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ABSTRACT

We run logit models to explain the variability of Pinus radiata structural lumber in 71 second and third un-
pruned logs. The response variable was the proportion of lumber with a static modulus of elasticity greater or
equal than 8000 MPa, pMSG8+, and the explanatory variables were log volume, branch index, largest branch,
log internode index, wood basic density, and acoustic velocity. The average pMSG8+ volume was 44,30 %
and 36,18 % in the second and third log respectively. Ten models were selected based on meeting statistical
assumptions, their goodness of fit, and the statistical significance of their parameters. The best models (R2- adj.
> (),75) included acoustic velocity (AV) as explanatory variable, which explained 56,25 % of the variability of
pMSGS8+. Models without AV presented goodness of fit ranging from 0,60 to 0,75 (R?- adj.), and variables with
the highest weight to explain the variability of pMSG8+ were volume, followed by wood basic density, branch
index, and largest branch. It is possible to model pMSG8+ from log variables even when acoustic velocity is
not available; however, this requires wood basic density models calibrated for the Pinus radiata growing zone.
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INTRODUCTION

The quality of natural inputs, such as logs, is commonly evaluated by their performance generating
products with high prices. Under a production perspective log attributes have the role of input-traits related
to lumber production (Alzamora et al. 2013). Multipurpose forest tree species, such as P. radiata, feed fiber,
structural and appearance wood markets that require different wood trait profiles. The value of solid wood
is determined by attributes that satisfy two sets of usage requirements: appearance and structural end-uses.
Appearance wood is influenced by quantity and quality traits such as volume, color, defects, knots, and resin
spots (Beauregard et al. 2002). Structural wood is mostly determined by dynamic modulus of elasticity, wood
basic density, volume, and branching (Arriaga et al. 2013, Tsehaye et al. 2000, Tsuchikawa 2007, Xu and
Walker 2004). Several of these traits are under genetic control, and they could be modified by silviculture and
processing technology (Schimleck ef al. 2019).

Obtaining wood traits information from logs is not simple; logs are naturally heterogeneous, creating
problems for product differentiation and for definition of quality grades and standards. Fortunately, there have
been significant advances on non-destructive approaches to measure and predict wood properties such as
dynamic modulus of elasticity from trees and logs (Dickson et al. 2003, Lasserre et al. 2005, Matheson ef al.
2002, Soto et al. 2012, Waghorn et al. 2007).

According Ross (2015) and Schimleck ef al. (2019), non-destructive tools can measure the physical and
the mechanical properties of a piece of material without altering its end-use capabilities and using such infor-
mation to make decisions regarding appropriate applications. Consequently, non-destructive acoustic methods
can increase the efficiency of chain value in wood production (Chauhan and Walker 2006). Apiolaza (2009)
and Ivkovi¢ et al. (2009) indicated that tools based on acoustics principles could be used for screening at a
very early age and be related to several properties like modulus of elasticity, dimensional stability, and fibre
length’, among others.

Soto et al. (2012) used acoustic tools on standing trees for exploring influence of tree stocking on the
dynamic modulus of elasticity in a mature P. radiata plantation growing in Biobio Region, Chile, and they
reported the high variation between logs coming from a single stand. An application of acoustic methods to
assess structural wood quality in logs, with the corresponding log outturn and grading, was reported by Jones
and Emms (2010). These authors modeled log-level green and kiln-dried board modulus of elasticity, based on
acoustic log velocity and green density.

In Chile, the prediction of structural and appearance P. radiata log outturn has been partially solved by
using computed x-ray tomography scanners, such as the CT-Log (Schmoldt et al. 1993). This technology
reconstructs internal log features, allowing the assessment of the optimum cutting solution in real-time. In a
similar way, integrated efforts between wood researchers and forest companies have developed CALIRO-Saw
(2014), a sawmill simulator based on real logs that include internal log features and generate products using
lumber grading rules specified by the users. Unfortunately, all these technologies are available for a reduced
group of producers due to high costs and operational issues. However, in absence of scanners and sawing
simulators to support log segregation and processing decisions, we can use variables traditionally recorded in
the field during primary log sorting to predict the proportion of structural lumber.

The objective of this study was to develop models that explain the variability of structural lumber with
static modulus of elasticity greater or equal to 8000 MPa using log variables: volume (VOL), acoustic velocity
(AV), wood basic density (BD), branch index (BI), largest branch (LB), corewood (CW) and internode index
(INT). The models that use AV were compared with those that use BD and other variables regularly measured
at the field.

MATERIALS AND METHODS
Log and lumber attributes

Log and lumber data were provided by the New Zealand Wood Quality Initiative, as a sample of 71 Pinus
radiata (D. Don) unpruned 5 m long logs (35 second and 36 third logs) coming from managed and mature
trees with ages between 26 and 28 years old. Table 1 presents a summary of log attributes. Log volume
(VOL) was estimated by using the Smalian formula (Bruce 1982), which considers the small and large log
end-diameters and the log length (5 m). Branch index (BI) is the mean diameter of the four largest branches
of the log, one per quadrant (North, East, West, and South). Largest branch (LB) is the diameter of the largest
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branch of the log. Branches have a negative influence on structural lumber production, where high branch
angle and size reduce the quality of structural products (Grant e al. 1984, Xu and Walker 2004).

Internode index (INT) is the sum of the lengths of internodes greater or equal than 0,6 m divided by the
log length (Grace and Carson 1993). 0,6 m is the critical value for short clear wood products in the local in-
dustry, particularly for the finger-joint processing (Fernandez et al. 2017). Corewood (CW), is the inner part
of the stem (considering the first 10 growth rings, juvenile wood), which presents low wood quality for most
end-uses, including low wood basic density, short cells, high microfibril angle, high spiral grain, and high
longitudinal shrinkage (Xu and Walker 2004). CW was measured as the percentage of the cross-section at the
large end diameter of the log.

Basic density (BD) is the amount of dry matter (at 12 % moisture level) per unit of green volume, a trait
highly related to strength, stiffness and hardness in outerwood.

Modulus of elasticity measures a wood’s stiffness, and dynamic modulus of elasticity, or Young’s modulus
of elasticity (MOE,) which according Beall (2001) it is estimated by a dynamic phenomenon that consists in
passing of stress waves within wooden materials that can be released in wood and analyzed and affiliated with
mechanical properties.

Table 1: Mean values and standard deviations (SD) of second and third log attributes.

. Second log Third log
Variable Mean SD Mean SD

Volume (VOL) m’ 0,895 | 0321 | 0,729 | 0276

Acoustic velocity (AV) km/s 2,947 0,267 2,931 0,242
Dynamic modulus of elasticity (MOEq)MPa 7921 1460 7930 1278

Basic density (BD)kg/m’ 3823 | 288 | 3779 | 287

Branch index (BI) cm 4,946 1,612 5,922 1,902
Largest branch (LB)mm 60,286 | 20967 | 73,333 | 26,592
Corewood (CW)% 44836 | 9,489 | 51,044 | 9.8I13
Internode index (INT) % 14,857 | 17,362 | 12,383 | 15,710

The acoustic measurements (AV) in logs to estimate MOE were collected with the Director HM200 tool
(Fibre-gen, New Zealand). Logs attributes assessed in the study have been reported as influencing traits to
produce structural lumber from P. radiata (Ivkovi¢ et al. 2006, Jones and Emms 2010, Waghorn ef al. 2007),
and to characterize the most efficient log attributes profile to produce structural lumber grades (Alzamora et
al. 2013).

The statistical analysis were performed and generated using R version 3.4.4 (R Core Team, 2019).

Sawmill product evaluation

Once the logs were assessed in the field, they were processed at the mill, and assessed for static modulus
of elasticity (MOE,) by using a testing machine. Processing aimed to maximize the recovery of lumber with a
static modulus of elasticity greater or equal than 8000 MPa. The volume of lumber grade recovery for each log

type is in Table 2, where MSG stands for machine stress graded, and the number is the MOE_in MPa.

Table 2: Descriptive statistics of lumber grades volume (m?) per log.

<MSG8 > MSGS8 Reject
Second log m’ m’ m’
Mean value 0,221 0,163 0,056
Maximum value 0,630 0,594 0,614
Minimum value 0,020 0 0
Standard deviation 0,167 0,164 0,112
Third log
Mean value 0,190 0,106 0,040
Maximum value 0,515 0,514 0,361
Minimum value 0 0 0
Standard deviation 0,129 0,117 0,076
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Model components

An analysis of correlations was addressed to notice relationships between log attributes. The correlation
matrix results are shown in Table 3. It was noticed higher correlation between BD and AV and pMSG8+, and
between BI with LB, AV, VOL and pMSG8+ . The results about variables and correlations were used to define
variables being used in the modeling regressions.

Table 3: Correlations matrix between log attributes.

BD BI INT CW LB AV VOL | pMSGS+
BD 1 0,12 0,06 020 | -014 0,66 0,21 0,68
BI 0,12 1 0,04 0,30 0,95 0,54 0,50 0,52
INT 0,06 0,04 1 0,06 0,12 0,01 0,16 0,16
CW 020 | 030 0,06 1 0,27 0,25 -0,64 0,21
LB 0,14 0,95 0,12 0,27 1 0,52 045 0,50
AV 0,66 0,54 0,01 0,25 0,52 1 0,63 0,75

Modeling regression functions requires information on the response and predictor variables, as well as
assumptions about distributions. In this study, the response variable is the lumber proportion with a static
modulus of elasticity greater or equal than 8000 MPa, which will be named as pMSG8+ (%). The predictors
are LOG (a categorical variable to indicate second or third log), VOL, BI, LB, BD, AV, INT and CW. Equation
1 presents the functional form of the model.

PMSG8+=B,+ X, + B X, +..+ B X +& (1)

pMSG8+ corresponds to the proportion of structural lumber derived from the i” log and x; is the vector of
j attributes in the i log, and ¢ is model error. Equation 2 illustrates the calculation of pMSG8+

MSG; + MSG,, + MSG,,
Reject + MSG,, + MSG, + MSG,, + MSG,,

PMSG8+ = @)

In summary, Equation 2 represents the proportion of commercial volume with MOE_ greater or equal to
8000 MPa.

We run models to obtain the best goodness of fit, and meeting the normality, independence, and ho-
mogeneous variance of residuals assumptions, as well as accounting for multicollinearity of the pre-
dictors. Normality of the residuals was tested using the Shapiro-Wilk test and homoscedasticity with
de Breusch-Pagan test. We used a logit transformation of the response to avoid predictions of the pro-
portion outside of the range of 0 to 1. Equation 3 illustrates the calculation of pMSG8+ in a logit model:

pMSG8+
— ( pMSG8 +)

=z=B+BX +LX,+.+BX, +e ()

(pMSG8+)+0,03
1-(pMSG8+)+0,03

for transforming a response variable defined as a proportion. Thus, the multiple linear regressions were fitted
using the z variable; however, for recovering the original response variable (pMSG8+), we used the trans-

1
1+e*

The new response variable is z = [n

,as Gujarati and Porter (2010) suggest

formation variable z,=
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RESULTS AND DISCUSSION

The average proportion of lumber with a static modulus of elasticity higher than or equal 8000 MPa was
37,04 % in the second log, and 31,55 % in the third log. These results could be explained by the slightly su-
perior MOE  in third logs (Table 1). This result does not follow the trend reported by Xu and Walker (2004),
who indicate that the highest MOE  would be concentrated in the second log, between 4 m to 8 m, and then
decrease. The correlations between log attributes, and structural lumber production resulted according to com-
parable studies (Ivkovi¢ et al. 2006). Thus, there was a negative and significant correlation between AV and
VOL (-0,63, p < 0,05). The correlation between AV and BD was also significant (0,66, p < 0,05). The average
predictor variables are similar to other reported studies (Apiolaza 2009). For instance, the maximum values of
AV and LB for second and third logs were 3,59 km/s and 3,45 km/s, and 110 mm and 125 mm, respectively
which are similar to those obtained by comparable studies (Xu and Walker 2004).

Concerning structural lumber products (= MSGS), at least one structural board was generated in 86 % of
the second logs, and 83 % of the third logs.

Table 4a: Multiple regression models to estimate structural lumber production (pMSG8+).

Models Parameter Standard R”-adj.

Estimate Error

0,8203

1)z=p +p LOG+B_BI+p_INT+B AV+B CW >
Dz 130 [31 Bz ﬁ3 B 4 [35

Intercept 8,5237 1,4051
LOG 0,5896 0,1896
BI -0,2988° 0,0600
INT 0,02227 0,0050
AV 45157 0,3895
CW -0,0905 0,0095

@ =B, B BI+p, INT+B AV+S CW 0,7967
Intercept 29,6115 1,4475
BI -0,2228°7 0,0583
INT 0,02007 0,0053
AV 4,6509" 0,4117
CwW 0,07797 0,0091

() 2= B, *B LOGHp BI:p AV CW 0,7703
Intercept 8,7978" 1,5872
LOG 0,47497 0,2124
BI -0,26787 0,0674
AV 4,5929" 0,4400
CwW -0,0855 0,0107

(4) 2=, B BIp AV+H CW 0568
Intercept -9,6689" 1,5839
BI 020797 0,0637
AV 4,6977 0,4504
CW -0,0756™" 0,0098

(5)2= B, +p LOGHp BIHp_INT+p VOL+p CW-+p BD 0,7548
Intercept 47378 2,1022
LOG 05114 0,2362
BI -0,46327 0,0713
INT 0,0166" 0,0061
VOL -1,0624" 0,5294
CW 0,0746™ 0,0139
BD 0,0279 0,0038

* Significant at 0,1 level; ** significant at 0,05 level; *** significant at 0,01 level.



Maderas. Ciencia y tecnolog_ Universidad del Bio-Bio

Table 4b: Multiple regression models to estimate structural lumber production (pMSG8+).

Models Parameter Standard | R*-adj.

Estimate Error

(6) 2=, +B BDIB, VOL1p Bif CW 06999
Intercept -4,04447 2,3228
BD 0,0266 0,0042
VOL -1,94447 0,5271
LB -0,02357 0,0048
Cw 20,0736 0,0152

(7 2=, +plB1+[3 2BD 0,6341
Intercept -12,3624 1,6467
BI 0,36837 0,0647
BD 0,0362° 0,0041

(8) 2=, +f BHp, BD+p.VOL 0,6287

E;

Intercept -12,38007 1,7167
BI -0,3698" 0,0745
BD 0,032 0,0042
VOL 0,0178 0,4466

© 2B, +h LB+, BD L
Intercept 12,6571 1,7110
LB -0,0248™ 0,0050
BD 0,0360" 0,0043

10y z= [50+[31LB+[32BD+[33V0L 0,6000
Intercept -12,4125 1,7859
LB 20,0235 0,0055
BD 0,0357 0,0044
VOL -0,2295 0,4497

* Significant at 0,1 level; ** significant at 0,05 level; *** significant at 0,01 level.

The high significance of the correlations between structural lumber volume (>MSGS) and log variables
supported building models to explain pMSG8+. Table 4a and Table 4b presents the resulting models
explaining the variability of the proportion of structural lumber volume in terms of log variables.

Collinearity between explanatory variables of the models was tested by variance inflation factors (VIF),
which identifies the correlation between independent variables and the strength of that correlation (Gujarati
and Porter 2010). A VIF value of 1 indicated that there is no correlation between this independent variable
and any others. Results indicated VIF values of all models and variables were less than 3, which indicated
weak multicollinearity, and it was not necessary to do corrective measures (Gelman and Hill 2007). Thus,
both coefficients and p-values of models presented in Table 4a and Table 4b are statistically consistent to
explain the variability of pMSG8+ coming from P. radiata unpruned logs.

For the studied set of logs, AV explained 56,25 % of the variability of structural lumber volume (= MSGS),
(p < 0,01), which supports the importance of this information, as well as the results of comparable studies
(Waghorn et al. 2007). Wood density (BD) explained 46,24 % of structural lumber volume (> 8000 MPa)
variation, which confirmed why this variable is considered a central wood property for multiple end uses
(Kimberley et al. 2015).

Models 1, 2, 3, 4 and 5 in Table 4a and Table 4b showed the best performance in terms of goodness of fit
(R%- adj > 0,75). Model 1 presented an R?- adj. of 0,82 and all coefficients were significantly different from
zero (p < 0,01). AV had a high weight to explain the variability of pMSG8+, which supports results by
Jones and Emms (2010). Considering Model 1 for the second log and using the average values of the
explanatory variables BI, INT, AV, and CW, the estimated value of pMSG8+ was 39 %. When increasing
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AV by 1 %, this proportion increased more than proportionally by 3 % because the velocity goes as a
squared variable in the formula to estimate the MOE .

As we expected, branching represented by branch index (BI), the largest branch (LB), as well as corewood
(CW), had a negative contribution to the pMSG8+ estimations. Branching has a negative influence on the
production of structural grades, where high branch angle and diameter reduce the quality of structural products
(Beauregard et al. 2002, Xu and Walker 2004). Increasing BI by 1 % generated a decrease less than propor-
tional of 0,35 % in pMSGS8+ (Model 1, second log), and this decrease ranged from 0,25 % to 0,58 % across all
models that considered the variable BI. In models that included LB as an explanatory variable, the pMSG8+
reduction ranged from 0,34 % to 0,38 % when increasing LB by 1 %. Alzamora et al. (2013) reported a similar
trend when valuing the effect of branches in the value recovery of logs for structural end uses; an extra milli-
meter in branch diameter decreased the log value by US$ 0,27. In New Zealand, the largest branch (LB) is the
branching variable used to classify and price logs due to its high correlation with structural grades recovery.

CONCLUSIONS

As we expected, branching represented by branch index (BI), the largest branch (LB), as well as corewood
(CW), had a negative contribution to the pMSG8+ estimates. Branching negatively influences the structural
grades production, where high branch angle and branch diameter reduce the quality of structural products.
AV, BI, LB, BD, and CW had a significant contribution to explain the recovery of structural lumber grades
(= MSGS8), and the magnitude and sign of their coefficients along the ten models were comparable with those
reported by the literature.

The proportion of structural lumber (»MSG8+) was strongly related to acoustic measurements and
negatively associated with branching variables. Acoustic velocity (AV) was the explanatory variable with the
highest weight, explaining 31,55 % of pMSG&8+ variability in the set of second and third logs. The log inter-
node index (INT) also had a positive contribution to explain the variability of pMSGS8+ because the higher the
internode is, the lower is the negative influence of branches and knots on structural wood quality.

The largest branch (LB) and the branch index (BI) made an equivalent contribution across the models.
This result is propitious for using LB as operative criteria to characterize logs because collecting LB informa-
tion is less time consuming that determining the branch index (BI).

Modeling the variability on pMSG8+ was possible based on a set of variables collected in primary logs
classification processes such as BI, LB, CW, INT, and other more expensive variables acoustic velocity (AV)
and wood basic density (BD). Models using AV presented higher goodness of fit than those using BD. However,
models including BD would be more appealing because they could use mean wood basic density information
derived from wood density models used by forest companies. This study’s results are also pertinent for Chile
since structural lumber exported to Europe must be mechanically certified by European standard in grades C16
and C24, corresponding with a static modulus of elasticity of 7900 MPa and 10200 MPa, respectively.
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