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BIOLOGICAL RESISTANCE OF HEAT-TREATED WOOD OF Pinus
caribaea AND Eucalyptus saligna

José Otavio Brito™*, Ananias Francisco Dias Junior’, Artur Queiroz Lana’, Carlos Rogério Andradé’,
Francisco Fernandes Bernardes’

ABSTRACT

This study aimed to analyze the resistance of the thermally treated wood of Pinus caribaea and Eucalyptus
saligna to the biological attack of wood rotting fungi. The heat treatment processes were carried out in electric
oven under nitrogen atmosphere, starting from 100 °C until reaching each one of the final temperatures of the
process: 120, 140, 160, and 180 °C. The resistance assays were performed for white rot, brown rot, and soft
rot fungi. The increase in decay resistance was observed for heat-treated wood of Pinus caribaea at higher
temperatures. On the other hand, Eucalyptus saligna showed increased resistance to rotting fungi at all tested
temperatures, except for white and soft rot at 120 °C. In general, the heat treatment process showed good re-
sults for its use as a wood preservative method.

Keywords: Brown-rot fungi, decay fungi, soft-rot fungi, thermally treated wood, white-rot fungi, wood
preservation, wood heat treatment.

INTRODUCTION

Wood is an organic material subject to attack by various biological agents, including fungi, termites, in-
sects, bacteria, marine organisms, etc. These organisms recognize the natural polymers of wood cell wall as
a source of food, having specific enzyme systems capable of metabolizing them into digestible units. Then,
to expose the wood to adverse conditions like increased soil contact, it is necessary to select species of high
natural durability or those treated with chemical preservatives that significantly increases the life, making it
more resistant to the attack of xylophagous organisms (Vivian et al. 2015).

The treatments of wood using chemical or biological agents aim at the preservation of the cellular wall of
the wood, without modifying its intrinsic nature. Throughout history, the problem is that there have been noted
some obstacles in this practice, such as toxicity and aggressiveness to the environment and life forms, difficulty
in impregnating certain woods, and loss by leaching of the preservatives (Ferrarini et al. 2012).

Heat treatment has been approached as a wood preservation technique. As an example in Europe, heat
application has been a widespread practice to improve physical properties of wood in conifers species like
spruce (Picea abies) (Alén et al. 2002) and hardwood like poplar (Populus robusta) (Rousset et al. 2004), and
biological resistance has been improved in woods, such as Scots pine (Pinus sylvestris) and Norway spruce
(Picea abies), by evaluating the use of rot fungi such as Coniophora puteana and Poria placenta (Metséd-Kor-
telainen ef al. 2005). The heat treatment is the basic process where an intermediate product is obtained between
wood and charcoal, having some comparative advantages over the original material, including decrease in
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hygroscopicity, increase in dimensional stability, etc. (Brito 1992, Pincelli et al. 2002, Palermo et al. 2015).

Regarding the chemical composition of wood, Batista et al. (2016), studying the thermal treatment of
eucalyptus at 140, 160, and 180 °C, verified that the chemical composition of the Eucalyptus grandis juvenile
wood was significantly altered by the heating process. Studies indicate that heat-treatment causes, funda-
mentally, the partial degradation of hemicellulose (Brito ez al. 2006, Brito et al. 2008, Garcia et al. 2012). In
addition to the degradation of hemicellulose, there are references to the breaking of free hydroxyl groups of
the amorphous region of cellulose and reticulation of polymers that make up the wood during this treatment
(Weiland and Guyonnet 2003, Rousset ef al. 2004, Wikberg and Maunu 2004). In general, the heat treatment
can be defined as a process that promotes the unavailability of hemicellulose, which serves as food for fungi.
The heat-treatment reduces the equilibrium moisture content, which is a key factor for the growth of organ-
isms. The wood heating process also promotes the creation of new free molecules that may act as fungicides
and insecticides and a crosslink in lignin network that make it difficult to recognize substrates by xylophagous
organisms such as fungi and termites (Weiland and Guyonnet 2003).

In addition, there are differences in the behavior of conifers and hardwoods when treated thermally. Study-
ing the thermal stability of klason lignin, Poletto (2017) observed that Pinus taeda lignin is thermally more
stable than those of the Fucalyptus grandis, stating that it is probably due to the higher thermal stability of the
guaiacyl units in soft wood lignin. This suggests that heat-treated wood from conifers and hardwoods may have
different behaviors when attacked by biological agents.

Given the information above, this study aimed to evaluate the resistance of xylophagus fungus attack in
Pinus caribaea and Eucalyptus saligna heat-treated at different temperatures, contributing to the knowledge of
less toxic and environmentally friendly techniques for the increase of wood durability.

MATERIAL AND METHODS

The wood material used for the study was 25-year-old Pinus caribaea with a specific mass of 497 kg/m?
and 20-year-old Eucalyptus saligna with a specific mass of 579 kg/m? from commercial areas of the companies
Duratex in the city of Agudos and Eucatex in the city of Salto, both in Sdo Paulo, Brazil.

For this experiment, twenty samples of each species were randomly harvested, selecting four-meter-long
logs with a minimum diameter of 25 cm. Then, the logs were sawed into planks with dimensions of 400 x 40
x 7 cm and stored in a shed with approximately 70% relative humidity at 24 °C, for natural drying for four
months. The boards were reprocessed to obtain samples of 60 x 20 x 5 cm to be taken to a climatic chamber
(temperature of 25 °C and 65% R.H.) until they reach 15% of moisture content for conducting the subsequent
assays.

Heat treatment process

The samples of both species were dried in an electric oven with air circulation for twenty-four hours in
each of the following temperatures: 60, 80, and 100 °C. In the end the samples were between 3 and 4% mois-
ture content.

For heat treatment process, the wood samples were arranged to maximize surface area inside an electric
oven with programmed temperature and time (Figure 1). The oven environment was saturated with nitrogen
gas with an initial process temperature of 100 °C and heating rate of 0,033 °C min™' until reaching each of the
final heat-treatment temperatures: 120, 140, 160, and 180 °C. The details of the heat treatment programs used
are presented in Figure 2.
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Figure 1: Arrangement of wood samples in electric oven (Source: Brito et al. 2006, with permission of
Cerne journal).
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Figure 2: Heat-treatment programs (a =120 °C;a+b=140°C;a+b+¢=160°C;a+b+c+d =180 °C).

The treatments were based on information obtained in the literature (Brito ef al. 2006, Brito et al. 2008),
and at the end of each heat treatment, the oven was turned off for natural cooling to 30 °C. The heat-treated
materials were placed in a climatic test chamber for the moisture content stabilization to proceed the further
proposed assays.

For each biological resistance test, ten boards of each species were selected with the following treatments:

e  PO: Pinus wood not heat-treated.

e  PI120: Pinus wood heat-treated at 120 °C.

e P140: Pinus wood heat-treated at 140 °C.

e P160: Pinus wood heat-treated at 160 °C.

e P180: Pinus wood heat-treated at 180 °C.

o  EO: Eucalyptus wood not heat-treated.

e E120: Eucalyptus wood heat-treated at 120 °C.
e E140: Eucalyptus wood heat-treated at 140 °C.
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e E160: Eucalyptus wood heat-treated at 160 °C.
e  EI180: Eucalyptus wood heat-treated at 180 °C.

Resistance to white rot and brown rot fungi

The resistance to white and brown rot fungi were evaluated according to the American standard Accelerat-
ed Laboratory Test of Natural Decay Resistance of Woods (ASTM, 2005). The samples with dimensions of 25
x 25 x 9 mm were then exposed to pure cultures of fungi (white or brown rot). These samples of known weight

and moisture content were placed in clean glass flasks containing sterile soil and fungus inoculum, shown in
Table 1.

Table 1: Fungus used for the biological resistance assays.

Unheated-SRT Heated-SRT  Unheated-LRT  Heated-LRT

Holocellulose (%) 67,36+2,53 56,68+0,23 67,49+0,45 57,69+0,01
Cellulose (%) 41,10+£2,48 45,96+0,75 39,89+1,97 48,08+0,57
Hemicellulose (%) 26,26+£2,48 10,71+0,75 27,60+1,97 9,60+0,57
Lignin (%) 32,64+0,10 43,32+0,67 32,51+0,13 42,31+0,20

According to ASTM-D-2017 (2005), the hardwood should be tested for resistance to three fungi, but the
fungus Postia placenta did not grow on Eucalyptus samples, even after several attempts of inoculation. There-
by, it was disregarded in this study.

The glass flasks containing the samples and fungi were kept in the climate chamber at 27 °C and relative
humidity of 70 + 5% for fourteen weeks. After this period, the samples were removed from the flasks and
washed in distilled water to remove the mycelia of fungi. Then, they were once again acclimated before being
weighed again. The evaluation was performed to determine the percentage of mass reduction in relation to the
initial mass.

Resistance to soft rot fungi

The resistance to soft rot fungi followed the method described by the Institute for Technological Re-
search Laboratory Accelerated Assay for Determination of Preservatives Efficiency against Soft Rot Fungi
(IPT 1980). Samples of 30 x 15 x 5 mm size were exposed to natural soil microflora for degradation over a
sixteen-week period. After this period, the material was washed and placed in a climatic chamber to evaluate
the percentage of mass loss in relation to the initial mass.

Data analysis
The data analysis used the statistical nonparametric Kruskal Wallis with 5% of significance, and when
differences were detected, the Mann Whitney test for multiple comparisons of means was applied. The design

considered five treatments for the heat treatments temperatures in each species (Pinus and Eucalyptus) and ten
replicates per assay performed.

RESULTS AND DISCUSSION

The results of the brown rot in Pinus caribaea varied according to the final heat treatment temperature, as
shown in Table 2 below.
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Table 2: Mass loss percentage of P. caribaea after biological assay for brown rot fungi resistance.

Treatment Fungi
Gloeophyllum trabeum Postia placenta
PO 45,24 20.44) 21,42°8 (19.20)
P120 54,85 (12.20) 23,37%® 5.1
P140 59,15 501y 28,35" (51.45)
P160 23,21" (19.04) 9,16 (12.05)

Values followed by the same letter did not differ by Mann Whitney test at 95% probability (p> 0,05). Lowercase letters compare values
between rows and capital letters compare values between columns. In parentheses are the standard deviations.

It was observed that the Pinus caribaea wood was more susceptible to fungal attack of Gloeophyllum
trabeum than the Postia placenta, having greater weight loss in all the treatments.

When exposed to the fungus Gloeophyllum trabeum the Pinus wood showed greater weight loss for
heat-treated woods at 120 and 140 °C and showed lower mass loss at 160 and 180 °C. When in contact with
the Postia placenta fungus, the P. caribaea samples also showed less weight loss when heat-treated to 160 and
180 °C and greater mass loss for the 140 °C treatment. The untreated samples showed intermediate values of
mass loss in relation to heat treatments.

In general, Pinus caribaea woods in contact with both fungi showed similar behavior, having greater mass
loss detected in treated samples at 140 °C and the lowest loss in heat-treated samples at 180 °C. In this case, the
increase in susceptibility was approximately 70,31% to 75,38% for G. trabeum and P. placenta, respectively.

Modes (2010) observed a lower resistance of Pinus taeda and Eucalyptus grandis wood heat-treated at 130
and 160 °C with Gloeophyllum trabeum fungus. The author observed the same trend for white rot under action
of Trametes versicolor in E. grandis.

In the same way, Doi et al. (2005) found greater susceptibility to the rotting of Larix leptolepis wood by
the fungus Fomitopsis palistris for woods treated at 120 and 130 °C. These variations in the mass loss can be
associated with the production of fragments of low weight sugars molecules, resulting from the hemicellulose
degradation during the thermal treatment processes at moderate temperatures of up to 160 °C. It is possible that
fungal growth can be stimulated, not only by the resulting compounds from the decomposition of hemicellu-
lose, but also by the removal of some extractives (Puls ef al. 1985, Brito et al. 2006, Rocha 2011).

Table 3 shows the results for sample mass loss of Eucalyptus saligna wood subjected to white and brown rot
assays.

Table 3: Mass loss percentage of E. saligna after biological assay for resistance to fungi.

Fungi
Treafment Gloeophyllum trabeum’ Pyc.nop oz'us
sanguineus

EO 9,788 (11,94) 32,76 (16,77)
E120 0,73 226 35,49 (1451
E140 1,42 ¢ i 23,61° (17,03
E160 1,33 207 27,714 (18,05)
E180 1,34 (167) 9,46™ (10,11)

'Fungus that causes brown rot, 2Fungus causing white rot. Values followed by the same letter do not differ by Mann Whitney test 95%
probability (p> 0,05). Lowercase letters compare values between rows and capitals letters compare values between columns. In paren-
theses are the standard deviations.

Eucalyptus saligna was more susceptible to attack by white rot fungus than by brown rot fungus in terms
of mass loss percentage, as compared between the same treatments for different fungi.

In general, eucalyptus woods showed more resistance when subjected to heat treatment, except for the
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E120 treatment under the action of the fungus P. sanguineus.

‘When under the action of G. trabeum, the largest mass loss detected for the E. saligna wood was in the E0Q
treatment (control), and the other treatments showed lower mass loss values. In this case, the E120 was already
more resistant, presenting a reduction of 92,54% when compared with the mass loss by the control treatment.

The lowest mass loss under attack of Pycnoporus sanguineus to E. saligna was observed for the wood
treated at a temperature of 180 °C, which presented a reduction of 73,34% in relation to the E120 treatment.
For this same fungus, the E0 treatments (control) and E120 showed higher weight loss than others treatments,
and the mass loss of E140 and E160 treatments showed intermediate values among the treatments.

In absolute figures, the results for mass loss of Eucalyptus saligna wood presented below those measured
for Pinus caribaea in all treatments when exposed to the same fungus (G. trabeum).

According to Figure 3, which shows the results for soft rot, it was observed that both woods, Pinus ca-

ribeae and Eucalytptus saligna, showed lower mass loss for samples treated at higher temperatures (160 and
180 °C).
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Figure 3: Wood mass loss (%) after biological resistance assay for soft rot. Values followed by the same
letter did not differ by Mann Whitney test 95% probability (p> 0,05), considering the same species of wood
(p> 0,05).

For soft rot, samples of Pinus wood at 180 °C and Eucalyptus in 160 and 180 °C had lower mass loss. Both
woods did not present differences between the control and 120 °C treatment.

CONCLUSIONS

The best results for rot resistance of Pinus caribaea wood were in samples heat-treated at higher tempera-
tures (160 and 180 °C).

The Eucalyptus saligna wood showed increased resistance to the fungus Gloeophyllum trabeum for all
treatments. In addition, E. saligna showed greater resistance to fungus Pycnoporus sanguineous and soft rot

fungus for the treatments with temperatures greater than 120 °C.

The heat treatment process may be used as an alternative for wood preservation. However, further studies
are recommended to check the changes in the physical and mechanical properties.
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