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(lassification of the Angular Position During Wrist Flexion-Extension Based on EMG Signals

Abstract

Objective: To evaluate a group of features in a
myoelectric pattern recognition algorithm to
differentiate between five angular positions of the
wrist during flexion-extension movements.
Materials and Methods: An experimental
configuration was made to capture the EMG and
wrist joint angle related to flexion-extension
movements. After that, a myoelectric pattern
recognition algorithm based on a multilayer
perceptron artificial neural network (ANN) was
implemented. Three different groups were used:
Time domain characteristics, autoregressive (AR)
model parameters, and representation of time
frequency using Wavelet transform (WT). Results
and Discussion: The experimental results of 10
healthy subjects indicate that the coefficients of the
AR models offer the best parameters for
classification, with a differentiation rate of 78 % for
the five angular positions studied. The combination
of frequency and time frequency resulted in a
differentiation rate that reached 82 %. Conclusions:
An algorithm based on pattern recognition of EMG
signals was used to carry out a comparative study
of groups of features that allow for the
differentiation of the angular position of the wrist
in terms of flexion-extension movements. The
method has the potential for application in the field
of rehabilitation engineering to detect the user’s
movement intent.

Keywords: Movement intent,
electromyography signals, pattern recognition,
machine learning techniques, artificial neural
networks.

Resumen

Objetivo: evaluar un grupo de caracteristicas en un
algoritmo de reconocimiento de patrones
mioeléctricos para discriminar cinco posiciones
angulares de la mufieca durante los movimientos de
flexoextension. Materiales y métodos: se realizd
una configuracién experimental para adquirir EMG
y angulo articular de la mufieca, relacionado con
los movimientos de flexion-extension. Después de
eso, se implementdé un algoritmo de
reconocimiento de patrones mioeléctricos basado
en una red neuronal artificial de perceptrén
multicapa (ANN). Se emplearon tres grupos
diferentes: caracteristicas de dominio de tiempo,
pardmetros de modelos autorregresivos (AR) y
representacion de frecuencia de tiempo usando la
transformacion Wavelet (WT). Resultados vy
discusion: los resultados experimentales de 10
sujetos sanos indican que los coeficientes de los
modelos AR ofrecen los mejores parametros para
la clasificacion, alcanzando wuna tasa de
discriminaciéon del 78% en cinco posiciones
angulares estudiadas. La combinaciéon de
frecuencia y frecuencia de tiempo proporciond una
tasa de discriminacion que alcanzd el 82 %.
Conclusiones: se ha realizado un estudio
comparativo de grupos de caracteristicas que
permiten discriminar la posicion angular, a nivel
del movimiento de flexo-extension de la mufieca,
mediante un algoritmo basado en reconocimiento
de patrones de las sefiales EMG. EI método tiene
potencial aplicacion en el &mbito de la ingenieria
de rehabilitacién, para la deteccion de la
intencionalidad de movimiento del usuario.

Palabras clave: intencionalidad  de
movimiento, seflales de  electromiografia,
reconocimiento de patrones, técnicas de
aprendizaje  automdtico, redes  neuronales
artificiales.
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Introduction

Motion intent detection is a process focused on determining a user’s voluntary command,
primarily for the control of external systems. Said detection could be achieved based on
bioelectric signals such as the signals captured through electromyography (EMG). EMG
analysis can be used in applications such as the diagnosis and analysis of anomalies related
to alterations in the way movement is made, which allows for the detection of the presence
of pathologies, and also in applications for the control of robots and exoskeletons [1].

In this way, EMG signal processing is a useful tool for the detection of movement intent
through the recording of action potentials produced by the activation of skeletal muscles,
where the EMG signal is made up of consecutive discharges known as motor unit action
potentials (MUAPS) [2], [3]. The EMG signal is the result of the sum of overlapping MUAPS;
therefore, it can be broken down into the activity of each of them [4]. A non-invasive
technique in which electrodes are placed on the surface of the skin, known as surface
electromyography (SEMG), is preferred to record this type of signals [3]. SEMG is a safe
technique, given that it does not require the electrode to be inserted into the skin and muscle
and it provides information on the electrical activity of the muscle; however, the SEMG signal
can record information from multiple muscles, show interferences from other biopotentials
(ECG, EOQOG, etc.), among other drawbacks [1]. SEMG signals have different applications
such as ergonomic assessment, neuromuscular diagnosis, commands for the control of
prosthetic and assistive devices that have human-machine interaction (HMI), and indication
of muscle fatigue [5], [6].

Pattern recognition-based myoelectric control has emerged as a promising alternative in
rehabilitation systems. These systems support their classification theory on the extraction of
information on the possible movement intent from the acquisition of surface myoelectric
signals. The performance efficiency of the pattern recognition and classification algorithms
lies in the implementation of three modules, which consist of pre-processing, feature
extraction, and pattern classification.

The feature extraction stage is important for classification systems because raw SEMG
signals cannot be used directly in applications such as, for example, machine control [7].
Some of these feature extraction techniques include the representation of SEMG signals as
frequency through the Discrete Fourier Transform (TDF) or as time-frequency through the
Discrete Wavelet Transform (DWT) [8]. The SEMG signal analysis can also be performed in
the time domain, using the root mean square (RMS) value, zero crossings (ZC), and the
normalized energy of the signal in a specific time interval [9]. The ZC technique that counts
the time in which the signal changes sign is among the most widely used and has been used
as a feature of pattern recognition algorithms used for assistive device movement control
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techniques [9], [10]. The autoregressive (AR) prediction model, which describes each sample
of the EMG signal as a linear combination of the previous samples, has been used as a tool
to improve the performance of the pattern recognition algorithm based on myoelectric control
[11]. It is relevant for DWT because it removes unwanted interferences and provides
information simultaneously in the time and frequency domains [12], and has been used with
good results to classify intramuscular SEMG signals to differentiate normal signals in patients
with amyotrophic lateral sclerosis or with myopathies. In this case, the coefficients generated
by the DWT are characterized by statistical functions [8].

Despite the different strategies for feature extraction, the issue on which ones to use is a
question that remains unanswered. Among the strategies to select the type of features to be
used to represent the EMG signal against a classification system, we can find even the most
basic steps, which include dismissing characteristics with large amounts of missing data, little
variance in their distribution or eliminating those with high correlation values between two
characteristics to avoid information redundancy. At the same time, the classification model
has to be used to determine which features are the most appropriate for the purpose of the
study [13], [14]. However, the selection may change depending on the classification system
and the problem to be tackled [15], [16].

After performing feature extraction, signals are represented in a feature vector aiming for a
classification stage [17], [18]. To perform this task, different applications use techniques such
as linear discriminant analysis (LDA), logistic regression, k-nearest neighbors (k-NN), up to
computationally demanding methods such as support vector machines (SVM) and artificial
neural networks (ANN) [19]. Among the classification methods explored are ANNSs, which
are mathematical models inspired by the functional aspects of brain structures [20] and allow
for their implementation in hardware and embedded platforms for their simple structure [20].

Research on EMG signal processing techniques—on the detection of movement intent for its
different application areas, which include rehabilitation, myoelectric control, and diagnosis—
show that some studies aimed at the detection of hand movement focus on pronation,
supination, flexion and extension movements [9]-[12]. Few works have been implemented
on the range of motion of the wrist joint. This approach could be a useful tool that provides
information on specific movements as given by the different angles in the range of motion of
the wrist when performing the flexion-extension movement. The information on the
estimation of the articular range of motion of the wrist from SEMG can be used to implement
proportional myoelectric control schemes in applications ranging from assistance to motor
rehabilitation [21], [22].

This work presents the results obtained in a comparative study on the use of different groups
of features based on the domain they were obtained: time, frequency, and time-frequency. In
this way, it was determined which one of them works best to identify the flexion-extension
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angle using machine learning tools. For said tools, multilayer perceptron artificial neural
networks were used, as well as vector support machines, which were all focused on the
classification of 5 angular positions at the wrist level, given that they are two of the most
widely used techniques for this type of task.

Methodology

The methodology used is based on the analysis of the signals obtained for the study and the
classification made to obtain the angular positions of the wrist. Figure 1 shows the block
diagram of the methodology. Three important processes are carried out: preprocessing,
feature extraction and a final classification stage based on machine learning techniques.

Equipment and Materials

The protocol requires the acquisition of SEMG signals and of the joint range of motion for
the flexion-extension movement of the wrist. Signal acquisition is performed using
ADInstruments’ 8-channel Powerlab 8/30 biosignal acquisition system and the Labchart
acquisition software. In addition, the SG65 electrogoniometer from Biometrics, which
provides an analog signal proportional to the joint range of motion, was used to obtain the
joint range of motion information. Taking into account that the frequency range of the SEMG
signal is between 20 Hz and 500 Hz [23], the sampling frequency of the signals was 2 kHz.
The sEMG signals are filtered within the band of interest in Labchart (bandpass filter
between 20 Hz and 500 Hz).

Database

The database was built with the SEMG signals taken from a selected group of ten healthy
people, aged between 20 and 25 years, who voluntarily participated in the data collection.
The acquisition was performed following the SENIAM guidelines [24], with a bipolar
placement of the electrodes on the right forearm, on the muscles involved in the flexion-
extension movement of the hand (figure 2). Each subject performed two repetitions,
completing a total of 20 acquisitions. During each repetition, the subject held an angular
position of the wrist joint. Five different positions were performed from maximum flexion
(85°) to maximum extension (-70°), covering the entire range of motion of the wrist joint
(figure 3). During acquisition, a total of six channels were recorded for each subject, the first
corresponding to an electrogoniometer, which produced a voltage output at a specific angle,
and the remaining five electrodes corresponding to information from the SEMG.
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Preprocessing

The signals acquired with a 500 Hz bandwidth underwent a preprocessing stage before the
feature extraction. Filters additional to those implemented in the acquisition equipment were
not used to take better advantage of the bandwidth in the search for features in the obtained
frequency range.

First, signal normalization was performed to correct variations in signal amplitude for the
different tests performed by each patient [25]. The procedure for this standardization was
developed based on the scale. Equation (1) shows how normalization was calculated, making
the signals range from -1 to 1:

:a+(x_xmin)(b_a)'a:_1;b:1’ (1)

XN
Xmax — Xmin

where Xy is the normalized version of x, from its minimum Xmin and Maximum Xmax, €nsuring
that the normalized signal is within the interval [-1,1].

After normalization, segmentation was performed, a vital process for a pattern recognition
system in which the sEMG signal is taken and divided into time windows from which the
features will be extracted. In this way, the signal must be divided into segments with a length
of 200 ms to 300 ms, which allows for movements to be identified and relevant features to
be extracted [26], [27]. For this study, this segmentation was performed at 250 ms, with 500
samples per window and with a 50 % overlap.

FEATURE EXTRACTION

| o
PREPROCESSING DOMAIN CLASSIFICATION
EMG
Slg-‘ﬂal NORMAITZATION E—
i AR MULTILAYER :: ANGULAR
AﬂnREé,;TE |::> :> MODELS PERCEFTRON POSITION
TIME
:>FF_EQL'ENCY
e A

Figure 1. Block diagram of the methodology used
Source: Own elahoration
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Figure 2. Electrode placement for the acquisition of EMG signals
Source: Own elaboration

Feature Extraction

As mentioned, the purpose of this work is to compare three different groups of features in
the process of classifying wrist flexion-extension angles. To accomplish this, features
extracted in the time domain are analyzed first, then features obtained through an
autoregressive model, and finally, features in the time-frequency domain.

Time Domain Features

Features in the time domain are the most frequently used for myoelectric classification, given
that they do not need a transformation because they are based on the amplitude of the signal
[28]. This type of features is widely used because they are simple to obtain and have a low
computational cost [15], [22], [29]. To this effect, the features used in this work were: i) the
root mean square (RMS) value, calculated through expression (2), ii) the mean absolute value
(MAV), obtained through (3), iii) the number of zero crossings, which was calculated by
means of (4), iv) the integral of the signal through the calculation of (5), and v) the signal
power, which is obtained through the use of (6).
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Extension Flexion

Position 1
70° (Approximately)

Position 5
85° (Approximately)

Figure 3. Angular positions of the wrist joint performed
Source: Own elaboration

Root mean square:

Multiple studies in literature have mathematically modeled the EMG signal as a random
process [30]. The RMS value provides the best probability of estimating the EMG amplitude
during muscle contractions under conditions of constant force and fatigue-free contraction

[30]. Its value is used to quantify the electrical signal since it is the reflection of the
physiological activity in the motor units

1 2
RMS = /azlex,zn, (2)

where M is the number of samples of signal x and xm is the value of signal x at time instant
m.

Mean absolute value:

It is estimated from the sum of the absolute values and the measurement of the contraction
levels of the SEMG signal, representing the contractile force of the muscle [31].

MAV = 232 [x,a], (3)

as in expression (2), M is the number of samples of signal x and xm is the value of signal x at
time instant m and the operator |.| represents absolute value.
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Zero crossings (ZC):

Zero crossings count the number of times the signal passes through the zero line, that is, how
many times has it gone from a negative value to a positive value and vice versa. The threshold
is added to reduce the effect of noise [32].

ZC(x) = {1, if O > 0A X1 <OV < 0AXpyq <0) )
0, other cases

Xm 1S the value of signal x at time instant m.
Integral of the signal (IEMG):

It is the sum of the absolute value of the SEMG signal amplitude. It is normally used to
indicate the onset of muscle contraction in clinical applications. It is related to the trigger
point of the signal sequence [33]

(5)

Igme = Z%:llxmL

as in previous expressions, M is the number of samples of signal x and xm is the value of
signal x at time instant m.

Signal power:

This value is obtained by adding the power of the interval of the signal under study [30], using
the expression:

M
Ey = Z |2 | (6)
m=1

where M is the number of samples of signal x and xn is the value of signal x at time instant
m.

After extracting this group of features, each signal window is represented by a five-value
vector given by the features described above. Since each angular position was measured
simultaneously by five electrodes, each one of these positions will then be represented by a
vector of 25 features for this particular group.
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Features Extracted from the Parameters of an Autoregressive Model

The modeling of a time series can be determined through parameters that represent said
signal. Thus, it has been reported in literature that the amplitude of an EMG signal is
stochastic in nature and can be represented by an autoregressive (AR) model. AR models are
widely used in pattern recognition from sEMG signals [15], [29]. In this type of model, the
coefficients are used as a prediction model that describe each sample x; of the SEMG signal
as a linear combination of previous samples plus a residual wi [34] and is represented by:

Xi = Zg=1 Qi Xi—k + W @)

where a is the k-th coefficient of the AR model, n is the order of the model, and w is Gaussian
residual noise. A sixth order model was used for this work because previous studies have
shown that this type of model is best suited for the representation of SEMG signals [34] and
[35]. The Levinson-Durbin recursion was used to calculate the coefficients using the
autocorrelation sequence according to [36]. Upon completion, a vector of seven values is
obtained, which represents the signal window. This process was performed for each electrode
used in the acquisition.

Time Frequency Domain Features

In order to use the signal representation in terms of both time and frequency, this type of
technique has been used in recent decades since Englehart’s work [37]. One of the most
widely used forms is DWT, where the signal is broken down through filters and analyzed in
different frequency bands with different resolutions that provide approximation and detail
information in the time and frequency domains simultaneously.

The calculation of the discrete wavelet transform is an implementation of the wavelet
transform using a discrete set for scales and translations, obeying defined rules, and
decomposing a signal x[n] into a set of mutually orthogonal wavelets. The calculation process
to obtain the decomposition of a signal x[n] through the DWT is analogous to the use of a
filter bank [38] (see figure 4); for this purpose, we can represent this decomposition as:

weln] = $8- o hi1[2410 — m]x[m] 0<ksLi (8)

where ux[u] is each of the decompositions of input signal x[n], hi1[n] is the scaled and
displaced mother wavelet, and L is the number of decomposition levels. In this case, the
signals used as bank input were each of the windows previously described in the
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preprocessing subsection. The structure of the filter bank is comprised by a dyadic tree with
two filters, a low-pass one and a high-pass one, and a subsampling by two in each branch,
according to the number of filters used. For this case, three levels and a daubechies4 mother
wavelet were used, based on the values and parameters recorded in the literature [28], [36],
[39]. Likewise, as reported in these works, the mean, standard deviation, and power values
were calculated and used as features for each level obtained. There is a vector of 12 features
for each electrode used in the acquisition for this group of features.

HPH/2 uo[n]
x[n] HPH| 2 }——————ui[n]
LP H.2 HPH| 2fuz2[n]

LP Hl|2

LP H|2}u3[n]

Figure 4. Filter banks to attain signal decomposition using a three-level DWT.
HP: High pass, LP: Low pass
Source: Own elaboration

Classification

This stage of the methodology describes the models used to classify the five classes
represented by each of the proposed angles. As such, it is necessary to describe first some
details of the data used for model training. Table 1 summarizes the number of features for
each group used, showing the size of each entry for every case. Another important factor is
the number of instances or patterns, given the process to obtain features. This number is given
for each of the windows obtained, for each of the repetitions per person (20 in total); for each
one of the angular positions, approximately 80 windows were obtained from which the
features were extracted. In other words, there are a total of 1600 instances per position, which
IS an approximation because each subject did not hold the exact position in terms of
milliseconds during the acquisition process.
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Table 1. Total number of parameters for each group of features
Total Number of

Groups of Features

Features
Group Feature Amount (Entries)
RMS 1
MAV 1
Time Domain INT 1 25
POW 1
ZC 1
Autoregressive
Model Sixth order AR coefficients 7 35
Parameters
Time-Frequency Mean for each ux[n] 4
Domain Standard deviation for each ux[n] 4 60
Power for each u[n] 4

Source: Own elaboration

The cross-validation method was used for model training using four groups (k-folds) for this
purpose [40], [41]. In this way, each group was the result of combining the features of five
subjects for the five wrist positions, resulting in a total of 6000 instances for training and
2000 instances for model validation. Also, trainings were implemented with each group of
features as well as with combinations of the groups to observe the differences, obtaining a
total of seven classification scenarios.

The measures used to compare the groups of features and the models used for the
classification were based on the classification rate given that there are five classes: 70°, 35°,
0°, -43°, -85 ° (figure 3). All computational experiments were performed in the Matlab©
software through its digital signal processing and machine learning toolboxes.

Artificial Neural Networks

There are different artificial neural network models according to their architecture and
training mode. For this work, multilayer perceptron (MLP) was chosen to perform the
classification task due to its capabilities to establish relationships between input-output
vectors in a supervised learning procedure, which in turn is due to its ability to learn complex
nonlinear patterns by adjusting its synaptic weights that link artificial neurons with nonlinear
activation functions [41].
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MLP models have shown good results in the classification of SEMG signals, which is why
they have been chosen to perform the task of position differentiation [19], [42]. In this work,
a two-layer architecture was chosen: a hidden one and an output one. The number of inputs
is established by the group of features to be used in training (table 1); the number of neurons
in the hidden layer was found through experimentation, varying from one to ten neurons, and
the number of neurons in the output is determined by the five angular positions of the wrist.
Figure 5 shows the model used for classification, where all connections between neurons are
forward connections. The activation functions of neurons were hyperbolic tangent in the
hidden layer and a softmax function in the output layer.

The training algorithm is resilient backpropagation [43], which shows a higher speed due to
its modification based on the sign of the gradient. The maximum number of training epochs
was set to 800, with a root mean square error as a cost function because its convergence was
found through experimentation. Among the training stoppage criteria, the maximum number
of epochs, a training error of zero, and premature stoppage were considered, with an
observation window of 250 iterations.

Hidden layer

Output

Wrist
, positions

Figure 5. Neural network model used for classification
Source: Own elaboration

Support Vector Machines

This machine learning technique, used for pattern recognition and classification, is a
development of statistical learning theory [44]. Vector support machines, as it was mentioned
in the introduction, have been used to work in conjunction with SEMG signals. Their main
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function is in the differentiation stage, mainly in the detection of neuromuscular pathologies
[19], [36], [45]-[48]. In this case, the parameter adjustment of the SVM models was
performed in a similar way as done with neural networks. Four folds as those described above
were also used, again performing cross-validation between the different features and five
classes. Taking into account that this technique, by nature, has a binary classification [36], it
was necessary to establish a multiclass SVM, which would evaluate one class against all the
others.

Initially, SVM models were developed for a classification given by a linear function [44],
[48], and it is for this reason that it is necessary to perform a non-linear transformation
through a kernel function. So, said transformation allows the SVM to perform a linear
classification of a data set that originally did not have this characteristic. The kernel function
projects data from a low dimension space to a larger dimension space, and it is in said new
space that the initial formulation of the model is used with a linear two-class classification
[49]. For this work, the following kernel functions were used: radial base function (RBF),
polynomial, and quadratic, given that the basic linear function of the SVM yielded poor
results. All these non-linear kernels allow for faster training, which facilitates the
convergence of the algorithm, and also for the obtainment of a similarity between input
vectors and their combinations and the suppression of as many support vector multipliers as
possible, thus minimizing the number of support vectors required for classification.

Results

The three groups of characteristics, as well as combinations between them, were used in the
classification using the MLP and SVM models. Table 2 summarizes all the results in terms
of classification rates for each of the characteristic groups used, as well as for the
combinations implemented. In the case of neural network classification, the best result of
each of the four validations was used to calculate the mean and standard deviation shown in
the table. Also, the maximum number of neurons in the hidden layer (N) is recorded to
determine the size of the model. Also reported for the SVM classification, are the average
values of the cross-validation of four groups and the type of kernel with which the results
were obtained.

Given that, in the case of the MLP models, experiments were performed one hundred times
to evaluate the behavior against the initialization of the synaptic weights, figure 6 shows box
plots for those one hundred results with the different architectures (two to ten neurons) for
the best of the four validations used, using the features in the time domain as input. Likewise,
figure 7 shows the best results obtained when the combination of the groups of features given
by the AR model and the time-frequency domain is used.
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It is possible to see that the best results were obtained by combining the features extracted
through the AR models and the time-frequency domain (DWT), where a classification rate
of 81.8 % and 58.3 % was obtained for the MLP and SVM models, respectively. The worst
group of features was the one obtained through analysis measures in the time domain, with
only a 53.1 % and 22.5 %, respectively (table 2).

In the MLP models, experiments with other training parameters such as hyperbolic tangent
activation functions in the neurons of the output layer, variation in the number of epochs and
other cost functions were implemented, obtaining results with lower classification rates when
compared to the values shown in table 2. In the case of SVM models, the parameter
initialization problem is not present, since the support vectors are found in the training set,
therefore, results will not change. Other models with a different kernel were tested without
any improvement in the results obtained.

Table 2. Results of the classification
Classification Used

Scenario: Groups of

Features MLP N* SVM Kernel
Time 53.10 £ 3.48 10 27.64£2.34 RBF
AR Model 77.57 £ 3.57 8 2248 +1.14 RBF
Time-Frequency 74.73 +3.92 9 54.41 +1.05 Polynomial
Time + AR Model 77.76 + 3.65 10 53.61 + 6.66 Polynomial
Time + Time-Frequency  74.55 + 2.92 10 50.14 +2.83 Polynomial
AR Model + Time- .
Frequency 81.79+2.16 4 58.29 £ 2.78 Polynomial
Time+ ARModel + 40,3433 5  5487+295  Polynomial

Time-Frequency

N*: Neurons in the hidden layer
Source: Own elaboration
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Figure 6. Best classification results using only time-domain characteristics.
Source: Own elaboration

[INSERTAR FIGURE 7]
Figure 7. Best classification results using characteristics extracted from the AR Model + Time-Frequency
Domain.
Source: Own elaboration

Discussion

Based on the classification results obtained from the use of the different groups of features,
it is inferred that the features based on the coefficients of the AR model are the most
appropriate as input for the classifier for this application, with a rate of 77.57 % for the MLP
network and 53.6 % for the SVM. These results are closely followed with 74.73 % for the
classifier with MLP and improving to 54.4 % for the SVM based on the features obtained
with the analysis in the time-frequency domain offered by the DWT. Regarding the general
results for the SVM model, previous classification results for the detection of neuromuscular
pathologies had a sensitivity of 55.6 % for binary classifiers in [50]; this is a consequence of
using this type of classifier in multiclass problems, where the complexity of the classifier
function is more demanding given that, for the classes considered in this work, it is not
possible to assume distributions that represent said data [51].

Based on the classification results obtained when groups of features are combined, the first
place is held by the combination of the groups given by AR models and the Time-Frequency
domain. For this case, the classification rates obtained for the classifiers implemented with

INGENIERIA Y UNIVERSIDAD: ENGINEERING FOR DEVELOPMENT | COLOMBIA | V. 25| 2021 | ISSN: 0123-2126 /2011-2769 (Online) | Pdg. 16



(lassification of the Angular Position During Wrist Flexion-Extension Based on EMG Signals

MLP and SVM were 81.79 % and 58.3 %, respectively. These results are followed for the
case when all features were implemented, where the classification rate values were 79.34 %
and 54.9 %. So, based on this information it is possible to conclude that the features in the
time domain do not contribute much information to the classification implemented. The
reason behind this is that there is no significant difference between the use or lack thereof of
these characteristics when used simultaneously with other groups.

The results obtained in this article are consistent with the reports of previous studies. The
works in [21], [52] used neural networks to determine the joint range of motion of the degrees
of freedom of the wrist in a continuous angle prediction. Considering the flexion-extension
of the wrist, in [21] results of 72.0 % + 8.29 % in healthy subjects were reported and in [52]
an R? between 0.81 and 0.94 was reported. A greater number of EMG channels were used in
said studies when compared to those used in this study, which is considered as a difference
that did not allow for an equitable comparison. However, in the work of Jiang et al. in [21],
results were reported in the range between 79 %-88 % in terms of accuracy for the same
movement performed in this study. In the case of SVM, works such as that of Naik et al. [51],
where they classified finger movements and wrist flexion, achieved classification rates of
87.7 % for seven different movements and specialized models known as Twin SVM, where
the kernel was optimized for each problem or class. Shim and Lee in [53] used a three-layer
Deep Belief Network (DBN) to differentiate five movements at the wrist level. In this case,
the authors reported classification rates of 88.5 % for the DBN compared to 80.5 % when
using SVM models with an RBF kernel. Similarly, it has been reported in the literature that
creating feature vectors using a combination of features, preferably obtained by wavelet
transforms, can prove helpful in a better classification of EMG signals [54].

A more in depth analysis of the results provided by the neural networks makes it possible to
mention that the dispersion of the results obtained for the use of features in the Time domain
compared to the results of the best combination (AR models plus Time-Frequency) is quite
different. It can be seen that for the first case, results dispersion is greater, showing that the
obtained classification model has a large fluctuation (figure 6). When features obtained from
the AR-based models and Time-Frequency coefficients are combined, the dispersion is
lower, showing more consistent models (figure 7). Also, it is possible to observe how as the
number of neurons in the hidden layer of the MLP model is increased, results begin to
decrease, with a peak when there are between two and three neurons. This shows that the
classification model starts to be over trained, adjusting to the training data and offering low
results in terms of generalization.

Regarding the limitations of this work, we note the number of participants from whom the
signals were obtained, with the cooperation of ten subjects who duplicated the acquisition,
for a final size of 20 repetitions. This number is lower when compared to other studies, where
more users were enrolled, such as the use of signals from 28 participants in [54], or 27
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subjects in [50], thereby considering this point as a strong disadvantage for this present study.
Another factor that shows a certain limitation is the use of more elaborate models, given that
modifications of the SVM model and deep neural networks have been previously worked on
in [48] and [50]. However, the main objective of this work was to compare groups of features
in terms of their domain and observe which ones behave better for the classification to
determine angles at the wrist level. For this reason, this type of analysis is beyond our main
objective, as well as the reduction in size of the features, since the objective was to study
them as a group. These considerations can be accounted for in future works, where more
modifications can be included.

Conclusions

In this study, classification models were used to analyze groups of features extracted from
SEMG signals. The results showed that the use of features extracted from the signal in the
time domain were the lowest to classify the angular positions of the wrist in flexion-extension
movement. The results of this work establish that the use of features in the time-frequency
domain offer a better alternative for future studies in which it is necessary to use the
classification of the articular range of the wrist for applications that require accuracy.

In this way, the best classification results were obtained when groups of features from the
coefficients of autoregressive models and characteristics in the time-frequency domain were
used, attaining an 81.8 % in the classification of the five angular positions of the wrist.
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