

Revista Legado de Arquitectura y Diseño

ISSN: 2007-3615 ISSN: 2448-749X

legado_fad@yahoo.com.mx

Universidad Autónoma del Estado de México

∕léxico

TRANSFORMACIÓN GEOMÉTRICA EN LA ARQUITECTURA. LA ESTRUCTURA LIGERA DESDE LA SEGUNDA MITAD DEL SIGLO XX

González-Meza, Edwin

TRANSFORMACIÓN GEOMÉTRICA EN LA ARQUITECTURA. LA ESTRUCTURA LIGERA DESDE LA SEGUNDA MITAD DEL SIGLO XX

Revista Legado de Arquitectura y Diseño, vol. 15, núm. 28, 2020

Universidad Autónoma del Estado de México, México

Disponible en: https://www.redalyc.org/articulo.oa?id=477963932004

Esta obra está bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivar 4.0 Internacional.

TRANSFORMACIÓN GEOMÉTRICA EN LA ARQUITECTURA. LA ESTRUCTURA LIGERA DESDE LA SEGUNDA MITAD DEL SIGLO XX

GEOMETRICAL TRANSFORMATION IN ARCHITECTURE. THE LIGHT STRUCTURE SINCE THE SECOND HALF OF THE 20TH CENTURY

Edwin González-Meza edwin.gonzalez@udlap.mx *Universidad de las Américas Puebla, México*

Revista Legado de Arquitectura y Diseño, vol. 15, núm. 28, 2020

Universidad Autónoma del Estado de México, México

Recepción: 12 Abril 2020 Aprobación: 28 Mayo 2020

Redalyc: https://www.redalyc.org/articulo.oa?id=477963932004

Resumen: El presente artículo muestra un recorrido de las transformaciones geométricas influenciadas por los avances tecnológicos desarrollados posteriores a la Segunda Guerra Mundial, siendo las estructuras ligeras un punto de inflexión en las propuestas realizadas por los arquitectos e ingenieros de la época. El mundo de la posguerra, dañado por la crisis social y económica, retoma algunas formas de construir que iniciaban en la Revolución Industrial con la prefabricación y modulación de elementos constructivos, para evolucionarlas a un comportamiento espacial de la estructura o su transmisión de cargas por medio de membranas o cáscaras. Esta transformación daría inicio a un proceso de generación de geometrías complejas y formas libres como precursoras del estilo Deconstructivista que inicia a finales del siglo xx y el controvertido estilo Parametricismo, que el arquitecto inglés Patrik Schumacher consolida en la primera y segunda década del siglo XXI.

Esta investigación analiza la evolución de la geometría en las estructuras ligeras posteriores a la Segunda Guerra Mundial, convirtiéndose en un punto de inflexión en la generación de propuestas arquitectónicas aplicadas en más de 70 años de transformaciones de la geometría de las edificaciones. En la actualidad, la generación de formas no es más una limitante en el desarrollo de un proyecto con el uso de las nuevas tecnologías digitales que surgen a principios de los años 80.

Palabras clave: cáscaras, estructuras ligeras, estructuras reticulares, estructuras espaciales, geometría arquitectónica, tecnología digital.

Abstract: This article shows a tour of the geometrical transformations that were influenced by the technological advances developed after World War II, with lightweight structures being a turning point in the proposals made by the architects and engineers of the time. The post-war world, damaged by the social and economic crisis, takes up again some forms of construction that started in the Industrial Revolution with the prefabrication and modulation of building elements, to evolve it to a spatial behavior of the structure or its transmission of loads by means of membranes or shells. This transformation would initiate a process of generating complex geometries and free forms as precursors of the Deconstructivist style that begin of the late 20th century and the controversial Parametricism style that the English architect Patrik Schumacher consolidated in the first and second decade of the 21st century.

This research analyses the evolution of geometry in light structures after the Second World War, becoming a turning point in the generation of architectural proposals applied in more than 70 years of transformations in building geometry. Nowadays, the generation of forms is no longer a limitation in the development of a project with the use of new digital technologies that emerged in the early 1980s.

Keywords: shells, light structures, reticular structures, spatial structures, architectural geometry, digital technology.

INTRODUCCIÓN

Previo a la conclusión de la Segunda Guerra Mundial, un proceso de desarrollo de aproximadamente 150 años influye en la transformación de la estructura ligera y sus propuestas geométricas de la segunda mitad del siglo XX y las primeras décadas del siglo XXI. Tecnologías que se patentaron y utilizaron en una diversidad de proyectos, algunas de ellas siguen vigentes al día de hoy.

El progreso más importante en siglos de construcción de estructuras ligeras desde los romanos se puede fijar en la Revolución Industrial de finales del siglo XVIII, en Gran Bretaña. Tecnologías como el perfeccionamiento de la máquina de vapor y la invención de la locomotora, influyen en las metodologías y procesos que serían aplicados en la naciente industria de la construcción del siglo XIX, como la prefabricación y la modulación de los elementos constructivos.

La industrialización de la construcción trae un nivel de precisión, calidad y velocidad en el proceso, no sólo de fabricación sino también de montaje y construcción. La industrialización se extendería por Europa, principalmente Francia y Alemania, construyendo los primeros domos ligeros, empleando la retícula como técnica de transmisión de cargas y optimización de la forma.

Ante las nuevas necesidades de infraestructura de principios del siglo XIX con la evolución del ferrocarril, surgen las celosías como recurso en la construcción de puentes en Europa y Estados Unidos. Celosía *Long* (1835), celosía *Howe* (1840), celosía *Pratt* (1844), celosía *Warren* (1848) y la celosía *Vierendeel* (1897) se convierten en metodologías efectivas para solucionar puentes de grandes luces. Las celosías siguen siendo propuestas estructurales del siglo XXI (González Meza, 2016).

Un punto de transformación importante de la geometría en las edificaciones sucede a finales del siglo XIX y principios del XX en Rusia, las soluciones estructurales del ingeniero Vladimir Shukhov aportan a la arquitectura superficies de doble curvatura, como la cáscara reticular construida para una bodega en Vyksa, Rusia, o sus reconocidos hiperboloides empleados en la construcción de tanques de agua, torres eléctricas y la Torre Shukhov que en un inicio se planteó rebasara la altura de la Torre Eiffel, pero ante la crisis provocada por la Revolución Rusa, limitó la cantidad de material que podía utilizar en su construcción. Las propuestas geométricas de V. *Shukhov* se convertirían en las precursoras de los paraboloides hiperbólicos construidos durante el siglo XX.

Figura 1. Torre Shukhov. Fuente: Multimedia Art Museum, Moscú.

En la primera mitad del siglo XX, tres transformaciones surgen como un proceso de cambio de las propuestas futuras. La primera, el surgimiento de las estructuras espaciales por primera vez construidas por Alexander Graham Bell, empleadas principalmente para la construcción de grandes cometas con el objetivo de hacer volar al hombre, pero también fueron utilizadas para la construcción de una torre de observación en Canadá, empleando nodos y módulos prefabricados en forma de tetraedro (Prentice, 1961).

La segunda transformación es el surgimiento de las primeras cáscaras de concreto, teniendo como representantes al español Eduardo Torroja, al alemán Franz Dischinger, al suizo Heinz Isler y al francés Eugène Freyssinet entre otros, sus transformaciones constructivas y estructurales, así como avances tecnológicos que plantearían un desarrollo importante en la geometría de las cáscaras de concreto que se construirían hasta finales de los años 60, donde prácticamente se dejaron de construir por la complejidad del montaje de sus cimbrados.

La tercera transformación de esta primera mitad del siglo XX, se consolida con el desarrollo de las estructuras ligeras de grandes luces. En Japón, *Tomoegumi Iron Works Ltd.*, llevan a cabo la construcción de hangares para estacionar los grandes aviones utilizando el sistema *Diamond-Truss* (Mukaiyama *et al.*, 2010). La tercera transformación de las grandes estructuras se consolida con las más de 1000 propuestas diseñadas por Alberth Kahn para la construcción de hangares y fábricas en Estados Unidos, sus propuestas disminuían sus costos de fabricación y montaje al ser modulables y prefabricadas, característica que gustaría a grandes empresas como *Ford* y *General Motors* (Chilton, 2007).

METODOLOGÍA

Se empleó una metodología cualitativa de corte longitudinal que abarca un periodo desde 1942 con la comercialización del primer nodo prefabricado para la construcción de estructuras espaciales hasta el 2020 con la aplicación del diseño computacional en el diseño arquitectónico, basándose en la recolección de datos no estandarizado para generar una teoría de acuerdo con los datos obtenidos.

En una primera etapa se lleva a cabo la recolección de datos de diferentes proyectos arquitectónicos y estructurales en el mundo, orientándose en la influencia de la tecnología, los avances constructivos y

los diferentes momentos históricos en el desarrollo de la geometría de los proyectos arquitectónicos. En una segunda etapa se realiza un análisis de las variables geométricas que determinan cada una de las transformaciones en el periodo establecido. Finalmente en una tercera etapa se determinan los diferentes puntos de inflexión del periodo de estudio establecido que constituyan las principales transformaciones geométricas empleadas en la construcción de las edificaciones.

Con la aplicación de la metodología se buscó una mayor profundidad de los datos obtenidos para adquirir una mayor riqueza interpretativa de los valores y las transformaciones geométricas en la arquitectura desde la culminación de la Segunda Guerra Mundial. Siendo la geometría y la forma los que determinarían el correcto funcionamiento estructural y proyectual de las edificaciones.

PUNTOS DE INFLEXIÓN EN LA HISTORIA EN LA SEGUNDA MITAD DEL SIGLO XX

Durante el periodo de la Segunda Guerra Mundial el surgimiento de una solución estructural debe tomarse en cuenta previo a las transformaciones que se realizarían a su culminación. En 1942 Max Mengeringhausen comercializa en Alemania el primer nodo prefabricado, llamado nodo *MERO*. El nodo es empleado para la construcción de estructuras espaciales (Chilton, 2007). Sus variantes en la actualidad permiten una diversidad de formas y geometrías aplicadas en diferentes proyectos.

Otra propuesta constructiva previa a la culminación de la Segunda Guerra Mundial surge en Estados Unidos, entre 1944 y 1945, el arquitecto Konrad Wachsman desarrolla el sistema *Mobilar structure*, sistema que se caracterizaba por una fabricación compleja, pero con un fácil montaje que requería de un martillo y cincel (Wachsmann, 1961). Wachsman se obsesiona con la búsqueda de un nodo universal que pudiera solventar cualquier necesidad arquitectónica y forma geométrica.

Con la terminación de la Guerra en 1945, grandes retos en la industria de la construcción empiezan a surgir, originados por la gran crisis económica en la que los países se encontraron, a la par de la crisis social que surge ante la carencia de diversos recursos materiales, alimenticios e inclusive de mano de obra, entre otras. La reconstrucción de los países se centró principalmente en la industria y la producción de energía.

El inicio de la Guerra Fría y de la Guerra de Corea contribuye a la carencia de recursos destinados a la industria de la construcción, el acaparamiento de materiales, principalmente el acero, para la construcción de armamento y máquinas de guerra como tanques y aviones, mismas que requirieron de nuevos recintos para ser fabricadas y posteriormente almacenadas. Dicha escases y acaparamiento de materiales provocarían una menor cantidad disponible en el mercado para los constructores, detonando el surgimiento de nuevos materiales y sistemas constructivos más ligeros.

Un ejemplo de una estructura representativa del surgimiento de los nuevos materiales es el *Dome of Discovery* para la Exposición Británica de

1951, diseñado por el arquitecto británico Ralph Tubbs. La estructura portante del domo fue fabricado con perfiles extruidos de aluminio y una cubierta de lámina del mismo material. El domo alcanzó un radio de 105 m (Bloc, 1952).

Figura 2. Dome of Discovery. Fuente: Prentice (1952).

Otro factor que influyó en el desarrollo de nuevas propuestas, fue la escasez de mano de obra calificada, especialistas que fueron utilizados en la guerra, principalmente soldados, muchos de ellos fallecen durante este periodo. Con la finalización de la guerra ante las necesidades que surgen, la mano de obra especializada sería requerida para la reconstrucción de países y para fortalecer la economía de otros que no participaron directamente en la guerra. Esta problemática planteó que los procesos constructivos debían de ser más sencillos y eficientes, empleando la menor cantidad de mano de obra especializada.

En este periodo de la segunda mitad del siglo XX diversas patentes son registradas. Sobresale la patente del domo geodésico, por parte del inventor Richard Buckminster Fuller en 1954. Por primera vez fue construida la retícula en el proyecto de un domo para el edificio *Ford Rotunda* en 1953, la estructura fue fabricada totalmente en aluminio sin mano de obra especializada. La patente sería presentada en la X *Triennale* de Milán en 1954 con la construcción de un domo de cartón. Las propuestas de Fuller pesaban alrededor de 6.5 kg por m² comparada con los 195 kg por m² que promediaban las estructuras de acero de la época (Prentice, 1958).

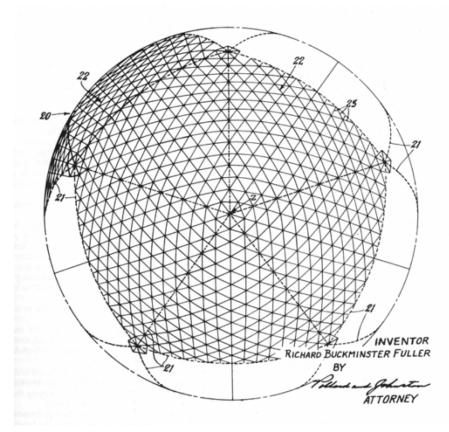


Figura 3. Patente del domo geodésico. Fuente: Buckminster (1954).

Durante los años 50's, Frei Otto diseña y construye las primeras estructuras tipo membrana para la *Federal Garden Exhibition* en Kassel, Alemania, en 1957, sus estudios basaban sus geometrías en estructuras orgánicas como las burbujas de jabón (González Meza, 2016). A la par en México y Estados Unidos, el arquitecto español Félix Candela y el arquitecto estadounidense Eero Saarinen entre otros, revolucionan la construcción de cáscaras de concreto empleando geometrías complejas, principalmente de doble curvatura.

En esta primera década del mundo de la posguerra, ante todas las circunstancias generadas por las diferentes crisis que fueron provocadas por la Segunda Guerra Mundial, se pueden resumir en tres ventajas (Belluschi, 1953):

- La exploración de la estructura como fuente de la forma. Para tratar de clarificar la relación existente entre los aspectos estéticos requeridos en un proyecto arquitectónico y la estructura portante cumpliendo con los requerimientos constructivos de la época.
- Entender la naturaleza humana que sirvan como factores para proveer formas que satisfagan las demandas físicas y emocionales, planteando a la forma como necesidad cotidiana.
- Los intentos de algunos intelectuales de la época por ser creativos para generar distintivos estéticos visuales.

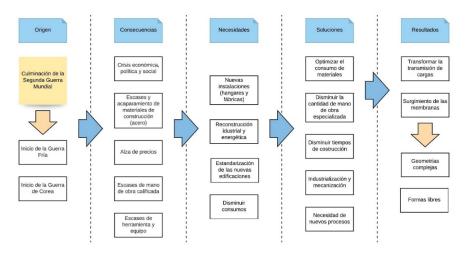


Figura 4. El mundo de la posguerra, punto de inflexión de la transformación geométrica. Fuente: Elaboración propia.

En la década de los años 60's, tomando en cuenta el trabajo realizado por Richard B. Fuller con sus domos geodésicos, el arquitecto alemán Günter Günschel, en su gusto por el arte, transformaría el domo geodésico en variaciones de formas complejas alternando el número de planos y ángulos de cuerpos poliédricos regulares (Günschel, 1965). Sus propuestas serían publicadas en las décadas de los años 60's y 70's, aplicados principalmente a los espacios públicos.

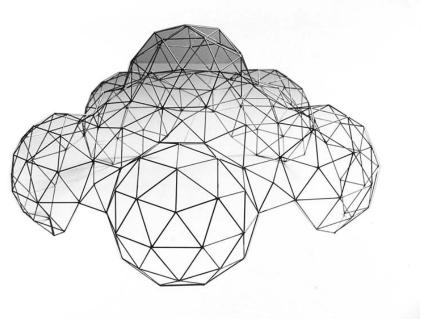


Figure 5. Variaciones Geodésicas. Fuente: Escher (2009).

A finales de la década de los 60's, el Ing. Francisco Castaño Hernández, nacido en el estado de Nuevo León, México, adquiriría la patente canadiense *Triodetic* del Ing. A. Fentiman en 1954, sistema fabricado en aluminio. Esta patente no sólo le permitiría trabajar con Félix Candela en la construcción del Palacio de los Deportes de la Ciudad de México, construyendo la estructura secundaría que daría la forma a

los paraboloides hiperbólicos de la cubierta, también construiría en el mismo año de 1968, la que se considera la primera cáscara reticular de forma libre para un auditorio en la ciudad de Toluca, Estado de México (Geométrica, 2019). En la actualidad su hijo, el Ing. Francisco Castaño García, patentaría el sistema *Freedome*.

Un segundo punto de inflexión surge a finales del siglo XX, cuyo origen está en la denominada tercera etapa de la Revolución Industrial de los años 60's con el surgimiento de la electrónica, la invención de las computadoras y posterior desarrollo de plataformas digitales aplicadas al diseño, surgiendo en 1981 el software *CATIA*. Consolidándose en 1992 con la Revolución Digital aplicada a la arquitectura con la construcción de *The Fish* de Frank Ghery, al ser diseñado, fabricado y construido en su totalidad con herramientas digitales. Revolución que se consolidaría con la construcción del Museo Guggenheim de Bilbao en 1997, proceso de diseño, fabricación y construcción que se realizó como si el edificio fuera un barco, al utilizar un software especializado de diseño aplicado a la industria naval, esto debido a que la industria de la construcción carecía de un software especializado, mostrando un retraso de hasta 10 años con respecto a otras industrias (Kolarevic, 2004).

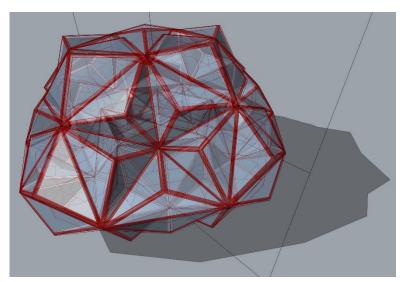


Figura 6. Envolvente. Fuente: Giancarlo Di Marco.

La Revolución Digital trajo consigo una diversidad de nuevos softwares que no sólo facilitaría el proceso de fabricación y construcción al emplear herramientas digitales, también contribuyó en la generación de formas complejas y libres para cualquier tipo de edificación.

Esta diversidad geométrica no sólo se incluiría en envolventes horizontales, la complejidad y diversidad geométrica también se trasladaría a los edificios de altura. El arquitecto británico Norman Foster iniciaría el proceso con el proyecto para el concurso del edificio *Humana Headquarters* en 1980, al proponer un edificio de forma cilíndrica, empleando el sistema estructural *Diagrid*. Pero es hasta el 2003, con la conclusión de la torre 30 St. Mary Axe en Londres, Inglaterra, que consolidaría la diversidad geométrica en edificios de altura

empleando plataformas digitales, además de disminuir un 20% el peso de la estructura.

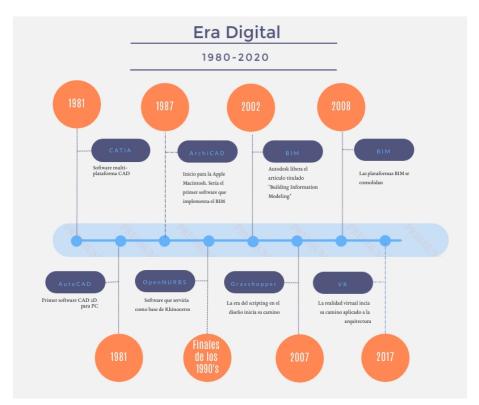


Figura 7. Línea de tiempo de la era digital en la arquitectura. Fuente: Elaboración propia.

Esta generación de formas irregulares, complejas e irreverentes se consolidaría con el surgimiento del denominado estilo *Parametricismo* por su creador Patrik Schumacher; aunque la designación de estilo puede ser debatible por los intelectuales; teniendo como consecuencia el surgimiento de las herramientas digitales paramétricas como *Grasshopper* y *Dynamo*. La diversidad de geometrías que pueden ser propuestos y posteriormente construidas con el apoyo del *scripting* y el algoritmo son infinitas, donde los procesos de optimización y *form-finding* se convierten en un recurso indispensable en la búsqueda de la forma perfecta para sus usuarios.

TRANSFORMACIONES GEOMÉTRICAS

Diversos factores influyen en las diferentes etapas de la evolución geométrica de la forma, desde los momentos históricos que se viven hasta los avances tecnológicos que van sucediendo con el paso de los años.

Nuevas propuestas geométricas surgen en la arquitectura a inicios de la segunda mitad del siglo XX, con el resurgimiento de las estructuras reticulares y espaciales, además del surgimiento de nuevos materiales como la madera contrachapada o el aluminio, y procesos constructivos principalmente de prefabricados como los nodos de unión. Este proceso de cambio fue observado por el Ing. Félix Samuely, observación ejemplificada por una de sus frases, el Ing. Samuely mencionó "en cientos

de años en el futuro, las personas mirarán atrás a los años 1950, como la época cuando la construcción cambio del plano al espacio y vio el nacimiento de una nueva arquitectura" (Prentice, 1953).

La diversidad de geometrías que se pueden diseñar utilizando sistemas reticulares ligeros, van desde formas puras como una esfera o un poliedro, empleadas por ejemplo por Richard B. Fuller, hasta formas más complejas como las propuestas por Günter Günschel o Eduardo Catalano, al deformar o deconstruir una geometría pura en formas complejas, pero con un orden geométrico.

El diseño de formas complejas son el primer eslabón de esta transformación, lograda en el diseño y construcción de las cáscaras de concreto, ejemplo es la Terminal de la TWA en el aeropuerto John F. Kennedy de la ciudad de Nueva York de Eero Saarinen, concluida en 1962, donde la complejidad del trazo de la geometría, supondría un reto incluso con las herramientas digitales de nuestra época. Candela gusta de seccionar las geometrías como metodología para descomponer el paraboloide hiperbólico en la construcción de una cáscara, por lo tanto, sus propuestas geométricas emplean una superficie que sirve como un módulo variable para la generación de formas complejas.

Pero la técnica constructiva no es la única generadora de geometrías. El pensamiento, la observación, los ideales, etc., también se convierten en herramientas para el diseño de propuestas de formas de una edificación. El entendimiento y observación de la naturaleza, principalmente de las estructuras orgánicas, se convierten en los fundamentos de diseño de ingenieros y arquitectos. Frei Otto con sus mallas y membranas basadas en la generación geométrica del estudio de las burbujas de jabón o las estructuras ligeras existentes en la naturaleza como las veneras y radiolarios, estructuras estudiadas por el francés Robert Le Ricolais en la Universidad de Pensilvania, donde realizaría sus principales trabajos de investigación y propuestas geométricas (González Meza, 2016), trabajos que replicaron en una edificación o envolvente las estructuras observadas.

Con la inclusión de las herramientas digitales en el proceso de diseño arquitectónico, la tecnología se convierte en una herramienta indispensable en el proceso de diseño. El orden geométrico que incluso tienen las geometrías complejas que se construyen desde la conclusión de la Segunda Guerra Mundial, se rompe, se deforma, se deconstruye. Ejemplos son las propuestas de Frank Gehry que inician este proceso en el *Walt Disney Concert Hall* de Los Ángeles California y el Museo Guggenheim de Bilbao.

La llegada de la técnica digital aplicada a todo un proceso de diseñar y construir una edificación, genera que la creación de propuestas no tenga un orden geométrico y donde el diseñador es la única limitante de la propuesta.

Zaha Hadid en conjunto con Patrik Schumacher desarrollaron una metodología de fácil aplicación para la generación de formas libres que pudieran ser construibles, logrando tener cientos de propuestas en minutos, formas que no sólo serían aplicadas a la geometría de una edificación, también sería aplicada al diseño de ciudades, de utensilios, de

prendas, etc., es decir, una metodología que será aplicable para cualquier industria donde la palabra *Diseño* esté implícita.

El *Parametricismo* y el *Diseño Computacional* emplean técnicas como la optimización, *form-finding* y el *machine learning*, entre otras. Su historia es corta, su evolución y aplicación ha sido rápida, marcada e influenciada por momentos históricos, en la actualidad se están convirtiendo en las técnicas generadoras de transformaciones geométricas y de soluciones eficientes para los diseñadores.

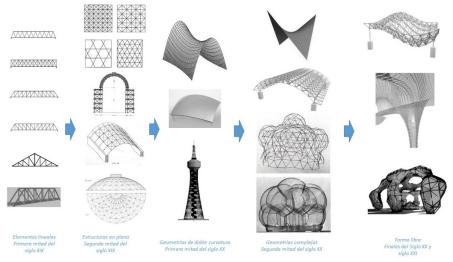


Figura 8. Transformaciones geométricas. Fuente: González Meza, E. (2016).

CONCLUSIONES

Dos etapas históricas marcan las geometrías aplicadas a la arquitectura que se construyen en diferentes partes del mundo en los últimos 70 años. La crisis económica y social generada por el mundo de la posguerra y el surgimiento de las computadoras en la llamada tercera etapa de la Revolución Industrial, que se consolidaría en la arquitectura con la denominada Revolución Digital de finales del siglo XX.

En la primera etapa, la carencia de material de construcción, mano de obra calificada y herramienta obligan a los diseñadores a proponer estructuras ligeras de fácil construcción y menor consumo de materiales, lo que posteriormente originaría la construcción de edificaciones de mayores dimensiones.

Con la segunda etapa, ya con procesos constructivos consolidados más eficientes y buscando el menor consumo de material, las herramientas digitales que surgirían en el siglo XXI como las empleadas para el modelado 3D como *Rhinoceros* o 3D Studio Max, plataformas que permitían la generación de geometrías complejas y formas libres en tres dimensiones con un proceso sencillo, y que completado con plataformas paramétricas como los softwares BIM, y los plug-in Grasshopper y Dynamo para un diseño basado en parámetros las limitantes geométricas prácticamente son nulas, logrando que en la actualidad la única limitante sea la imaginación del propio diseñador.

Por lo que estas dos etapas históricas se convierten en puntos de inflexión en la generación geométrica de la arquitectura actual, logrando que la diversidad de opiniones y propuestas en muchos casos sin limitaciones, incluso económicas, logren obtener proyectos que cumplan con las especificaciones deseadas, las geometrías deseadas y en algunos casos con los costos deseados.

FUENTES DE CONSULTA

- Belluschi, P. (1953), "The spirit of the new architecture", Architectural Record, pp. 143-149.
- Bloc, A. (1952), "Le festival de Grande-Bretagne 1951", L'architecture d'aujourd'hui, 39, pp. 27-29.
- Buckminster, F. R. (1954), Building construction', Google Patents.
- Chilton, J. (2007), Space grid structures, Taylor & Francis.
- Escher, C. (2009), Günter Günschel, Frac, Centre-Val de Loire. Available at: http://www.frac-centre.fr/collection/collection-art-architecture/index-des-auteurs/auteurs/gunschel-gunter-58.html?authID=205, consultado el 6 de abril de 2020.
- Geométrica (2019), Francisco Castaño Hernández, Pionero del Freedome, Geométrica. Available at: https://www.geometrica.com/es/latestnews/castano-sr, consultado el 11 de abril de 2020.
- González Meza, E. (2016), Estructuras de retícula triangular: transformaciones constructivas de las edificaciones, Universidad Politécnica de Madrid. doi: 10.20868/UPM.thesis.42929.
- Günschel, G. (1965), "Geodesic variations", Architectural Design, p. 345.
- Kolarevic, B. (2004), Architecture in the digital age: design and manufacturing. First. New York, Taylor & Francis.
- Mukaiyama, Y. *et al.* (2010), "Erection methods for space structures", in Symposium of the International Association for Shell and Spatial Structures (50th. 2009. Valencia). Evolution and Trends in Design, Analysis and Construction of Shell and Spatial Structures: Proceedings. Editorial Universitat Politècnica de València.
- Prentice, I. P. (1952), "Aluminum for building", Architectural Forum, pp. 152-157.
- Prentice, I. P. (1953), "Is this tomorrow's structure?", Architectural Forum, pp. 150-160.
- Prentice, I. P. (1958), "The dome goes comercial", Architectural Forum, pp. 120-125.
- Prentice, I. P. (1961), "The new talent of Alexander Graham Bell", Architectural Forum, pp. 100-105.
- Wachsmann, K. (1961), The Turning Point of Building: structure and design. Reinhold Pub. Corp.

