extracted 

through the AR models and the time-frequency domain (DWT), where a classification rate 

of 81.8 % and 58.3 % was obtained for the MLP and SVM models, respectively. The worst 

group of features was the one obtained through analysis measures in the time domain, with 

only a 53.1 % and 22.5 %, respectively (table 2).  

 

In the MLP models, experiments with other training parameters such as hyperbolic tangent 

activation functions in the neurons of the output layer, variation in the number of epochs and 

other cost functions were implemented, obtaining results with lower classification rates when 

compared to the values shown in table 2. In the case of SVM models, the parameter 

initialization problem is not present, since the support vectors are found in the training set, 

therefore, results will not change. Other models with a different kernel were tested without 

any improvement in the results obtained. 

 

Table 2. Results of the classification 

Scenario: Groups of 

Features 

Classification Used 

MLP N* SVM Kernel 

Time 53.10 ± 3.48 10 27.64 ± 2.34 RBF 

AR Model 77.57 ± 3.57 8 22.48 ± 1.14 RBF 

Time-Frequency 74.73 ± 3.92 9 54.41 ± 1.05 Polynomial 

Time + AR Model 77.76 ± 3.65 10 53.61 ± 6.66 Polynomial 

Time + Time-Frequency 74.55 ± 2.92 10 50.14 ± 2.83 Polynomial 

AR Model + Time-
Frequency 

81.79 ± 2.16 4 58.29 ± 2.78 Polynomial 

Time + AR Model + 
Time-Frequency 

79.34 ± 3.38 5 54.87 ± 2.95 Polynomial 

N*: Neurons in the hidden layer 

Source: Own elaboration 
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Figure 6. Best classification results using only time-domain characteristics. 

Source: Own elaboration 

 

 

[INSERTAR FIGURE 7] 

Figure 7. Best classification results using characteristics extracted from the AR Model + Time-Frequency 

Domain. 

Source: Own elaboration 

 

Discussion 

Based on the classification results obtained from the use of the different groups of features, 

it is inferred that the features based on the coefficients of the AR model are the most 

appropriate as input for the classifier for this application, with a rate of 77.57 % for the MLP 

network and 53.6 % for the SVM. These results are closely followed with 74.73 % for the 

classifier with MLP and improving to 54.4 % for the SVM based on the features obtained 

with the analysis in the time-frequency domain offered by the DWT. Regarding the general 

results for the SVM model, previous classification results for the detection of neuromuscular 

pathologies had a sensitivity of 55.6 % for binary classifiers in [50]; this is a consequence of 

using this type of classifier in multiclass problems, where the complexity of the classifier 

function is more demanding given that, for the classes considered in this work, it is not 

possible to assume distributions that represent said data [51]. 

 

Based on the classification results obtained when groups of features are combined, the first 

place is held by the combination of the groups given by AR models and the Time-Frequency 

domain. For this case, the classification rates obtained for the classifiers implemented with 
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MLP and SVM were 81.79 % and 58.3 %, respectively. These results are followed for the 

case when all features were implemented, where the classification rate values were 79.34 % 

and 54.9 %. So, based on this information it is possible to conclude that the features in the 

time domain do not contribute much information to the classification implemented. The 

reason behind this is that there is no significant difference between the use or lack thereof of 

these characteristics when used simultaneously with other groups. 

 

The results obtained in this article are consistent with the reports of previous studies. The 

works in [21], [52] used neural networks to determine the joint range of motion of the degrees 

of freedom of the wrist in a continuous angle prediction. Considering the flexion-extension 

of the wrist, in [21] results of 72.0 % ± 8.29 % in healthy subjects were reported and in [52] 

an R2 between 0.81 and 0.94 was reported. A greater number of EMG channels were used in 

said studies when compared to those used in this study, which is considered as a difference 

that did not allow for an equitable comparison. However, in the work of Jiang et al. in [21], 

results were reported in the range between 79 %-88 % in terms of accuracy for the same 

movement performed in this study. In the case of SVM, works such as that of Naik et al. [51], 

where they classified finger movements and wrist flexion, achieved classification rates of 

87.7 % for seven different movements and specialized models known as Twin SVM, where 

the kernel was optimized for each problem or class. Shim and Lee in [53] used a three-layer 

Deep Belief Network (DBN) to differentiate five movements at the wrist level. In this case, 

the authors reported classification rates of 88.5 % for the DBN compared to 80.5 % when 

using SVM models with an RBF kernel. Similarly, it has been reported in the literature that 

creating feature vectors using a combination of features, preferably obtained by wavelet 

transforms, can prove helpful in a better classification of EMG signals [54]. 

 

A more in depth analysis of the results provided by the neural networks makes it possible to 

mention that the dispersion of the results obtained for the use of features in the Time domain 

compared to the results of the best combination (AR models plus Time-Frequency) is quite 

different. It can be seen that for the first case, results dispersion is greater, showing that the 

obtained classification model has a large fluctuation (figure 6). When features obtained from 

the AR-based models and Time-Frequency coefficients are combined, the dispersion is 

lower, showing more consistent models (figure 7). Also, it is possible to observe how as the 

number of neurons in the hidden layer of the MLP model is increased, results begin to 

decrease, with a peak when there are between two and three neurons. This shows that the 

classification model starts to be over trained, adjusting to the training data and offering low 

results in terms of generalization. 

 

Regarding the limitations of this work, we note the number of participants from whom the 

signals were obtained, with the cooperation of ten subjects who duplicated the acquisition, 

for a final size of 20 repetitions. This number is lower when compared to other studies, where 

more users were enrolled, such as the use of signals from 28 participants in [54], or 27 
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subjects in [50], thereby considering this point as a strong disadvantage for this present study. 

Another factor that shows a certain limitation is the use of more elaborate models, given that 

modifications of the SVM model and deep neural networks have been previously worked on 

in [48] and [50]. However, the main objective of this work was to compare groups of features 

in terms of their domain and observe which ones behave better for the classification to 

determine angles at the wrist level. For this reason, this type of analysis is beyond our main 

objective, as well as the reduction in size of the features, since the objective was to study 

them as a group. These considerations can be accounted for in future works, where more 

modifications can be included.  

Conclusions 

In this study, classification models were used to analyze groups of features extracted from 

sEMG signals. The results showed that the use of features extracted from the signal in the 

time domain were the lowest to classify the angular positions of the wrist in flexion-extension 

movement. The results of this work establish that the use of features in the time-frequency 

domain offer a better alternative for future studies in which it is necessary to use the 

classification of the articular range of the wrist for applications that require accuracy. 

In this way, the best classification results were obtained when groups of features from the 

coefficients of autoregressive models and characteristics in the time-frequency domain were 

used, attaining an 81.8 % in the classification of the five angular positions of the wrist.  
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