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Operating Room Time Prediction: An Application of Latent Class Analysis and Machine Learning

Abstract

Objective: The objective of this work is to
build a prediction model for Operating Room
Time (ORT) to be used in an intelligent
scheduling system. This prediction is a
complex exercise due to its high variability
and multiple influential variables. Materials
and methods: We assessed a new strategy
using Latent Class Analysis (LCA) and
clustering methods to identify subgroups of
procedures and surgeries that are combined
with prediction models to improve ORT
estimates. Three tree-based models are
assessed, Classification and Regression Trees
(CART), Conditional Random  Forest
(CFOREST) and Gradient Boosting Machine
(GBM), under two scenarios: (i) basic dataset
of predictors and (ii) complete dataset with
binary procedures. To evaluate the model, we
use a test dataset and a training dataset to tune
parameters. Results and discussion: The best
results are obtained with GBM model using
the complete dataset and the grouping
variables, with an operational accuracy of
57.3% in the test set. Conclusion: The results
indicate the GBM model outperforms other
models and it improves with the inclusion of
the procedures as binary variables and the
addition of the grouping variables obtained
with LCA and hierarchical clustering that
perform the identification of homogeneous
groups of procedures and surgeries.

Keywords: Operating room time prediction,
Latent Class Analysis, Clustering, Conditional
Random Forest, Gradient Boosting Machine,
Machine Learning, Operations Research.

Resumen

Obijetivo: El objetivo de este trabajo es construir
un modelo de prediccion del tiempo de quiréfano
(ORT) para ser usado en un sistema de
programacion inteligente. Esta prediccién es un
ejercicio complejo debido a su alta variabilidad
y a las mdltiples variables influyentes.
Materiales y métodos: Evaluamos una nueva
estrategia utilizando Latent Class Analysis
(LCA) y métodos de agrupacién para identificar
subgrupos de procedimientos y cirugias que
luego se combinan con modelos de prediccion de
ensamblaje para mejorar las estimaciones de
ORT. Se evaluan tres modelos basados en
arboles, Classification and Regression Trees
(CART), Conditional Random  Forest
(CFOREST) y Gradient Boosting Machine
(GBM), bajo dos escenarios: i) conjunto de datos
basicos de predictores y ii) conjunto de datos
completo con procedimientos binarios. Para
evaluar el modelo, utilizamos un conjunto de
datos de prueba y un conjunto de datos de
entrenamiento para ajustar los pardmetros.
Resultados y discusidn: Los mejores resultados
se obtienen con el modelo GBM utilizando el
conjunto de datos completo y las variables de
agrupacion, con una precision operacional del
57,3% en el conjunto de pruebas. Conclusion:
Los resultados indican que el modelo GBM
supera a los otros modelos y mejora con la
inclusién de los procedimientos como variables
binarias y la adicion de las variables de
agrupacion obtenidas con LCA vy la agrupacién
jerérquica, que identifican grupos homogéneos
de procedimientos y cirugias.

Palabras clave: Prediccién del tiempo de
quirdfano, Latent Class Analysis, Clustering,
Conditional Random  Forest, Gradient
Boosting Machine, Machine Learning,
Investigacion de operaciones.
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Introduction

Social protection in health represents a crucial factor for the progress of any country. It
contributes not only to the well-rounded development of citizens at an early age but also to
guaranteeing the growth of their economy so that workers enjoy good health, are free of
diseases, and do not have physical limitations or a low life expectancy, which could increase
labor productivity indexes. Around the world, life expectancy has been improving at a rate
of more than 3 years per decade since 1950, except for the 1990s [1]. On the other hand, the
demand for surgical services has grown due to two related factors: (i) health care as a
universal right, and (ii) the aging of the population [2]. For example, in the European Union,
5647 surgeries per year per 100 thousand inhabitants were reported in 2000; in 2005, the
number rose to 5819; and, in 2009, to 6522 [3]. In Colombia, the life expectancy is 77.11
years for women and 70.2 for men [4], and the average waiting time for a surgery after being
approved by a doctor is 17.2 days (contributory regimen) [5]. This is not an encouraging
panorama; it reveals a growing unmet demand for surgical services approaching in the short
or medium term. As a result, health centers should optimize their use of the available
resources to meet those needs [2]. The planning and programming of surgical interventions
has been a diverse field of knowledge analyzed by multiple researches, because surgery
rooms are entities that demand complex logistical interaction and, the Operating Rooms
(ORs) represent the highest costs account and source of income in most hospitals [2],[6].
Consequently, the design and implementation of better planning and programming systems
is an important tool today, not only to reduce costs but also to improve the access to health
services [7].

Several inputs are required to provide solutions for OR scheduling, Operating Room Time
(ORT) is one of them [8]. Some authors support the use of uncertainty to estimate surgery
duration in this kind of solutions [9]. The duration of a surgery in the OR is highly variable,
even in surgeries of the same type. When this variability is positive, it is one of the main
causes of surgery rescheduling due to surgical procedures occupy the OR longer than
expected [10]. When the variability is negative, it means a low OR utilization rate, i.e., the
OR is used less time than expected [11]. Nevertheless, we know ORT is not perfectly
predictable; an operation may last longer than expected for various medical reasons [12]. The
ORT is conditioned by a set of variables that make OR planning particularly complex. An
important step to establish a master surgery program is to classify surgical procedures to
reduce the variability and try to homogenize the types of interventions in order to have a
more efficient programming and minimize cancellations [13]. Jang et al. (2016) [14]
conducted a survey to analyze the current state of OR management and surgical programming
in general hospitals in Korea. They concluded that the methods to predict the expected
surgical time were decided arbitrarily by surgeons, the experience of the anesthesiologist or
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based on historical averages. Our case study is conducted at The Hospital San Vicente
Fundacion (HSVF) in Medellin, Colombia. The HSVF with 662 beds is one of the largest
university hospitals in the country. HSVF has 16 ORs and performs more than 20,000 surgical
procedures per year, by dealing with different types of surgeries, emergencies, and elective
procedures, including transplants. The management of ORs is centralized in a single
department to generate greater efficiency in the service. Scheduling of surgeries is done
manually by people with clinical knowledge and no training in this type of problem. The
accurate allocation of ORT is one of its greatest challenges, currently established by a
subjective estimation of surgeons. The HSVF has a cancellation rate of 6% of scheduled
surgeries, which in turn affects the generation of idle time. This is a visible problem in the
case of the HSVF, which today reports only 67.5% ORs’ occupation.

The main objective of this work is to create a suitable model that can be used to predict ORTs
in an intelligence programming system in the HSVF. According to the review of works, this
problem has been approached from different perspectives and tools with the use of various
data configurations. Normally, the data in this type of studies have complications in their
structure, the ORT registered in the information systems correspond to each surgery, and
each surgery includes the development of one or more surgical procedures. This makes it
impossible to assign a respective ORT for each procedure. Currently, the authors take two
paths: (i) eliminating surgeries that contemplate the performance of more than one surgical
procedure, e.g. [8], [15], or (ii) assigning ORT only to the main surgical procedure of the
surgery, e.g. [16]. Conversely, we use every programed procedure as binary variable to
generate surgery distinctions and use interactions among them. In our case about 40% of the
records have more than one surgical procedure. In addition, we show the advantage of
implementing Latent Class Analysis (LCA) in the construction of a Machine Learning (ML)
model by improving the accuracy of predictions and decreasing the bias of error distribution.
We hypothesize that a clustering strategy of procedures and others surgery characteristics
would increase accuracy and model adjustment. Additionally, these cluster variables could
be utilized to get a more parsimonious model with a smaller data dimension. Considering the
good performance of ML models in estimating ORT [17], we evaluate three tree-based
models and tested different data-set configurations of predictors to find a more parsimonious
model. The tree models are the Classification and Regression Trees model (CART), and two
ensemble models: Conditional Random Forest (CFOREST) and Gradient Boosting Machine
(GBM).

This paper is organized in different sections. In section 2, we review studies with a similar
scope in advanced techniques for data analysis published in the last decade. In section 3, we
describe the database used for research and statistical treatments. In the same section, we
detail the assembly, clustering, and evaluation methods adopted in this work. In section 4,
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we present the results and analysis of these. Finally, conclusions and future works are
discussed in section 5.

Literature review

The prediction of the ORT has been a challenge that many researchers have analyzed from
different perspectives. Based on regression models and hypothesis testing, Kays et al. [18]
used bias and mean absolute deviation to evaluate the performance of the methods of
estimation of ORTs. They concluded that, although it is possible to improve the estimates of
surgery duration, the inherent variability in these estimates remains high; therefore, it is
necessary to be careful when they are used to optimize OR programming. Stepaniak et al.
(2010) [19] analyzed the duration times of surgeries using an ANOVA model. They
concluded that, when the factors of the surgeon are incorporated, the accuracy of the
prediction of the duration of surgery is improved by more than 15 percent compared to
current planning procedures. Shahabikargar et al. (2017) [8] used predictive models that
include linear regression (LR), multivariate adaptive regression splines (MARS) and random
forest (RF) to predict the time of the procedure of elective surgeries. They found that the
random forest model outperformed other models and produced an improvement of 28%
compared to the current method employed at the hospital. Eijkemans et al. (2010) [16]
analyzed the data of the total time of the ORs with a mixed linear model. They showed that,
by using a prediction model instead of the surgeon's prediction based on historical averages,
the shortest expected duration would be reduced by 12%, and the longest expected duration,
by 25%. In addition, Wu (2017) [20] compared the performance of a surgeon's prediction
with a method potentially more accurate than using historical averages. They utilized
Kruskal-Wallis variance analysis and Steel-Dwass pairwise comparisons to calculate the
duration of primary total knee arthroplasty (TKA) procedures. They concluded that none of
the historical estimates were significantly different from each other, demonstrating a lack of
improvement in presence of additional cases, and that even a small number of cases can
reduce estimation biases compared to the exclusive use of surgeons' estimates.

Likewise, other researchers tried to improve estimates using new strategies or combinations
of existing ones. The literature includes the work of Lorenzi et al. (2017) [21], who used
hierarchical predictive clustering (PHC) to group procedures based on current procedural
terminology (CPT) codes. They showed that PHC improves specific patient outcomes
compared to the clusters currently used according to clinical criteria. Spangenberg et al.
(2017) [22] used big data architecture for integrated processing of real-time and historical
data about common surgical events to create prediction models. They showed that the model
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is competitive in terms of the accuracy of the prediction. ShahabiKargar et al. (2017) [8]
extend their previous work to the use of assembly algorithms based on decision trees (M5,
LSBoost and Bagging Tree), showing that the LSBoost and Bagging Tree models have a
better performance in relation to the random forest with a reduction in the MAPE (Mean
Absolute Percentage Error) from 38% to 31%. Recently, Tuwatananurak et al. (2019) [23]
developed a proprietary machine learning engine which evaluates various models such as
gradient-boosted, decision trees and random forests. Although the authors did not indicate
the best model structure, they point out the outperform of the machine learning approach
respect to average historical means for case duration used by the hospital. Bartek et al. (2019)
[24] showed again the highest predictive capability of machine learning model respect to
subjective surgeon estimates. Excluding surgeons with less than 100 historical procedures
and taking only the primary surgery procedure, they generated a series of XGBoost (Extreme
Gradient Boosting) specific models at the surgeon and specialty level. They found that
modeling at surgeon-specific level rather than specialty-specific increases the accuracy of the
prediction.

Materials and methods

Data set

In this study, we used data from the HSVF with a focus on elective surgeries to model the
current operation of ORs. We considered the surgeries performed in 2017 with the aim of
avoiding operational and technological changes introduced previously. The initial data set is
composed of 2851 cases of priority and non-urgent surgeries. From this set, we eliminated
34 inconsistent cases, with negative times, zero times, or with a surgery time greater than the
operating room time. Additionally, we concentrated on the main specialties with at least 100
cases, resulting in a final data set with 2220 cases. In the first column of Table 1, we present
the predictors we used in the study: patient characteristics, operation characteristics and
medical team characteristics. The second column contains the description of each predictor.
Finally, third column presents a statistical summary, including the average, maximum and
minimum values for the numerical variables and the percentage for the binary variables.

From Table 1, we can observe (in Patient characteristics) that most patients were men
(67.4%), and the average time elapsed from the approval to the surgery was 24.18 days.
Regarding Operation characteristics, the most common medical specialties of the surgeries
were orthopedics and traumatology (44.10%). General anesthesia was the most used
(72.61%) and OR3 (14.55%) was the OR with the highest number of surgeries scheduled.
Surgeries are scheduled primarily between Tuesday and Friday, with a similar number of
surgeries between the morning and afternoon hours. Finally, Medical team characteristics
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shows the number of previous operations performed by the surgeon (50.9) compared to the
number of previous operations performed by the anesthesiologist (11.9).

To explore the potential influence of different variables on ORT, Figure 1 shows the bivariate
plots of the relationships between predictors and ORTs. We can observe that the distribution
of ORTSs in most plots is asymmetric to the right, where 81% of the surgeries last less than
200 minutes (3.33 hours) and the longest procedures take 820 minutes (13.66 hours), which
is similar to the lognormal distribution reported in another work [15]. Turning now to Patient
characteristics, no important differences in time with respect to sex are observed, and there
is a weak tendency of ORT to growth as age increases. Operation characteristics presents
surgeries with different time distributions, some with less bias; for example, orthopedics and
traumatology, along with pediatrics, exhibit the highest average times. We can also observe
that surgery duration increases as the number of types of anesthesia and procedures grows.
In turn, surgery duration in different ORs can be longer or shorter; for example, rooms 3, 5,
8, 9 and 14 exhibit the longest times. The experience of the surgeon is measured as the
number of previous operations performed and, as it increases, surgery duration decreases. A
similar behavior can be seen about anesthesiologists, with no significant impact.

Table 1. Statistical summary of the predictors.

Predictor Description (Type) Mean (min-max) N(%o)
Patient characteristics
Sex Sex of patient (Nominal) Female (32.6%); Male (67.4%)
Age Age of patient (Numerical) 36.33 (1-101) years

Number of previous admissions of the patient in the

Previous admissions . .
hospital (Numerical)

0.28 (0-10)

Elapsed time from Elapsed time from approval to the completion of the

approval to surgery surgery (Numerical) 24.18 (0-602) days

Operation characteristics

Orthopedics and traumatology (44.1%);

Specialty Medical specialty of the surgery (Nominal) Plastic (32.88%); Pediatric (9.23%);
General (8.74%); Transplant (5.05%)

Regional anesthesia Use of regional anesthesia in the surgery (Binary) No (61.53%); Yes (38.47%)

General anesthesia  Use of general anesthesia in the surgery (Binary) No (27.39%); Yes (72.61%)

Anesthesia with Use of assisted sedation anesthesia in the surgery
assisted sedation (Binary)

Anesthesia . . 1 type (75.09%); 2 types (18.78%); 3 types
combination Number of types of anesthesia (Numerical) (0.05%): Undefined (6.08%)

ORLl (1.8%); OR2 (10.23%); OR3
(14.55%); OR4 (4.1%):; OR5 (11.04%);
OR6 (8.6%); OR7 (5.32%); ORS8 (13.33%);
OR9 (6.98%); ORI10 (6.94%); ORIl
(3.83%); OR12 (3.29%); OR13 (4.32%);
OR14 (5.68%)

No (98.29%); Yes (1.71%)

Operating Room Operating Room where the surgery is scheduled.
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Predictor Description (Type) Mean (min-max) N(%)
Number of ] _
procedures Number of procedures in the surgery (Numerical) 1.595 (1-9)

A list of 150 procedure codes that can be planned in a
surgery. This corresponds to the only codification of
medical procedures used in Colombia, which is an
analogue of the CPT. (Binaries)

List of procedures

Monday (13.15%); Tuesday (17.48%);
Wednesday (21.62%); Thursday (19.32%);

Weekday Day of the week for which the surgery is scheduled. Friday (19.64%); Saturday (6.17%):
Sunday (2.61%)
Time of day Time of day for which the surgery is scheduled. AM (50.23%); PM (49.77%)

Team characteristics

Number of previous operations performed by the 50.9 (0-352)

Surgeon operations .
g P surgeon (Numerical)

Anesthesiologist Number of previous operations performed by the
. Lo . 11.9 (0-58)
operations anesthesiologist (Numerical)

Source: Own elaboration.

Figure 1. Bivariate plots of relationships between individual predictors and ORT in minutes.

i e || §f:
[ 2 5
- F 8]
8 8
>
Female 1= | ™o == gz- e
2 Do«
ORY (min) ° . )

Anesthesia
combination
i b i
1 °
El
procedures

{]_o
B
i

20 OR"i'(m; X 200 OR‘T(M) 80 8 20 OR‘T(M) 800

ori4o{ —D— I

oR12 —eh— -

OR12 1 ~J&)}— = 4

oR11 1 -DE— & )
g:n'g< —— - 401
 ons |0} g gg 5

or? { e — E | £ Ko
gcnf-{ﬂ— 19) Eo.._ ®
o ors—@— * 2

OR4 {-D&}——

OR3 +—DE—

or2 +De—

or1 { D@

OR‘f.'(rm) - ) - OR‘T'.V(m)'.." = i - OR‘fvirm)

Source: Own elaboration.

INGENIERIA Y UNIVERSIDAD: ENGINEERING FOR DEVELOPMENT | COLOMBIA | V. 26| 2022 | ISSN: 0123-2126 /2011-2769 (Online) | Pag. 8



Operating Room Time Prediction: An Application of Latent Class Analysis and Machine Learning

LCA to cluster surgical procedures

We used the list of procedures that were defined for a surgery to find subgroups and obtain
additional information about the type of surgery being performed. For this purpose, we used
Latent Class Analysis (LCA), a clustering-based method that allows the identification of
latent structures underling a set of manifest variables [25]. Let L be this latent variable with
¢ = 1,...,C latent classes (subgroups) and Y; one of the M manifest variables. Then P(Y; =
y;j|L = c) is the conditional probability of observing the response y; in the variable Y; given

membership in class c. These conditional probabilities are used to interpret classes based on
the profile of each manifest variable. P(L = c¢) is the unconditional probability of
membership to a particular latent class, and it gives the proportions of individuals belonging
to a subgroup or class. P(Y = y) is the probability of observing a complete response pattern
y and, under the assumption of local independence, it is obtained by Vermunt and Magidson
[26] and Wurpts and Geiser [27]. See Equation (1):

C M
P =y =) PL=0] [Ptj=yl=0) M
c=1 j=1

For this application, we have 150 indicator variables; they correspond to each one of planned
procedures that can be performed in a surgery. However, with the aim of reducing sparseness,
we selected the procedures with a frequency of at least 40 observations; thus, obtaining a
filter set of 20 indicator variables. The other less frequent procedures were combined into
one indicator called “others”, for a final set of 21 indicator variables. The latent class model
was fitted using the R add-on package poLCA [28], and the optimal number of classes was
selected based on Bayesian Information Criterion (BIC). As a result, a model with 6 classes,
the one with the lowest BIC, was obtained. Additionally, considering the effect on goodness-
of—fit tests of sparse contingency tables [27]-[29], we used a bootstrap analysis to estimate
the goodness-of-fit test. We obtained a p-value=0.663 for a chi-square test, which indicates
a good fit of the model. The estimated distribution of surgery subgroups of similar procedures
is described in Table 2.

Table 2. Latent Class distribution of surgical procedures

Classes Distribution Description

Class-1 25% Medium- and high-complexity procedures of abdominal orthopedic surgery
Class-2 10% Management procedures for medium-size soft tissue injuries

Class-3 6% Management procedures for small soft tissue injuries

Class-4 6% Management procedures for large soft tissue injuries

Class-5 5% Procedures for medium-complexity orthopedic surgery

Class-6 48% Mainly infrequent procedures grouped in the “others” variable

Source: Own elaboration.
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Creating the clustering variable

Since our main goal is to obtain good predictions of ORT, we tested the implementation of a
clustering strategy to establish if it would improve prediction accuracy by finding subgroups
of similar operations [30]. To define this new variable, we used patient characteristics (age,
sex, previous admissions, and elapsed time since approval), operation characteristics
(specialty, anesthesiology indicators, number of procedures, and OR), and medical team
characteristics (surgeon and anesthesiologist experience).

Because we have numerical and nominal variables in the data set, it is necessary to use an
appropriated method to measure the dissimilarity between any pair of operations considering
mixed variable types. Gower coefficient is a dissimilarity measurement that can be used in
such cases of mixed type variables and, as indicated in Equation (2), it is based on a mean
weight of dissimilarities between each pair of variables, where w; is the weight or

contribution of variable k; dl.(]’.‘), a value between [0,1] measuring the dissimilarity between

subjects (i, j) on variable k; and p, the number of variables in the data set [31]-[34].
P
A=) wed @
k=1

The calculation of d;; (k) will depend on the type of variable, as follows [34]:

e For nominal and binary variables, d;;(k) takes a value 0 if the rows (i, ) are equal
on variable k, and 1 in the contrary case.

e \When the variable k is continuous, it takes the absolute difference of both values over

the full range of the variable dl.(]'.‘) = m"};—xj"' where R, = max(x;) — min (xg), is
k

the full range of variable k.

e For ordinal variables, a codification 1: M of the levels of the variable is carried out,
where M is the number of levels. The standardization for continuous is subsequently
applied.

Applying the previous process and assigning the same weights to the surgery variables, we
obtain dissimilarity measurements d(i,j) between [0,1], where values near 0 mean more
similarity, and near 1, more difference. After a dissimilarity measurement was obtained for
each pair of rows, we applied two different clustering methods, one partitional and one
hierarchical. For partition, we have the k-medoid, which is a centroid-based method where
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the center of each cluster corresponds to one observation of the cluster and the method is
generalized to arbitrary dissimilarities, contrary to k-means, which requires quantitative
variables [32]. In the hierarchical method, we used agglomerative hierarchical clustering with
an average link metric that generates a bottom-up grouping strategy, where initially each
object forms its own cluster and they are sequentially grouped with each other until all the
objects belong to a single large cluster [32], [33]. These methods are applied using the PAM
(Partitioning Around Medoids) and AGNES (Agglomerate Nesting) algorithms available in
the clustering package in R [34].

To evaluate surgery clustering performance and select the best cluster, we used the silhouette
coefficient which evaluates the quality of the clusters by verifying their compactness and
connectivity [35]. The Silhouette criteria s¢; is a measurement between 1 and -1 that
evaluates the internal consistency of the clusters by comparing the current group assignment
of subject (i) with the next best group assignment; values near 1 mean a good current
assignment [36]. See Equation (3):

b)) —a(®
50 = max {a(), b}

3)

where a(i) is the average distance between subject (i) and the other members of the current
group and b(i) is the shortest average distance to the other groups where it does not belong
to, i.e., b(i) would be the next best group membership. Thus, to obtain a s(i) near 1, is
necessary that a(i) << b(i), it means that the distance to the members of the current group
is less than the distance to the members of the next best group [36].

The clustering analysis can be seen in Figure 2, where different number of clusters are
assessed. The graphs show that, in general, the hierarchical method provides better results
than PAM clustering. It can be observed that the best Silhouette value for the hierarchical
method is achieved when we have 37 clusters. The PAM method presents more unstable
Silhouette values, and it tends to generate a similar number of observations per cluster,
contrary to the hierarchical method, where there is a higher variance in the number of
observations per cluster, discarding outliers and including clusters with 1 and 4 observations.
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Figure 2. Behavior of the Silhouette coefficient for different numbers of clusters for hierarchical and
PAM clustering methods.

Source: Own elaboration.

Predictions models

For the prediction of the ORT, we used tree-based methods, which offer the advantage of
being able to handle nonlinear relationships; moreover, they identify complex interactions
among predict variables and do not require prior data transformation. The first model is
CART (Classification and Regression Trees), used as the base model to evaluate the
improvement of the other models and implemented in the R add-on package rpart [37]. The
other models applied in this work are the ensemble methods Random Forest and Gradient
Boosting Machine (GBM), which use trees as base learners. For Random Forest, we used
Conditional Random Forest (CFOREST) which, contrary to the algorithm proposed by
Breiman (2001) [38], uses conditional inference trees as base learners that perform unbiased
recursive partitioning and statistical testing for evaluating the significance of a split decision
[39]-[41]. That model is implemented in the CFOREST function that CTREE uses to fit a
conditional tree in each bootstrap sample; both functions are in the R add-on package [40].
CFOREST can also be used to evaluate variable importance in prediction accuracy, and it is
different from Random Forest, which is biased to select variables with more categories as the
most important. CFOREST is more reliable to identify the most relevant variables when it is
used together with sampling without replacement [41]. For the third model, we used a
boosting approach, where weak learners are added successively so that the new learner
focuses on the subjects that were difficult to predict for the previous learners to finally get a
stronger combined model. Likewise, Friedman (2001) [42] presented the Gradient Boosting
Machine (GBM), a general framework for boosting models where decision trees, as base
learners, are added iteratively so that each additional tree reduces a lost function; in this
regression case, the squared error. The GBM model here was fitted using R's add-on package
gbm [43]. By the other hand, to have a more symmetric response distribution, we decided to
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build the prediction models with the logarithm of the total ORT [15], then the final prediction
is obtained by applying an exponential transformation on the estimation of each model.

Model evaluation

To evaluate the performance of the prediction models, and considering the small data set at
hand, we first divided the data between the training set and the test set with a proportion of
90%-10% respectively. In the training set, we used a ten-fold cross-validation to tune and
train the model. The test set was used only to estimate the final accuracy measurement. The
accuracy measurements employed in this work to compare the models are Root Mean Square
Error (RMSE), Mean Absolute Error (MAE) and Operational Accuracy metric developed by
Master et al. [44]. Additionally, we also investigated if the models tend to systematically
overestimate or underestimate ORTs. RMSE (Equation 4) and MAE (Equation 5) measure
the error distance between the real value y; and the predicted value y; without considering if
the error direction is positive or negative, and especially RMSE penalizes large errors.
Particularly, we used the RMSE to train the models in this work. Although these metrics are
statistically meaningful, we used the Operational Accuracy metric (Equation 6) that gives us
a measure of accuracy that can be operationally meaningful to hospital providers [45]. A
prediction is "correct™ if the absolute value of the error is less than a percentage tolerance of
the prediction of ¥, defined as (¥ [44]. But this percentage must be within the limits [m, M],
which represent the allowed deviation boundaries for short and long OR times, respectively.
For our case and in agreement with an expert of the hospital we set p = 30%,m =
15 minutes, M = 60 minutes. This means that for operations that may take a long time
(e.g. 6 hours), an error of up to 60 minutes is permissible. If it deviates more than this time,
it is considered incorrect.

n
1
RMSE = |- (v = 91)? @
i=1
n
1 )
MAE =" |y, = 31 ©)
i=1
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lyi = 9:il <t(@)
Where:
t(9;) = min{max{py;, m}, M},
pe(0,1), and M >m =0

(6)

On the other hand, Table 3 shows the four different data sets defined in this study to test the
accuracy improvement of the variables created through the clustering methods described
previously.

Table 3. Data sets considered for prediction modeling

Data set Description Number of predictors
. It includes only the original predictor without the 150
Basic - 16
indicators that correspond to planned procedures
Eull It includes the original predictor and the 150 indicators 166

that correspond to planned procedures

It is the combination of the basic or full data set plus the

new variable obtained from the latent class analysis of the 17 in Basic; 167 in Full
150 procedure indicators

Basic / Full + The complete data set including basic or full predictors

LCAProcedures + and the new variables obtained from latent class analysis 18 in Basic; 168 in Full
CLUSurgeries and hierarchical clustering

Basic / Full +
LCAProcedures

Source: Own source.

A parameter tuning of the models was carried out with R's add-on package caret [46], thus
obtaining the optimal accuracy parameter configuration for each model. Using the Basic data
set, for the CART model, we calculated a complexity parameter = 0.0099; for CFOREST, a
number of trees = 300 and the number of candidate variables at each node = 100%; and in
the GBM model, number of trees = 200, maximum depth of each tree = 5, minimum number
of observations in terminal nodes = 5, and learning rate or shrinkage = 0.1. For the Full data
set, we estimated a different configuration for each model: CART, complexity parameter =
0.0024; CFOREST, number of trees=500 and the number of candidate variables at each node
= 100%; and GBM, number of trees = 300, maximum depth = 5, minimum number of
observations = 5, and learning rate = 0.1.
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Results

The resulting prediction models for training and testing sets are presented in Table 4. As
expected, we observed a reduction in the accuracy of the test set with respect to the training
set. While for the best model in the training set, we obtained MAE=34.31 minutes and an
operational accuracy of 68.5%, in the test set, the metrics were reduced to 44.84 minutes and
57.3% respectively. Considering only the test results, we can see that by adding the variables
LCAProcedures + CLUSurgeries there is an average increase in the operational accuracy of
about 4%. This change is greater in the basic data set. However, when observing the RMSE
and MAE metrics, an average decrease of -0.06% and -0.49% respectively is observed. This
behavior, on the other hand, when including the new variables, is not uniform in all models:
the Full GBM model presents a 6% improvement in the RMSE; the Full CFOREST model
worsens by -3% in the same indicator; the Basic CFOREST model shows a 12%
improvement in its operational accuracy. In general, the GBM model shows an improvement
by including the variables.

Regarding the models, we can see that GBM produced the lowest RMSE and MAE values
and the highest operational accuracy. In the Full scenario, GBM shows more than 10%
improvement in operational accuracy over the other models. In the Basic scenario,
CFOREST and GBM show a similar performance; however, GBM is superior. CART
presents the worst results under all the scenarios described in this study because the assembly
feature the other models have given them an advantage to improve their accuracy. In the
second part of Table 4, we have the accuracy measurements for the three models using the
Full data set, which comprises initially 166 predictors, including the 150 indicator variables
related to all the procedures. Overall, we observed an average improvement of 13.58% in
operational accuracy and 6% in MAE, when moving from the basic to the full data set.
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Table 4. Accuracy results for the models CART, CFOREST and GBM with the Basic and Full data sets and the new
artificial variables.

Training Testing
Dataset  Model Dataset configuration RMSE MAE Operational RMSE MAE Operational
Accuracy Accuracy
Basic 85.913 54438 0478  83.143 59.064 0.400
cary _Basic + LCAProcedures 86.674 54.243 0487 85012 60451 0.409
Basic + LCAProcedures + o 202 54175 0488 85116 60.432 0.414
CLUSurgeries
Basic 80.945 49321 0523 77.256 53.966 0.405
Basic  CFOREST 2a3!2++Lf§:L°Ze:3refe i 80.679 48.980 0531  78.442 54.300 0.441
&t -APTOCEAUIES + g1 513 49.719 0522 78931 54.708 0.455
CLUSurgeries
Basic 66.625 42.133 0583 72080 51410 0.459
EM Basic + LCAProcedures 65.678 41.523 0590  70.460 49.854 0.450
Basic + LCAProcedures + oo 131 41160 0592 71376 50.433 0.477
CLUSurgeries
Full 83.107 52.065 0492 79573 55367 0.464
carr Ul + LCAProcedures 84.724 52.786 0496 81637 57.300 0.450
Full + LCAProcedures + o/ o231 52718 0497 81.745 57.201 0.455
CLUSurgeries
Full 80.896 49.466 0519 77014 53.360 0.445
full CROREST 'Eu::++LC£IXc;cedu;es i 79.707 48.295 0530  76.184 52461 0.468
u APTOCEAUIES + 79 851 48.467 0520  76.695 52.872 0.464
CLUSurgeries
Full 55508 34.388 0685 71793 45483 0564
EM Full + LCAProcedures 55.046 34.321 0679 72111 46.116 0.564
Full + LCAProcedures + oo 305 34316 0676  67.812 44.847 0.573
CLUSurgeries

Source: Own source.

Taking the prediction models with the data set that produces the lowest accuracy
measurement, we also investigated their tendency to overestimate or underestimate the ORT.
Figure 3shows the distribution of the raw errors y; — y; for the selected models together with
the estimated error mean and skewness of the distribution. The GBM model with the Full +
LCAProcedures + CLUSurgeries data set presents the most symmetric distribution of errors,
while the CFOREST models tend to produce more skewed distributions to the right, which
means a lower capacity to predict high ORTs. The accurate prediction of high ORTSs is a
challenge for all the models since, as it can be seen, all the distributions show heavier tails
on the right. This indicates that all the models tend to underestimate the actual ORTs of
atypical procedures that can take up to 13.67 hours. This possible difficulty was considered
since the beginning of this work; however, we decided not to discard these extreme times
since they are part of the operating reality of ORs. In general, the Full scenario with the GBM
model generates the most symmetrical error distributions. All these results indicate that the
most appropriate model for the prediction of ORTs is GBM with the complete set of
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predictors (Full) and the new variables obtained through the LCA of the indicator variables
of surgical procedures and the cluster of surgeries.

Figure 3. Error distribution of the operating room time predictions of the hest models.
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Source: Own source.

CFOREST and GBM also define the importance or contribution of each variable for ORT
prediction. Table 5 shows the first 15 variables that contribute most to the prediction of each
model. The CFOREST model with Full + LCAProcedures + CLUSurgeries provided
competitive results under the scenario with basic predictors, and the GBM model with Full
+ LCAProcedures + CLUSurgeries produced the best results. The CFOREST model, as
previously mentioned, under sampling without replacement and using conditional trees,
generates an unbiased evaluation of variable importance. The method in this case consists in
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computing the measurement Mean Decreased Accuracy, which is obtained by permuting
each variable and collecting the reduction in the prediction error on the out-of-bag (OOB)
portion of data that was not used for fitting a tree and then average over all trees [40], [41].
In the GBM model, this describes the Relative Influence of each variable on the reduction of
the lost function which, in this case, is measured as the reduction in the squared error obtained
from every time the variable was selected for splitting and then average over all trees [42],
[43]. For both models, the measure of importance was scaled to the sum of 100. Although
the rank of importance varies from model to model, we can see that the variables: Surgeon,
Number of procedures, Operation Room, LCAProcedures, CLUSurgeries and some specific
procedures. The surgeon's experience, measured as the number of previous operations
performed, is also an important factor, although it is not in the top positions, both models
rank it among the first 15. Additionally, anesthesia combination and anesthesia with assisted
sedation are identified by the CFOREST model. The fact that the variables LCAProcedures,
CLUSurgeries are in the first positions could mean that the structure and subgroups that are
found by means of latent classes analysis and the hierarchical method, are not directly
detected by the prediction models.

Table 5. Variable importance ranking form most to least significant for CFOREST and GBM models with
Basic and Full datasets of predictors, respectively

CFOREST with Full+LCAProcedures+CLUSurgeries GBM with Full+LCAProcedures+CLUSurgeries
Rank Predictor variable Relative Rank Predictor variable Relative
Importance Importance
1 CLUSurgeries 43.700 | 1 Surgeon 35.713
2 Number of procedures 11.700 | 2 CLUSurgeries 23.575
3 Surgeon 10.100 | 3 Operation Room 7.660
4 LCAProcedures 9.300 | 4 Number of procedures 6.086
5 C849501 5.700 | 5 C849501 3.094
6 Operation Room 4.500 | 6 LCAProcedures 2.889
7 C389101 1.700 | 7 C389101 2.103
8 Anesthesia combination 1.300 |8 Elapsed time from order to surgery 2.065
Number of operations performed by
9 the surgeon 1.000 | 9 Patient age 1.168
10 C512101 0.900 | 10 C459100 1.036
11 Specialty 0.900 |11 C768701 0.926
12 Anesthesia with assisted sedation 0.900 | 12 Weekday 0.850
13 C459100 0.600 | 13 C793501 0.826
Number of operations performed by
14 C866102 0.600 | 14 the surgeon 0.719
15 C401102 0.600 | 15 866102 0.692

Source: Own source.
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Conclusions

In this study, we investigated different configurations of models and variables to obtain an
appropriate model to predict ORTs. The best model was obtained with GBM using the full
data set that includes the multiple procedures as binary variables, plus the addition of the new
variables obtained through the LCA and hierarchical clustering methods. This indicates that
the proposed strategy, using the procedures as binary variables and including the cluster
variables, could improve the performance of the prediction models in this type of problems,
although it would be necessary to evaluate the methodology in multiple instances of data to
have a clearer view of its effectiveness. The accuracy results with this model in the test set
were: RMSE of 67.81 minutes, MAE of 44.85 minutes and an operational accuracy of 57.3%.
Which means that the model provides ORT with an average deviation of 44.85 minutes from
the real time of the OR. This value is influenced by the longer surgeries that generate greater
difficulty in predicting, an effect that is magnified by the RMSE by squaring the deviations
of the errors. As shown in Figure 4, 52.7% of the cases have a maximum estimation error of
+30 minutes, and only 21.4% of the cases would have deviations or delays above 1 hour.
Although this model is the one that generates the least bias (see Figure 3), we observe the
difficulty all models have to predict high and atypical ORTSs, which is an issue in different
works in this field [13], [26]. Therefore, in that case, we will probably underestimate ORTs
and cause delays in the next scheduled procedure. Fortunately, this situation is not frequent
because only around 5.68% of the ORTSs exceed 316 minutes (5.25 hours).

Figure 4. Accumulated percentage of cases on the test set whose estimation error is within the minute
interval indicated on the x-axis. Estimated percentage for the model GBM with
Full+LCAProcedures+CLUSurgeries.
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The Gradient Boosting Model (GBM) generates the best accuracy results in both scenarios
with the Basic and Full data sets. Nonetheless, with the Basic variant, no significant
difference was observed compared to the Conditional Random Forest (CFOREST) when the
artificial variables were added. We evaluated a new modeling strategy based on the
identification of latent subgroups of procedures that can be programmed in a surgery. For
that purpose, we used Latent Class Analysis identifying six different groups of procedures.
This LCA variable was evaluated in several prediction models, obtaining good results under
all the scenarios. We can therefore conclude that including such variable improves prediction
accuracy. As can be seen from Table 5, the variable is among the most important factors in
this study. Similarly, the variable created based on the clustering strategy with the use of
basic predictors, showed an improvement in accuracy. This step was taken to obtain a
compact and connected group of subjects that share surgical characteristics. Here, we found
that the hierarchical method generates better cluster properties than its k-medoid counterpart,
which was more unstable. For the Gower coefficient, we used the same weight for all the
variables, meaning that all of them have the same importance in the clustering process.
Nevertheless, a new strategy can be tested to assign different weights to each variable
according to their impact on the variance reduction of the response variable.

Evaluating the importance of the variables in the final model, we found that the surgeon, the
number of procedures, the operating room, LCAProcedures, CLUSurgeries and some
specific procedures, are the most important variables in the prediction task. The specific room
where the surgery was programmed is included because each room presents different
conditions; some require more preparation and equipment conditioning, which implies more
room time. This final model can be used for surgeries with multiple procedures; its purpose
is to be integrated into an intelligence programming system where the prediction model will
be automatically fed by the hospital's information systems and executed in the background
with the scheduling optimization program. The latter will continually invoke the model,
because one of the objectives of scheduling optimization is to define optimal ORTSs in terms
of efficiency and subject to surgery restrictions. Moreover, one of the most important
variables in the prediction model is the OR. This interaction between the prediction model
and the optimization algorithm could also be carried out by running the prediction model
with every OR, storing the prediction time, and retrieving it when the scheduling optimization
requires it. On the other hand, considering that the modeling process was restricted to the
most frequent specialties and the objective is to have a predictive tool for all cases. As future
work, we will explore the implementation of Bayesian models that include the knowledge of
specialists in ORT prediction for cases with little or no history. Some works in this sense
have been developed [47], although there is still room for improvement in this regard.
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